blob: d991ba0d36295df2a49859cddb8c3ef402345eb6 [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/object_view.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <algorithm>
#include <cstddef>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/client_end.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/server_end.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/channel.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace error {
struct Example_foo_Response;
class Example_foo_Result;
class Example;
extern "C" const fidl_type_t fidl_test_error_Example_foo_ResultTable;
class Example_foo_Result {
public:
Example_foo_Result() : ordinal_(Ordinal::Invalid), envelope_{} {}
Example_foo_Result(Example_foo_Result&&) = default;
Example_foo_Result& operator=(Example_foo_Result&&) = default;
~Example_foo_Result() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kResponse = 1, // 0x1
kErr = 2, // 0x2
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_response() const { return ordinal_ == Ordinal::kResponse; }
static Example_foo_Result WithResponse(
::fidl::tracking_ptr<::llcpp::fidl::test::error::Example_foo_Response>&&
val) {
Example_foo_Result result;
result.set_response(std::move(val));
return result;
}
template <typename... Args>
static Example_foo_Result WithResponse(::fidl::AnyAllocator& allocator,
Args&&... args) {
Example_foo_Result result;
result.set_response(
::fidl::ObjectView<::llcpp::fidl::test::error::Example_foo_Response>(
allocator, std::forward<Args>(args)...));
return result;
}
void set_response(
::fidl::tracking_ptr<::llcpp::fidl::test::error::Example_foo_Response>&&
elem) {
ordinal_ = Ordinal::kResponse;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_response(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kResponse;
set_response(
::fidl::ObjectView<::llcpp::fidl::test::error::Example_foo_Response>(
allocator, std::forward<Args>(args)...));
}
::llcpp::fidl::test::error::Example_foo_Response& mutable_response() {
ZX_ASSERT(ordinal_ == Ordinal::kResponse);
return *static_cast<::llcpp::fidl::test::error::Example_foo_Response*>(
envelope_.data.get());
}
const ::llcpp::fidl::test::error::Example_foo_Response& response() const {
ZX_ASSERT(ordinal_ == Ordinal::kResponse);
return *static_cast<::llcpp::fidl::test::error::Example_foo_Response*>(
envelope_.data.get());
}
bool is_err() const { return ordinal_ == Ordinal::kErr; }
static Example_foo_Result WithErr(::fidl::tracking_ptr<uint32_t>&& val) {
Example_foo_Result result;
result.set_err(std::move(val));
return result;
}
template <typename... Args>
static Example_foo_Result WithErr(::fidl::AnyAllocator& allocator,
Args&&... args) {
Example_foo_Result result;
result.set_err(
::fidl::ObjectView<uint32_t>(allocator, std::forward<Args>(args)...));
return result;
}
void set_err(::fidl::tracking_ptr<uint32_t>&& elem) {
ordinal_ = Ordinal::kErr;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_err(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kErr;
set_err(
::fidl::ObjectView<uint32_t>(allocator, std::forward<Args>(args)...));
}
uint32_t& mutable_err() {
ZX_ASSERT(ordinal_ == Ordinal::kErr);
return *static_cast<uint32_t*>(envelope_.data.get());
}
const uint32_t& err() const {
ZX_ASSERT(ordinal_ == Ordinal::kErr);
return *static_cast<uint32_t*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_error_Example_foo_ResultTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kResponse = 1, // 0x1
kErr = 2, // 0x2
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<::llcpp::fidl::test::error::Example_foo_Response>
to_destroy = static_cast<::fidl::tracking_ptr<
::llcpp::fidl::test::error::Example_foo_Response>>(
std::move(envelope_.data));
break;
}
case 2: {
::fidl::tracking_ptr<uint32_t> to_destroy =
static_cast<::fidl::tracking_ptr<uint32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_error_Example_foo_ResponseTable;
struct Example_foo_Response {
static constexpr const fidl_type_t* Type =
&fidl_test_error_Example_foo_ResponseTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 8;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
int64_t y = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
Example_foo_Response* value)
: message_(bytes, byte_size, sizeof(Example_foo_Response), nullptr, 0,
0) {
message_.LinearizeAndEncode<Example_foo_Response>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(Example_foo_Response* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct Example_foo_Response>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct Example_foo_Response>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct Example_foo_Response* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct Example_foo_Response*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct Example_foo_Response>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_error_ExamplefooRequestTable;
extern "C" const fidl_type_t fidl_test_error_ExamplefooResponseTable;
class Example final {
Example() = delete;
public:
struct fooResponse final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::llcpp::fidl::test::error::Example_foo_Result result;
explicit fooResponse(::llcpp::fidl::test::error::Example_foo_Result& result)
: result(std::move(result)) {
_InitHeader();
}
fooResponse() { _InitHeader(); }
static constexpr const fidl_type_t* Type =
&fidl_test_error_ExamplefooResponseTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 40;
static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = true;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(
uint8_t* _bytes, uint32_t _byte_size,
::llcpp::fidl::test::error::Example_foo_Result& result)
: message_(_bytes, _byte_size, sizeof(fooResponse), nullptr, 0, 0) {
FIDL_ALIGNDECL fooResponse _response{result};
message_.LinearizeAndEncode<fooResponse>(&_response);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
fooResponse* response)
: message_(bytes, byte_size, sizeof(fooResponse), nullptr, 0, 0) {
