blob: 347c813409238d6d4c4da24a8b790f18d7c6562a [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/object_view.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <algorithm>
#include <cstddef>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/client_end.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/server_end.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace arrays {
class UnionSmallArray;
class UnionLargeArray;
class TableSmallArray;
class TableLargeArray;
struct StructSmallArray;
struct StructLargeArray;
extern "C" const fidl_type_t fidl_test_arrays_UnionSmallArrayTable;
class UnionSmallArray {
public:
UnionSmallArray() : ordinal_(Ordinal::Invalid), envelope_{} {}
UnionSmallArray(UnionSmallArray&&) = default;
UnionSmallArray& operator=(UnionSmallArray&&) = default;
~UnionSmallArray() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kA = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_a() const { return ordinal_ == Ordinal::kA; }
static UnionSmallArray WithA(
::fidl::tracking_ptr<::fidl::Array<uint32_t, 2>>&& val) {
UnionSmallArray result;
result.set_a(std::move(val));
return result;
}
template <typename... Args>
static UnionSmallArray WithA(::fidl::AnyAllocator& allocator,
Args&&... args) {
UnionSmallArray result;
result.set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 2>>(
allocator, std::forward<Args>(args)...));
return result;
}
void set_a(::fidl::tracking_ptr<::fidl::Array<uint32_t, 2>>&& elem) {
ordinal_ = Ordinal::kA;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_a(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kA;
set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 2>>(
allocator, std::forward<Args>(args)...));
}
::fidl::Array<uint32_t, 2>& mutable_a() {
ZX_ASSERT(ordinal_ == Ordinal::kA);
return *static_cast<::fidl::Array<uint32_t, 2>*>(envelope_.data.get());
}
const ::fidl::Array<uint32_t, 2>& a() const {
ZX_ASSERT(ordinal_ == Ordinal::kA);
return *static_cast<::fidl::Array<uint32_t, 2>*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_arrays_UnionSmallArrayTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kA = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<::fidl::Array<uint32_t, 2>> to_destroy =
static_cast<::fidl::tracking_ptr<::fidl::Array<uint32_t, 2>>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_arrays_UnionLargeArrayTable;
class UnionLargeArray {
public:
UnionLargeArray() : ordinal_(Ordinal::Invalid), envelope_{} {}
UnionLargeArray(UnionLargeArray&&) = default;
UnionLargeArray& operator=(UnionLargeArray&&) = default;
~UnionLargeArray() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kA = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_a() const { return ordinal_ == Ordinal::kA; }
static UnionLargeArray WithA(
::fidl::tracking_ptr<::fidl::Array<uint32_t, 100>>&& val) {
UnionLargeArray result;
result.set_a(std::move(val));
return result;
}
template <typename... Args>
static UnionLargeArray WithA(::fidl::AnyAllocator& allocator,
Args&&... args) {
UnionLargeArray result;
result.set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 100>>(
allocator, std::forward<Args>(args)...));
return result;
}
void set_a(::fidl::tracking_ptr<::fidl::Array<uint32_t, 100>>&& elem) {
ordinal_ = Ordinal::kA;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
template <typename... Args>
void set_a(::fidl::AnyAllocator& allocator, Args&&... args) {
ordinal_ = Ordinal::kA;
set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 100>>(
allocator, std::forward<Args>(args)...));
}
::fidl::Array<uint32_t, 100>& mutable_a() {
ZX_ASSERT(ordinal_ == Ordinal::kA);
return *static_cast<::fidl::Array<uint32_t, 100>*>(envelope_.data.get());
}
const ::fidl::Array<uint32_t, 100>& a() const {
ZX_ASSERT(ordinal_ == Ordinal::kA);
return *static_cast<::fidl::Array<uint32_t, 100>*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_arrays_UnionLargeArrayTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 400;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kA = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<::fidl::Array<uint32_t, 100>> to_destroy =
static_cast<::fidl::tracking_ptr<::fidl::Array<uint32_t, 100>>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_arrays_TableSmallArrayTable;
class TableSmallArray final {
public:
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
