blob: 19e121fd7af2d5771f8090e0189b8e8ac95f379e [file] [log] [blame]
// Copyright 2023 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <arch.h>
#include <debug.h>
#include <lib/affine/ratio.h>
#include <lib/arch/intrin.h>
#include <lib/boot-options/boot-options.h>
#include <lib/boot-options/types.h>
#include <lib/console.h>
#include <lib/crashlog.h>
#include <lib/debuglog.h>
#include <lib/jtrace/jtrace.h>
#include <lib/memory_limit.h>
#include <lib/persistent-debuglog.h>
#include <lib/system-topology.h>
#include <lib/zbi-format/memory.h>
#include <mexec.h>
#include <platform.h>
#include <reg.h>
#include <string-file.h>
#include <trace.h>
#include <arch/arch_ops.h>
#include <arch/mp.h>
#include <arch/riscv64.h>
#include <arch/riscv64/sbi.h>
#include <dev/hw_rng.h>
#include <dev/interrupt.h>
#include <dev/power.h>
#include <dev/uart.h>
#include <explicit-memory/bytes.h>
#include <fbl/array.h>
#include <kernel/cpu_distance_map.h>
#include <kernel/dpc.h>
#include <kernel/jtrace_config.h>
#include <kernel/persistent_ram.h>
#include <kernel/spinlock.h>
#include <kernel/topology.h>
#include <ktl/algorithm.h>
#include <ktl/atomic.h>
#include <ktl/byte.h>
#include <lk/init.h>
#include <lk/main.h>
#include <object/resource_dispatcher.h>
#include <phys/handoff.h>
#include <platform/crashlog.h>
#include <platform/ram_mappable_crashlog.h>
#include <platform/timer.h>
#include <platform/uart.h>
#include <vm/bootreserve.h>
#include <vm/kstack.h>
#include <vm/physmap.h>
#include <vm/vm.h>
#include <vm/vm_aspace.h>
#if WITH_PANIC_BACKTRACE
#include <kernel/thread.h>
#endif
#include <lib/zbi-format/zbi.h>
#include <lib/zbitl/image.h>
#include <lib/zbitl/memory.h>
#include <zircon/errors.h>
#include <zircon/rights.h>
#include <zircon/syscalls/smc.h>
#include <zircon/types.h>
#define LOCAL_TRACE 0
namespace {
// Enable feature to probe for parked cpu cores via SBI to build
// a fallback topology tree in case one was not passed in from
// the bootloader.
// TODO(https://fxbug.dev/42079665): Remove this hack once boot shim detects cpus via device tree.
constexpr bool ENABLE_SBI_TOPOLOGY_DETECT_FALLBACK = true;
void* ramdisk_base;
size_t ramdisk_size;
bool uart_disabled = false;
// all of the configured memory arenas from the zbi
constexpr size_t kNumArenas = 16;
pmm_arena_info_t mem_arena[kNumArenas];
size_t arena_count = 0;
ktl::atomic<int> panic_started;
ktl::atomic<int> halted;
lazy_init::LazyInit<RamMappableCrashlog, lazy_init::CheckType::None,
lazy_init::Destructor::Disabled>
ram_mappable_crashlog;
} // anonymous namespace
bool IsEfiExpected() { return false; }
static void halt_other_cpus() {
if (halted.exchange(1) == 0) {
// stop the other cpus
printf("stopping other cpus\n");
arch_mp_send_ipi(MP_IPI_TARGET_ALL_BUT_LOCAL, 0, MP_IPI_HALT);
// spin for a while
// TODO: find a better way to spin at this low level
for (int i = 0; i < 100000000; i++) {
arch::Yield();
}
}
}
// TODO(https://fxbug.dev/42180675): Refactor platform_panic_start.
void platform_panic_start(PanicStartHaltOtherCpus option) {
arch_disable_ints();
dlog_panic_start();
if (option == PanicStartHaltOtherCpus::Yes) {
halt_other_cpus();
}
if (panic_started.exchange(1) == 0) {
dlog_bluescreen_init();
// Attempt to dump the current debug trace buffer, if we have one.
