blob: 46d3f9125afba02429f8e7e8abab9b5e2dcbc915 [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/object_view.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <algorithm>
#include <cstddef>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/client_end.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/server_end.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace unionsandwich {
class UnionSize8Alignment4;
struct SandwichUnionSize8Alignment4;
class UnionSize36Alignment4;
struct SandwichUnionSize36Alignment4;
class UnionSize12Alignment4;
struct SandwichUnionSize12Alignment4;
struct StructSize16Alignment8;
class UnionSize24Alignment8;
struct SandwichUnionSize24Alignment8;
extern "C" const fidl_type_t fidl_test_unionsandwich_UnionSize8Alignment4Table;
class UnionSize8Alignment4 {
public:
UnionSize8Alignment4() : ordinal_(Ordinal::Invalid), envelope_{} {}
UnionSize8Alignment4(UnionSize8Alignment4&&) = default;
UnionSize8Alignment4& operator=(UnionSize8Alignment4&&) = default;
~UnionSize8Alignment4() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static UnionSize8Alignment4 WithVariant(
::fidl::tracking_ptr<uint32_t>&& val) {
UnionSize8Alignment4 result;
result.set_variant(std::move(val));
return result;
}
template <typename... Args>
static UnionSize8Alignment4 WithVariant(::fidl::AnyAllocator& allocator,
Args&&... args) {
UnionSize8Alignment4 result;
result.set_variant(
::fidl::ObjectView<uint32_t>(allocator, std::forward<Args>(args)...));
return result;
}
void set_variant(::fidl::tracking_ptr<uint32_t>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_variant(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kVariant;
set_variant(
::fidl::ObjectView<uint32_t>(allocator, std::forward<Args>(args)...));
}
uint32_t& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
const uint32_t& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_UnionSize8Alignment4Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<uint32_t> to_destroy =
static_cast<::fidl::tracking_ptr<uint32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_unionsandwich_UnionSize36Alignment4Table;
class UnionSize36Alignment4 {
public:
UnionSize36Alignment4() : ordinal_(Ordinal::Invalid), envelope_{} {}
UnionSize36Alignment4(UnionSize36Alignment4&&) = default;
UnionSize36Alignment4& operator=(UnionSize36Alignment4&&) = default;
~UnionSize36Alignment4() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static UnionSize36Alignment4 WithVariant(
::fidl::tracking_ptr<::fidl::Array<uint8_t, 32>>&& val) {
UnionSize36Alignment4 result;
result.set_variant(std::move(val));
return result;
}
template <typename... Args>
static UnionSize36Alignment4 WithVariant(::fidl::AnyAllocator& allocator,
Args&&... args) {
UnionSize36Alignment4 result;
result.set_variant(::fidl::ObjectView<::fidl::Array<uint8_t, 32>>(
allocator, std::forward<Args>(args)...));
return result;
}
void set_variant(::fidl::tracking_ptr<::fidl::Array<uint8_t, 32>>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_variant(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kVariant;
set_variant(::fidl::ObjectView<::fidl::Array<uint8_t, 32>>(
allocator, std::forward<Args>(args)...));
}
::fidl::Array<uint8_t, 32>& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<::fidl::Array<uint8_t, 32>*>(envelope_.data.get());
}
const ::fidl::Array<uint8_t, 32>& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<::fidl::Array<uint8_t, 32>*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_UnionSize36Alignment4Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 32;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<::fidl::Array<uint8_t, 32>> to_destroy =
static_cast<::fidl::tracking_ptr<::fidl::Array<uint8_t, 32>>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_unionsandwich_UnionSize12Alignment4Table;
class UnionSize12Alignment4 {
public:
UnionSize12Alignment4() : ordinal_(Ordinal::Invalid), envelope_{} {}
UnionSize12Alignment4(UnionSize12Alignment4&&) = default;
UnionSize12Alignment4& operator=(UnionSize12Alignment4&&) = default;
~UnionSize12Alignment4() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static UnionSize12Alignment4 WithVariant(
::fidl::tracking_ptr<::fidl::Array<uint8_t, 6>>&& val) {
UnionSize12Alignment4 result;
result.set_variant(std::move(val));
return result;
}
template <typename... Args>
static UnionSize12Alignment4 WithVariant(::fidl::AnyAllocator& allocator,
Args&&... args) {
UnionSize12Alignment4 result;
result.set_variant(::fidl::ObjectView<::fidl::Array<uint8_t, 6>>(
allocator, std::forward<Args>(args)...));
return result;
}
void set_variant(::fidl::tracking_ptr<::fidl::Array<uint8_t, 6>>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_variant(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kVariant;
set_variant(::fidl::ObjectView<::fidl::Array<uint8_t, 6>>(
allocator, std::forward<Args>(args)...));
}
::fidl::Array<uint8_t, 6>& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<::fidl::Array<uint8_t, 6>*>(envelope_.data.get());
}
const ::fidl::Array<uint8_t, 6>& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<::fidl::Array<uint8_t, 6>*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_UnionSize12Alignment4Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<::fidl::Array<uint8_t, 6>> to_destroy =
static_cast<::fidl::tracking_ptr<::fidl::Array<uint8_t, 6>>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_unionsandwich_UnionSize24Alignment8Table;
class UnionSize24Alignment8 {
public:
UnionSize24Alignment8() : ordinal_(Ordinal::Invalid), envelope_{} {}
UnionSize24Alignment8(UnionSize24Alignment8&&) = default;