const ::fidl::Array<uint32_t, 2>& a() const {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
::fidl::Array<uint32_t, 2>& a() {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
bool has_a() const {
return max_ordinal_ >= 1 && frame_ptr_->a_.data != nullptr;
}
void set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 2>> elem) {
ZX_DEBUG_ASSERT(frame_ptr_.get() != nullptr);
frame_ptr_->a_.data = elem;
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
}
void set_a(std::nullptr_t) {
ZX_DEBUG_ASSERT(frame_ptr_.get() != nullptr);
frame_ptr_->a_.data = nullptr;
}
template <typename... Args>
void set_a(::fidl::AnyAllocator& allocator, Args&&... args) {
ZX_DEBUG_ASSERT(frame_ptr_.get() != nullptr);
frame_ptr_->a_.data = ::fidl::ObjectView<::fidl::Array<uint32_t, 2>>(
allocator, std::forward<Args>(args)...);
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
}
TableSmallArray() = default;
explicit TableSmallArray(::fidl::AnyAllocator& allocator)
: frame_ptr_(::fidl::ObjectView<Frame>(allocator)) {}
~TableSmallArray() = default;
TableSmallArray(TableSmallArray&& other) noexcept = default;
TableSmallArray& operator=(TableSmallArray&& other) noexcept = default;
static constexpr const fidl_type_t* Type =
&fidl_test_arrays_TableSmallArrayTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 24;
static constexpr bool HasPointer = true;
void Allocate(::fidl::AnyAllocator& allocator) {
frame_ptr_ = ::fidl::ObjectView<Frame>(allocator);
}
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
TableSmallArray* value)
: message_(bytes, byte_size, sizeof(TableSmallArray), nullptr, 0, 0) {
message_.LinearizeAndEncode<TableSmallArray>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(TableSmallArray* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<TableSmallArray>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<TableSmallArray>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
TableSmallArray* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<TableSmallArray*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<TableSmallArray>();
}
}
};
class Builder;
class UnownedBuilder;
class Frame final {
public:
Frame() = default;
// In its intended usage, Frame will be referenced by a tracking_ptr. If the
// tracking_ptr is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
Frame(const Frame&) = delete;
Frame& operator=(const Frame&) = delete;
private:
Frame(Frame&&) noexcept = default;
Frame& operator=(Frame&&) noexcept = default;
::fidl::Envelope<::fidl::Array<uint32_t, 2>> a_;
friend class TableSmallArray;
friend class TableSmallArray::Builder;
friend class TableSmallArray::UnownedBuilder;
};
private:
TableSmallArray(uint64_t max_ordinal, ::fidl::tracking_ptr<Frame>&& frame_ptr)
: max_ordinal_(max_ordinal), frame_ptr_(std::move(frame_ptr)) {}
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<Frame> frame_ptr_;
};
// TableSmallArray::Builder builds TableSmallArray.
// Usage:
// TableSmallArray val =
// TableSmallArray::Builder(std::make_unique<TableSmallArray::Frame>())
// .set_a(ptr)
// .build();
class TableSmallArray::Builder final {
public:
~Builder() = default;
Builder() = delete;
Builder(::fidl::tracking_ptr<TableSmallArray::Frame>&& frame_ptr)
: max_ordinal_(0), frame_ptr_(std::move(frame_ptr)) {}
Builder(Builder&& other) noexcept = default;
Builder& operator=(Builder&& other) noexcept = default;
Builder(const Builder& other) = delete;
Builder& operator=(const Builder& other) = delete;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
Builder&& set_a(::fidl::tracking_ptr<::fidl::Array<uint32_t, 2>> elem) {
frame_ptr_->a_.data = std::move(elem);
if (max_ordinal_ < 1) {
// Note: the table size is not currently reduced if nullptr is set.
// This is possible to reconsider in the future.
max_ordinal_ = 1;
}
return std::move(*this);
}
const ::fidl::Array<uint32_t, 2>& a() const {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
::fidl::Array<uint32_t, 2>& a() {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
bool has_a() const {
return max_ordinal_ >= 1 && frame_ptr_->a_.data != nullptr;
}
TableSmallArray build() {
return TableSmallArray(max_ordinal_, std::move(frame_ptr_));
}
private:
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<TableSmallArray::Frame> frame_ptr_;
};
// UnownedBuilder acts like Builder but directly owns its Frame, simplifying
// working with unowned data.