jtrace_dump(jtrace::TraceBufferType::Current);
}
}
void* platform_get_ramdisk(size_t* size) {
if (ramdisk_base) {
*size = ramdisk_size;
return ramdisk_base;
} else {
*size = 0;
return nullptr;
}
}
void platform_halt_cpu() {
zx_status_t status = power_cpu_off();
// Should not have returned
panic("power_cpu_off returned %d\n", status);
}
zx::result<power_cpu_state> platform_get_cpu_state(cpu_num_t cpu_id) {
DEBUG_ASSERT(cpu_id < SMP_MAX_CPUS);
return power_get_cpu_state(arch_cpu_num_to_hart_id(cpu_id));
}
static void topology_cpu_init() {
DEBUG_ASSERT(arch_max_num_cpus() > 0);
lk_init_secondary_cpus(arch_max_num_cpus() - 1);
for (auto* node : system_topology::GetSystemTopology().processors()) {
if (node->entity.discriminant != ZBI_TOPOLOGY_ENTITY_PROCESSOR ||
node->entity.processor.architecture_info.discriminant !=
ZBI_TOPOLOGY_ARCHITECTURE_INFO_RISCV64) {
panic("Invalid processor node.");
}
const auto& processor = node->entity.processor;
for (uint8_t i = 0; i < processor.logical_id_count; i++) {
const uint64_t hart_id = processor.architecture_info.riscv64.hart_id;
DEBUG_ASSERT(hart_id <= UINT32_MAX);
// Skip the current (boot) hart, we are only starting secondary harts.
if (processor.flags == ZBI_TOPOLOGY_PROCESSOR_FLAGS_PRIMARY ||
hart_id == riscv64_boot_hart_id()) {
continue;
}
// Try to start the hart.
riscv64_start_cpu(processor.logical_ids[i], static_cast<uint32_t>(hart_id));
}
}
}
// clang-format off
static constexpr zbi_topology_node_t kFallbackTopology = {
.entity = {
.discriminant = ZBI_TOPOLOGY_ENTITY_PROCESSOR,
.processor = {
.architecture_info = {
.discriminant = ZBI_TOPOLOGY_ARCHITECTURE_INFO_RISCV64,
.riscv64 = {
.hart_id = 0,
}
},
.flags = ZBI_TOPOLOGY_PROCESSOR_FLAGS_PRIMARY,
.logical_ids = {0},
.logical_id_count = 1,
}
},
.parent_index = ZBI_TOPOLOGY_NO_PARENT,
};
// clang-format on
static zx::result<fbl::Array<zbi_topology_node_t>> sbi_detect_topology(size_t max_cpus) {
DEBUG_ASSERT(max_cpus > 0 && max_cpus <= SMP_MAX_CPUS);
arch::HartId detected_harts[SMP_MAX_CPUS]{};
// record the first known hart, that we're by definition running on
detected_harts[0] = riscv64_curr_hart_id();
size_t detected_hart_count = 1;
DEBUG_ASSERT(arch_curr_cpu_num() == 0);
dprintf(INFO, "RISCV: probing for stopped harts\n");
// probe the first SMP_MAX_CPUS harts and see which ones are present according to SBI
// NOTE: assumes that harts are basically 0 numbered, which will not be the case always.
// This may also detect harts that we're not supposed to run on, such as machine mode only
// harts intended for embedded use.
for (arch::HartId i = 0; i < SMP_MAX_CPUS; i++) {
// Stop if we've detected the clamped max cpus, including the boot cpu
if (detected_hart_count == max_cpus) {
break;
}
// skip the current cpu, it's known to be present
if (i == riscv64_curr_hart_id()) {
continue;
}
arch::RiscvSbiRet ret = arch::RiscvSbi::HartGetStatus(i);
if (ret.error != arch::RiscvSbiError::kSuccess) {
continue;
}
if (ret.value == static_cast<intptr_t>(arch::RiscvSbiHartState::kStopped)) {
// this is a core that exists but is stopped, add it to the list
detected_harts[detected_hart_count] = i;
detected_hart_count++;
dprintf(INFO, "RISCV: detected stopped hart %lu\n", i);
}
}
// Construct a flat topology tree based on what was found
fbl::AllocChecker ac;
auto nodes = fbl::MakeArray<zbi_topology_node_t>(&ac, detected_hart_count);
if (!ac.check()) {
return zx::error_result(ZX_ERR_NO_MEMORY);
}
for (size_t i = 0; i < detected_hart_count; i++) {
// clang-format off
nodes[i] = {
.entity = {
.discriminant = ZBI_TOPOLOGY_ENTITY_PROCESSOR,
.processor = {
.architecture_info = {
.discriminant = ZBI_TOPOLOGY_ARCHITECTURE_INFO_RISCV64,
.riscv64 = {
.hart_id = detected_harts[i],
},
},
.flags = (i == 0) ? ZBI_TOPOLOGY_PROCESSOR_FLAGS_PRIMARY : zbi_topology_processor_flags_t{0},
.logical_ids = { static_cast<uint16_t>(i) },
.logical_id_count = 1,
}
},
.parent_index = ZBI_TOPOLOGY_NO_PARENT,
};
// clang-format on
}
return zx::ok(std::move(nodes));
}
static void init_topology(uint level) {
ktl::span handoff = gPhysHandoff->cpu_topology.get();
// Read the max cpu count from the command line and clamp it to reasonable values.