UnionSize24Alignment8& operator=(UnionSize24Alignment8&&) = default;
~UnionSize24Alignment8() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static UnionSize24Alignment8 WithVariant(
::fidl::tracking_ptr<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>&& val) {
UnionSize24Alignment8 result;
result.set_variant(std::move(val));
return result;
}
template <typename... Args>
static UnionSize24Alignment8 WithVariant(::fidl::AnyAllocator& allocator,
Args&&... args) {
UnionSize24Alignment8 result;
result.set_variant(
::fidl::ObjectView<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>(
allocator, std::forward<Args>(args)...));
return result;
}
void set_variant(
::fidl::tracking_ptr<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_variant(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kVariant;
set_variant(::fidl::ObjectView<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>(
allocator, std::forward<Args>(args)...));
}
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8&
mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8*>(
envelope_.data.get());
}
const ::llcpp::fidl::test::unionsandwich::StructSize16Alignment8& variant()
const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8*>(
envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_UnionSize24Alignment8Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 16;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>
to_destroy = static_cast<::fidl::tracking_ptr<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t
fidl_test_unionsandwich_SandwichUnionSize8Alignment4Table;
struct SandwichUnionSize8Alignment4 {
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_SandwichUnionSize8Alignment4Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 40;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
uint32_t before = {};
::llcpp::fidl::test::unionsandwich::UnionSize8Alignment4 union_ = {};
uint32_t after = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
SandwichUnionSize8Alignment4* value)
: message_(bytes, byte_size, sizeof(SandwichUnionSize8Alignment4),
nullptr, 0, 0) {
message_.LinearizeAndEncode<SandwichUnionSize8Alignment4>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(SandwichUnionSize8Alignment4* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct SandwichUnionSize8Alignment4>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct SandwichUnionSize8Alignment4>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct SandwichUnionSize8Alignment4* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct SandwichUnionSize8Alignment4*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct SandwichUnionSize8Alignment4>();
}
}
};
};
extern "C" const fidl_type_t
fidl_test_unionsandwich_SandwichUnionSize36Alignment4Table;
struct SandwichUnionSize36Alignment4 {
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_SandwichUnionSize36Alignment4Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 40;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 32;
static constexpr bool HasPointer = true;
uint32_t before = {};
::llcpp::fidl::test::unionsandwich::UnionSize36Alignment4 union_ = {};
uint32_t after = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
SandwichUnionSize36Alignment4* value)
: message_(bytes, byte_size, sizeof(SandwichUnionSize36Alignment4),
nullptr, 0, 0) {
message_.LinearizeAndEncode<SandwichUnionSize36Alignment4>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(SandwichUnionSize36Alignment4* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct SandwichUnionSize36Alignment4>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct SandwichUnionSize36Alignment4>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct SandwichUnionSize36Alignment4* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct SandwichUnionSize36Alignment4*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct SandwichUnionSize36Alignment4>();
}
}
};
};
extern "C" const fidl_type_t
fidl_test_unionsandwich_SandwichUnionSize12Alignment4Table;
struct SandwichUnionSize12Alignment4 {
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_SandwichUnionSize12Alignment4Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 40;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
uint32_t before = {};
::llcpp::fidl::test::unionsandwich::UnionSize12Alignment4 union_ = {};
int32_t after = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
SandwichUnionSize12Alignment4* value)
: message_(bytes, byte_size, sizeof(SandwichUnionSize12Alignment4),
nullptr, 0, 0) {
message_.LinearizeAndEncode<SandwichUnionSize12Alignment4>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(SandwichUnionSize12Alignment4* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct SandwichUnionSize12Alignment4>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct SandwichUnionSize12Alignment4>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct SandwichUnionSize12Alignment4* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct SandwichUnionSize12Alignment4*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct SandwichUnionSize12Alignment4>();
}
}
};
};
extern "C" const fidl_type_t
fidl_test_unionsandwich_StructSize16Alignment8Table;
struct StructSize16Alignment8 {
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_StructSize16Alignment8Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
uint64_t f1 = {};
uint64_t f2 = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructSize16Alignment8* value)
: message_(bytes, byte_size, sizeof(StructSize16Alignment8), nullptr, 0,
0) {