class TableSmallArray::UnownedBuilder final {
public:
~UnownedBuilder() = default;
UnownedBuilder() noexcept = default;
UnownedBuilder(UnownedBuilder&& other) noexcept = default;
UnownedBuilder& operator=(UnownedBuilder&& other) noexcept = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
UnownedBuilder&& set_a(
::fidl::tracking_ptr<::fidl::Array<uint32_t, 2>> elem) {
ZX_ASSERT(elem);
frame_.a_.data = std::move(elem);
if (max_ordinal_ < 1) {
max_ordinal_ = 1;
}
return std::move(*this);
}
const ::fidl::Array<uint32_t, 2>& a() const {
ZX_ASSERT(has_a());
return *frame_.a_.data;
}
::fidl::Array<uint32_t, 2>& a() {
ZX_ASSERT(has_a());
return *frame_.a_.data;
}
bool has_a() const { return max_ordinal_ >= 1 && frame_.a_.data != nullptr; }
TableSmallArray build() {
return TableSmallArray(max_ordinal_, ::fidl::unowned_ptr(&frame_));
}
private:
uint64_t max_ordinal_ = 0;
TableSmallArray::Frame frame_;
};
extern "C" const fidl_type_t fidl_test_arrays_TableLargeArrayTable;
class TableLargeArray final {
public:
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
const ::fidl::Array<uint32_t, 100>& a() const {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
::fidl::Array<uint32_t, 100>& a() {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
bool has_a() const {
return max_ordinal_ >= 1 && frame_ptr_->a_.data != nullptr;
}
void set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 100>> elem) {
ZX_DEBUG_ASSERT(frame_ptr_.get() != nullptr);
frame_ptr_->a_.data = elem;
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
}
void set_a(std::nullptr_t) {
ZX_DEBUG_ASSERT(frame_ptr_.get() != nullptr);
frame_ptr_->a_.data = nullptr;
}
template <typename... Args>
void set_a(::fidl::AnyAllocator& allocator, Args&&... args) {
ZX_DEBUG_ASSERT(frame_ptr_.get() != nullptr);
frame_ptr_->a_.data = ::fidl::ObjectView<::fidl::Array<uint32_t, 100>>(
allocator, std::forward<Args>(args)...);
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
}
TableLargeArray() = default;
explicit TableLargeArray(::fidl::AnyAllocator& allocator)
: frame_ptr_(::fidl::ObjectView<Frame>(allocator)) {}
~TableLargeArray() = default;
TableLargeArray(TableLargeArray&& other) noexcept = default;
TableLargeArray& operator=(TableLargeArray&& other) noexcept = default;
static constexpr const fidl_type_t* Type =
&fidl_test_arrays_TableLargeArrayTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 416;
static constexpr bool HasPointer = true;
void Allocate(::fidl::AnyAllocator& allocator) {
frame_ptr_ = ::fidl::ObjectView<Frame>(allocator);
}
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
TableLargeArray* value)
: message_(bytes, byte_size, sizeof(TableLargeArray), nullptr, 0, 0) {
message_.LinearizeAndEncode<TableLargeArray>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(TableLargeArray* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<TableLargeArray>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<TableLargeArray>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
TableLargeArray* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<TableLargeArray*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<TableLargeArray>();
}
}
};
class Builder;
class UnownedBuilder;
class Frame final {
public:
Frame() = default;
// In its intended usage, Frame will be referenced by a tracking_ptr. If the
// tracking_ptr is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
Frame(const Frame&) = delete;
Frame& operator=(const Frame&) = delete;
private:
Frame(Frame&&) noexcept = default;
Frame& operator=(Frame&&) noexcept = default;
::fidl::Envelope<::fidl::Array<uint32_t, 100>> a_;
friend class TableLargeArray;
friend class TableLargeArray::Builder;
friend class TableLargeArray::UnownedBuilder;
};
private:
TableLargeArray(uint64_t max_ordinal, ::fidl::tracking_ptr<Frame>&& frame_ptr)
: max_ordinal_(max_ordinal), frame_ptr_(std::move(frame_ptr)) {}
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<Frame> frame_ptr_;
};
// TableLargeArray::Builder builds TableLargeArray.
// Usage:
// TableLargeArray val =
// TableLargeArray::Builder(std::make_unique<TableLargeArray::Frame>())
// .set_a(ptr)
// .build();
class TableLargeArray::Builder final {
public:
~Builder() = default;
Builder() = delete;
Builder(::fidl::tracking_ptr<TableLargeArray::Frame>&& frame_ptr)
: max_ordinal_(0), frame_ptr_(std::move(frame_ptr)) {}
Builder(Builder&& other) noexcept = default;
Builder& operator=(Builder&& other) noexcept = default;
Builder(const Builder& other) = delete;
Builder& operator=(const Builder& other) = delete;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
Builder&& set_a(::fidl::tracking_ptr<::fidl::Array<uint32_t, 100>> elem) {
frame_ptr_->a_.data = std::move(elem);
if (max_ordinal_ < 1) {
// Note: the table size is not currently reduced if nullptr is set.