uint32_t max_cpus = gBootOptions->smp_max_cpus;
if (max_cpus != SMP_MAX_CPUS) {
dprintf(INFO, "SMP: command line setting maximum cpus to %u\n", max_cpus);
}
if (max_cpus > SMP_MAX_CPUS || max_cpus == 0) {
printf("SMP: invalid kernel.smp.maxcpus value (%u), clamping to %d\n", max_cpus, SMP_MAX_CPUS);
max_cpus = SMP_MAX_CPUS;
}
// TODO-rvbringup: clamp the topology tree passed from the bootloader to max_cpus.
// Try to initialize the system topology from a tree passed from the bootloader.
zx_status_t result =
system_topology::Graph::InitializeSystemTopology(handoff.data(), handoff.size());
if (result != ZX_OK) {
// Only attempt to use the SBI fallback if our global allow define is set and we're
// running on QEMU.
if (ENABLE_SBI_TOPOLOGY_DETECT_FALLBACK && gPhysHandoff->platform_id.has_value() &&
strcmp(gPhysHandoff->platform_id->board_name, "qemu-riscv64") == 0) {
printf(
"SMP: Failed to initialize system topolgy from handoff data, probing for secondary cpus via SBI\n");
// Use SBI to try to detect secondary cpus.
zx::result<fbl::Array<zbi_topology_node_t>> topo = sbi_detect_topology(max_cpus);
if (topo.is_ok()) {
// Assume the synthesized topology tree only contains processor nodes and thus
// the size of the array is the total detected cpu count.
const size_t detected_hart_count = topo->size();
DEBUG_ASSERT(detected_hart_count > 0 && detected_hart_count <= max_cpus);
// Set the detected topology.
result =
system_topology::Graph::InitializeSystemTopology(topo->data(), detected_hart_count);
ASSERT(result == ZX_OK);
} else {
result = topo.error_value();
}
}
}
if (result != ZX_OK) {
printf("SMP: Failed to initialize system topology, error: %d, using fallback topology\n",
result);
// Try to fallback to a topology of just this processor.
result = system_topology::Graph::InitializeSystemTopology(&kFallbackTopology, 1);
ASSERT(result == ZX_OK);
}
arch_set_num_cpus(static_cast<uint>(system_topology::GetSystemTopology().processor_count()));
// Print the detected cpu topology.
if (DPRINTF_ENABLED_FOR_LEVEL(INFO)) {
size_t cpu_num = 0;
for (auto* proc : system_topology::GetSystemTopology().processors()) {
auto& info = proc->entity.processor.architecture_info.riscv64;
dprintf(INFO, "System topology: CPU %zu Hart %lu%s\n", cpu_num++, info.hart_id,
(info.hart_id == riscv64_curr_hart_id()) ? " boot" : "");
}
}
}
LK_INIT_HOOK(init_topology, init_topology, LK_INIT_LEVEL_VM)
static void allocate_persistent_ram(paddr_t pa, size_t length) {
// Figure out how to divide up our persistent RAM. Right now there are
// three potential users:
//
// 1) The crashlog.
// 2) Persistent debug logging.
// 3) Persistent debug tracing.
//
// Persistent debug logging and tracing have target amounts of RAM they would
// _like_ to have, and crash-logging has a minimum amount it is guaranteed to
// get. Additionally, all allocated are made in a chunks of the minimum
// persistent RAM allocation granularity.