message_.LinearizeAndEncode<StructSize16Alignment8>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructSize16Alignment8* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructSize16Alignment8>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructSize16Alignment8>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructSize16Alignment8* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructSize16Alignment8*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructSize16Alignment8>();
}
}
};
};
extern "C" const fidl_type_t
fidl_test_unionsandwich_SandwichUnionSize24Alignment8Table;
struct SandwichUnionSize24Alignment8 {
static constexpr const fidl_type_t* Type =
&fidl_test_unionsandwich_SandwichUnionSize24Alignment8Table;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 40;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 16;
static constexpr bool HasPointer = true;
uint32_t before = {};
::llcpp::fidl::test::unionsandwich::UnionSize24Alignment8 union_ = {};
uint32_t after = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
SandwichUnionSize24Alignment8* value)
: message_(bytes, byte_size, sizeof(SandwichUnionSize24Alignment8),
nullptr, 0, 0) {
message_.LinearizeAndEncode<SandwichUnionSize24Alignment8>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(SandwichUnionSize24Alignment8* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct SandwichUnionSize24Alignment8>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct SandwichUnionSize24Alignment8>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct SandwichUnionSize24Alignment8* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct SandwichUnionSize24Alignment8*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct SandwichUnionSize24Alignment8>();
}
}
};
};
} // namespace unionsandwich
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::unionsandwich::UnionSize8Alignment4>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::unionsandwich::UnionSize8Alignment4>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::UnionSize8Alignment4>);
template <>
struct IsFidlType<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4>
: public std::true_type {};
template <>
struct IsStruct<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4>);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4,
before) == 0);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4,
union_) == 8);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4,
after) == 32);
static_assert(
sizeof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4) ==
::llcpp::fidl::test::unionsandwich::SandwichUnionSize8Alignment4::
PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::unionsandwich::UnionSize36Alignment4>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::unionsandwich::UnionSize36Alignment4>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::UnionSize36Alignment4>);
template <>
struct IsFidlType<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4>
: public std::true_type {};
template <>
struct IsStruct<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4>);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4,
before) == 0);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4,
union_) == 8);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4,
after) == 32);
static_assert(
sizeof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4) ==
::llcpp::fidl::test::unionsandwich::SandwichUnionSize36Alignment4::
PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::unionsandwich::UnionSize12Alignment4>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::unionsandwich::UnionSize12Alignment4>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::UnionSize12Alignment4>);
template <>
struct IsFidlType<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4>
: public std::true_type {};
template <>
struct IsStruct<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4>);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4,
before) == 0);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4,
union_) == 8);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4,
after) == 32);
static_assert(
sizeof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4) ==
::llcpp::fidl::test::unionsandwich::SandwichUnionSize12Alignment4::
PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8>);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::StructSize16Alignment8, f1) ==
0);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::StructSize16Alignment8, f2) ==
8);
static_assert(
sizeof(::llcpp::fidl::test::unionsandwich::StructSize16Alignment8) ==
::llcpp::fidl::test::unionsandwich::StructSize16Alignment8::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::unionsandwich::UnionSize24Alignment8>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::unionsandwich::UnionSize24Alignment8>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::UnionSize24Alignment8>);
template <>
struct IsFidlType<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8>
: public std::true_type {};
template <>
struct IsStruct<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<
::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8>);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8,
before) == 0);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8,
union_) == 8);
static_assert(
offsetof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8,
after) == 32);
static_assert(
sizeof(::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8) ==
::llcpp::fidl::test::unionsandwich::SandwichUnionSize24Alignment8::
PrimarySize);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace unionsandwich {} // namespace unionsandwich
} // namespace test
} // namespace fidl
} // namespace llcpp