// This is possible to reconsider in the future.
max_ordinal_ = 1;
}
return std::move(*this);
}
const ::fidl::Array<uint32_t, 100>& a() const {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
::fidl::Array<uint32_t, 100>& a() {
ZX_ASSERT(has_a());
return *frame_ptr_->a_.data;
}
bool has_a() const {
return max_ordinal_ >= 1 && frame_ptr_->a_.data != nullptr;
}
TableLargeArray build() {
return TableLargeArray(max_ordinal_, std::move(frame_ptr_));
}
private:
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<TableLargeArray::Frame> frame_ptr_;
};
// UnownedBuilder acts like Builder but directly owns its Frame, simplifying
// working with unowned data.
class TableLargeArray::UnownedBuilder final {
public:
~UnownedBuilder() = default;
UnownedBuilder() noexcept = default;
UnownedBuilder(UnownedBuilder&& other) noexcept = default;
UnownedBuilder& operator=(UnownedBuilder&& other) noexcept = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
UnownedBuilder&& set_a(
::fidl::tracking_ptr<::fidl::Array<uint32_t, 100>> elem) {
ZX_ASSERT(elem);
frame_.a_.data = std::move(elem);
if (max_ordinal_ < 1) {
max_ordinal_ = 1;
}
return std::move(*this);
}
const ::fidl::Array<uint32_t, 100>& a() const {
ZX_ASSERT(has_a());
return *frame_.a_.data;
}
::fidl::Array<uint32_t, 100>& a() {
ZX_ASSERT(has_a());
return *frame_.a_.data;
}
bool has_a() const { return max_ordinal_ >= 1 && frame_.a_.data != nullptr; }
TableLargeArray build() {
return TableLargeArray(max_ordinal_, ::fidl::unowned_ptr(&frame_));
}
private:
uint64_t max_ordinal_ = 0;
TableLargeArray::Frame frame_;
};
extern "C" const fidl_type_t fidl_test_arrays_StructSmallArrayTable;
struct StructSmallArray {
static constexpr const fidl_type_t* Type =
&fidl_test_arrays_StructSmallArrayTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 8;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::fidl::Array<uint32_t, 2> a = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructSmallArray* value)
: message_(bytes, byte_size, sizeof(StructSmallArray), nullptr, 0, 0) {
message_.LinearizeAndEncode<StructSmallArray>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructSmallArray* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructSmallArray>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructSmallArray>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructSmallArray* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructSmallArray*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructSmallArray>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_arrays_StructLargeArrayTable;
struct StructLargeArray {
static constexpr const fidl_type_t* Type =
&fidl_test_arrays_StructLargeArrayTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 400;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::fidl::Array<uint32_t, 100> a = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructLargeArray* value)
: message_(bytes, byte_size, sizeof(StructLargeArray), nullptr, 0, 0) {
message_.LinearizeAndEncode<StructLargeArray>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructLargeArray* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructLargeArray>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructLargeArray>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructLargeArray* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructLargeArray*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructLargeArray>();
}
}
};
};
} // namespace arrays
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::arrays::UnionSmallArray>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::arrays::UnionSmallArray>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::arrays::UnionSmallArray>);
template <>
struct IsFidlType<::llcpp::fidl::test::arrays::UnionLargeArray>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::arrays::UnionLargeArray>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::arrays::UnionLargeArray>);
template <>
struct IsFidlType<::llcpp::fidl::test::arrays::TableSmallArray>
: public std::true_type {};
template <>
struct IsTable<::llcpp::fidl::test::arrays::TableSmallArray>
: public std::true_type {};
template <>
struct IsTableBuilder<::llcpp::fidl::test::arrays::TableSmallArray::Builder>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::arrays::TableSmallArray>);
template <>
struct IsFidlType<::llcpp::fidl::test::arrays::TableLargeArray>
: public std::true_type {};
template <>
struct IsTable<::llcpp::fidl::test::arrays::TableLargeArray>
: public std::true_type {};
template <>
struct IsTableBuilder<::llcpp::fidl::test::arrays::TableLargeArray::Builder>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::arrays::TableLargeArray>);
template <>
struct IsFidlType<::llcpp::fidl::test::arrays::StructSmallArray>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::arrays::StructSmallArray>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::arrays::StructSmallArray>);
static_assert(offsetof(::llcpp::fidl::test::arrays::StructSmallArray, a) == 0);
static_assert(sizeof(::llcpp::fidl::test::arrays::StructSmallArray) ==
::llcpp::fidl::test::arrays::StructSmallArray::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::arrays::StructLargeArray>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::arrays::StructLargeArray>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::arrays::StructLargeArray>);
static_assert(offsetof(::llcpp::fidl::test::arrays::StructLargeArray, a) == 0);
static_assert(sizeof(::llcpp::fidl::test::arrays::StructLargeArray) ==
::llcpp::fidl::test::arrays::StructLargeArray::PrimarySize);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace arrays {} // namespace arrays
} // namespace test
} // namespace fidl
} // namespace llcpp