message_.LinearizeAndEncode<fooResponse>(response);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
template <typename ChannelLike>
void Write(ChannelLike&& client) {
message_.Write(std::forward<ChannelLike>(client));
}
private:
fooResponse& Message() {
return *reinterpret_cast<fooResponse*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(
::llcpp::fidl::test::error::Example_foo_Result& result)
: message_(bytes_, sizeof(bytes_), result) {}
explicit OwnedEncodedMessage(fooResponse* response)
: message_(bytes_, sizeof(bytes_), response) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
template <typename ChannelLike>
void Write(ChannelLike&& client) {
message_.Write(std::forward<ChannelLike>(client));
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<fooResponse>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<fooResponse>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
fooResponse* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<fooResponse*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<fooResponse>();
}
}
};
private:
void _InitHeader();
};
struct fooRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::fidl::StringView s;
explicit fooRequest(zx_txid_t _txid, const ::fidl::StringView& s)
: s(::fidl::unowned_ptr_t<const char>(s.data()), s.size()) {
_InitHeader(_txid);
}
explicit fooRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&fidl_test_error_ExamplefooRequestTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 32;
static constexpr uint32_t MaxOutOfLine = 4294967295;
static constexpr uint32_t AltPrimarySize = 32;
static constexpr uint32_t AltMaxOutOfLine = 4294967295;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = true;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
using ResponseType = fooResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid, const ::fidl::StringView& s)
: message_(_bytes, _byte_size, sizeof(fooRequest), nullptr, 0, 0) {
FIDL_ALIGNDECL fooRequest _request(_txid, s);
message_.LinearizeAndEncode<fooRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
fooRequest* request)
: message_(bytes, byte_size, sizeof(fooRequest), nullptr, 0, 0) {
message_.LinearizeAndEncode<fooRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
template <typename ChannelLike>
void Write(ChannelLike&& client) {
message_.Write(std::forward<ChannelLike>(client));
}
private:
fooRequest& Message() {
return *reinterpret_cast<fooRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid, const ::fidl::StringView& s)
: bytes_(std::make_unique<::fidl::internal::AlignedBuffer<
ZX_CHANNEL_MAX_MSG_BYTES>>()),
message_(bytes_->data(), ZX_CHANNEL_MAX_MSG_BYTES, _txid, s) {}
explicit OwnedEncodedMessage(fooRequest* request)
: bytes_(std::make_unique<::fidl::internal::AlignedBuffer<
ZX_CHANNEL_MAX_MSG_BYTES>>()),
message_(bytes_->data(), ZX_CHANNEL_MAX_MSG_BYTES, request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
template <typename ChannelLike>
void Write(ChannelLike&& client) {
message_.Write(std::forward<ChannelLike>(client));
}
private:
std::unique_ptr<::fidl::internal::AlignedBuffer<ZX_CHANNEL_MAX_MSG_BYTES>>
bytes_;
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<fooRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<fooRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
fooRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<fooRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<fooRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
class EventHandlerInterface {
public:
EventHandlerInterface() = default;
virtual ~EventHandlerInterface() = default;
};
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
class foo final : public ::fidl::Result {
public:
explicit foo(
::fidl::UnownedClientEnd<::llcpp::fidl::test::error::Example> _client,
const ::fidl::StringView& s);
foo(::fidl::UnownedClientEnd<::llcpp::fidl::test::error::Example> _client,
const ::fidl::StringView& s, zx_time_t _deadline);
explicit foo(const ::fidl::Result& result) : ::fidl::Result(result) {}
foo(foo&&) = delete;
foo(const foo&) = delete;
foo* operator=(foo&&) = delete;
foo* operator=(const foo&) = delete;
~foo() = default;
fooResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<fooResponse*>(bytes_);
}
const fooResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const fooResponse*>(bytes_);
}
fooResponse& value() { return *Unwrap(); }
const fooResponse& value() const { return *Unwrap(); }
fooResponse* operator->() { return &value(); }
const fooResponse* operator->() const { return &value(); }
fooResponse& operator*() { return value(); }
const fooResponse& operator*() const { return value(); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[fooResponse::PrimarySize + fooResponse::MaxOutOfLine];
};
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
class foo final : public ::fidl::Result {
public:
explicit foo(
::fidl::UnownedClientEnd<::llcpp::fidl::test::error::Example> _client,
uint8_t* _request_bytes, uint32_t _request_byte_capacity,
const ::fidl::StringView& s, uint8_t* _response_bytes,
uint32_t _response_byte_capacity);
explicit foo(const ::fidl::Result& result) : ::fidl::Result(result) {}
foo(foo&&) = delete;
foo(const foo&) = delete;
foo* operator=(foo&&) = delete;
foo* operator=(const foo&) = delete;
~foo() = default;
fooResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<fooResponse*>(bytes_);
}
const fooResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const fooResponse*>(bytes_);
}
fooResponse& value() { return *Unwrap(); }
const fooResponse& value() const { return *Unwrap(); }
fooResponse* operator->() { return &value(); }
const fooResponse* operator->() const { return &value(); }
fooResponse& operator*() { return value(); }
const fooResponse& operator*() const { return value(); }
private:
uint8_t* bytes_;
};
};
// Methods to make a sync FIDL call directly on an unowned channel or a
// const reference to a
// |fidl::ClientEnd<::llcpp::fidl::test::error::Example>|, avoiding setting up
// a client.
class Call final {
Call() = delete;
public:
// Allocates 48 bytes of response buffer on the stack. Request is
// heap-allocated.
static ResultOf::foo foo(::fidl::UnownedClientEnd<Example> _client_end,
::fidl::StringView s) {
return ResultOf::foo(_client_end, s);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::foo foo(
::fidl::UnownedClientEnd<Example> _client_end,
::fidl::BufferSpan _request_buffer, ::fidl::StringView s,
::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::foo(
_client_end, _request_buffer.data, _request_buffer.capacity, s,
_response_buffer.data, _response_buffer.capacity);
}
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::fidl::ClientEnd<Example> client_end)
: client_end_(std::move(client_end)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::fidl::ClientEnd<Example>& client_end() const { return client_end_; }
::fidl::ClientEnd<Example>& client_end() { return client_end_; }
const ::zx::channel& channel() const { return client_end_.channel(); }
::zx::channel* mutable_channel() { return &client_end_.channel(); }
// Allocates 48 bytes of response buffer on the stack. Request is
// heap-allocated.
ResultOf::foo foo(::fidl::StringView s) {
return ResultOf::foo(this->client_end(), s);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::foo foo(::fidl::BufferSpan _request_buffer,
::fidl::StringView s,
::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::foo(
this->client_end(), _request_buffer.data, _request_buffer.capacity, s,
_response_buffer.data, _response_buffer.capacity);
}
private:
::fidl::ClientEnd<Example> client_end_;
};
class AsyncEventHandler;
class fooResponseContext;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
// This interface uses typed channels (i.e. |fidl::ClientEnd<SomeProtocol>|
// and |fidl::ServerEnd<SomeProtocol>|).
// TODO(fxbug.dev/65212): Rename this to |Interface| after all users have
// migrated to the typed channels API.
class TypedChannelInterface
: public ::fidl::internal::IncomingMessageDispatcher {
public:
TypedChannelInterface() = default;
virtual ~TypedChannelInterface() = default;
// The marker protocol type within which this |TypedChannelInterface| class
// is defined.
using _EnclosingProtocol = Example;
class fooCompleterBase : public ::fidl::CompleterBase {
public:
// In the following methods, the return value indicates internal errors
// during the reply, such as encoding or writing to the transport. Note
// that any error will automatically lead to the destruction of the
// binding, after which the |on_unbound| callback will be triggered with a
// detailed reason.
//
// See //zircon/system/ulib/fidl/include/lib/fidl/llcpp/server.h.
//
// Because the reply status is identical to the unbinding status, it can
// be safely ignored.
::fidl::Result Reply(
::llcpp::fidl::test::error::Example_foo_Result result);
::fidl::Result ReplySuccess(int64_t y);
::fidl::Result ReplyError(uint32_t error);
::fidl::Result Reply(
::fidl::BufferSpan _buffer,
::llcpp::fidl::test::error::Example_foo_Result result);
::fidl::Result ReplySuccess(::fidl::BufferSpan _buffer, int64_t y);
protected:
using ::fidl::CompleterBase::CompleterBase;
};
using fooCompleter = ::fidl::Completer<fooCompleterBase>;
virtual void foo(::fidl::StringView s, fooCompleter::Sync& _completer) = 0;
private:
::fidl::DispatchResult dispatch_message(fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) final;
};
// Pure-virtual interface to be implemented by a server.
class Interface : public TypedChannelInterface {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using TypedChannelInterface::_EnclosingProtocol;
using TypedChannelInterface::fooCompleter;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(TypedChannelInterface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(TypedChannelInterface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of
// |TypedChannelInterface*|. Only used with |fidl::BindServer| to reduce
// template expansion. Do not call this method manually. Use |Dispatch|
// instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<TypedChannelInterface*>(impl), msg, txn);
}
class EventSender;
class WeakEventSender;
};
} // namespace error
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::error::Example_foo_Response>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::error::Example_foo_Response>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::error::Example_foo_Response>);
static_assert(offsetof(::llcpp::fidl::test::error::Example_foo_Response, y) ==
0);
static_assert(sizeof(::llcpp::fidl::test::error::Example_foo_Response) ==
::llcpp::fidl::test::error::Example_foo_Response::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::error::Example_foo_Result>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::error::Example_foo_Result>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::error::Example_foo_Result>);
template <>
struct IsFidlType<::llcpp::fidl::test::error::Example::fooRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<::llcpp::fidl::test::error::Example::fooRequest>
: public std::true_type {};
static_assert(sizeof(::llcpp::fidl::test::error::Example::fooRequest) ==
::llcpp::fidl::test::error::Example::fooRequest::PrimarySize);
static_assert(offsetof(::llcpp::fidl::test::error::Example::fooRequest, s) ==
16);
template <>
struct IsFidlType<::llcpp::fidl::test::error::Example::fooResponse>
: public std::true_type {};
template <>
struct IsFidlMessage<::llcpp::fidl::test::error::Example::fooResponse>
: public std::true_type {};
static_assert(sizeof(::llcpp::fidl::test::error::Example::fooResponse) ==
::llcpp::fidl::test::error::Example::fooResponse::PrimarySize);
static_assert(offsetof(::llcpp::fidl::test::error::Example::fooResponse,
result) == 16);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace error {
class Example::AsyncEventHandler : public Example::EventHandlerInterface {
public:
AsyncEventHandler() = default;
virtual void Unbound(::fidl::UnbindInfo info) {}
};
class Example::fooResponseContext : public ::fidl::internal::ResponseContext {
public:
fooResponseContext();
virtual void OnReply(Example::fooResponse* message) = 0;
private:
void OnReply(uint8_t* reply) override;
};
class Example::ClientImpl final : private ::fidl::internal::ClientBase {
public:
// Asynchronous variant of |Example.foo()|.
// The request and callback are allocated on the heap.
::fidl::Result foo(::fidl::StringView s,
::fit::callback<void(fooResponse* response)> _cb);
// Asynchronous variant of |Example.foo()|.
// Caller provides the backing storage for FIDL message via request buffer.
// Ownership of |_context| is given unsafely to the binding until |OnError|
// or |OnReply| are called on it.
::fidl::Result foo(::fidl::BufferSpan _request_buffer, ::fidl::StringView s,
fooResponseContext* _context);
// Synchronous variant of |Example.foo()|.
// Allocates 48 bytes of response buffer on the stack. Request is
// heap-allocated.
ResultOf::foo foo_Sync(::fidl::StringView s);
// Synchronous variant of |Example.foo()|.
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::foo foo_Sync(::fidl::BufferSpan _request_buffer,
::fidl::StringView s,
::fidl::BufferSpan _response_buffer);
AsyncEventHandler* event_handler() const { return event_handler_.get(); }
private:
friend class ::fidl::Client<Example>;
explicit ClientImpl(std::shared_ptr<AsyncEventHandler> event_handler)
: event_handler_(std::move(event_handler)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(
fidl_incoming_msg_t* msg) override;
std::shared_ptr<AsyncEventHandler> event_handler_;
};
// |EventSender| owns a server endpoint of a channel speaking
// the Example protocol, and can send events in that protocol.
class Example::EventSender {
public:
// Constructs an event sender with an invalid channel.
EventSender() = default;
explicit EventSender(
::fidl::ServerEnd<::llcpp::fidl::test::error::Example> server_end)
: server_end_(std::move(server_end)) {}
// The underlying server channel endpoint, which may be replaced at run-time.
const ::fidl::ServerEnd<Example>& server_end() const { return server_end_; }
::fidl::ServerEnd<Example>& server_end() { return server_end_; }
const ::zx::channel& channel() const { return server_end_.channel(); }
::zx::channel& channel() { return server_end_.channel(); }
// Whether the underlying channel is valid.
bool is_valid() const { return server_end_.is_valid(); }
private:
::fidl::ServerEnd<Example> server_end_;
};
class Example::WeakEventSender {
public:
private:
friend class ::fidl::ServerBindingRef<Example>;
explicit WeakEventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding<Example>> binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding<Example>> binding_;
};
} // namespace error
} // namespace test
} // namespace fidl
} // namespace llcpp