//
// Make sure that the crashlog gets as much of its minimum allocation as is
// possible. Then attempt to satisfy the target for persistent debug logging,
// followed by persistent debug tracing. Finally, give anything leftovers to
// the crashlog.
size_t crashlog_size = 0;
size_t pdlog_size = 0;
size_t jtrace_size = 0;
{
// start by figuring out how many chunks of RAM we have available to
// us total.
size_t persistent_chunks_available = length / kPersistentRamAllocationGranularity;
// If we have not already configured a non-trivial crashlog implementation
// for the platform, make sure that crashlog gets its minimum allocation, or
// all of the RAM if it cannot meet even its minimum allocation.
size_t crashlog_chunks = !PlatformCrashlog::HasNonTrivialImpl()
? ktl::min(persistent_chunks_available,
kMinCrashlogSize / kPersistentRamAllocationGranularity)
: 0;
persistent_chunks_available -= crashlog_chunks;
// Next in line is persistent debug logging.
size_t pdlog_chunks =
ktl::min(persistent_chunks_available,
kTargetPersistentDebugLogSize / kPersistentRamAllocationGranularity);
persistent_chunks_available -= pdlog_chunks;
// Next up is persistent debug tracing.
size_t jtrace_chunks =
ktl::min(persistent_chunks_available,
kJTraceTargetPersistentBufferSize / kPersistentRamAllocationGranularity);
persistent_chunks_available -= jtrace_chunks;
// Finally, anything left over can go to the crashlog.
crashlog_chunks += persistent_chunks_available;
crashlog_size = crashlog_chunks * kPersistentRamAllocationGranularity;
pdlog_size = pdlog_chunks * kPersistentRamAllocationGranularity;
jtrace_size = jtrace_chunks * kPersistentRamAllocationGranularity;
}
// Configure up the crashlog RAM
if (crashlog_size > 0) {
dprintf(INFO, "Crashlog configured with %" PRIu64 " bytes\n", crashlog_size);
ram_mappable_crashlog.Initialize(pa, crashlog_size);
PlatformCrashlog::Bind(ram_mappable_crashlog.Get());
}
size_t offset = crashlog_size;
// Configure the persistent debuglog RAM (if we have any)
if (pdlog_size > 0) {
dprintf(INFO, "Persistent debug logging enabled and configured with %" PRIu64 " bytes\n",
pdlog_size);
persistent_dlog_set_location(paddr_to_physmap(pa + offset), pdlog_size);
offset += pdlog_size;
}
// Do _not_ attempt to set the location of the debug trace buffer if this is
// not a persistent debug trace buffer. The location of a non-persistent
// trace buffer would have been already set during (very) early init.
if constexpr (kJTraceIsPersistent == jtrace::IsPersistent::Yes) {
jtrace_set_location(paddr_to_physmap(pa + offset), jtrace_size);
offset += jtrace_size;
}
}
static void process_mem_ranges(ktl::span<const zbi_mem_range_t> ranges) {
// First process all the reserved ranges. We do this in case there are reserved regions that
// overlap with the RAM regions that occur later in the list. If we didn't process the reserved
// regions first, then we might add a pmm arena and have it carve out its vm_page_t array from
// what we will later learn is reserved memory.
for (const zbi_mem_range_t& mem_range : ranges) {
if (mem_range.type == ZBI_MEM_TYPE_RESERVED) {
dprintf(INFO, "ZBI: reserve mem range base %#" PRIx64 " size %#" PRIx64 "\n", mem_range.paddr,
mem_range.length);
boot_reserve_add_range(mem_range.paddr, mem_range.length);
}
}
for (const zbi_mem_range_t& mem_range : ranges) {
switch (mem_range.type) {
case ZBI_MEM_TYPE_RAM:
dprintf(INFO, "ZBI: mem arena base %#" PRIx64 " size %#" PRIx64 "\n", mem_range.paddr,
mem_range.length);
if (arena_count >= kNumArenas) {
printf("ZBI: Warning, too many memory arenas, dropping additional\n");
break;
}
mem_arena[arena_count] = pmm_arena_info_t{"ram", 0, mem_range.paddr, mem_range.length};
arena_count++;
break;
case ZBI_MEM_TYPE_PERIPHERAL: {
// We shouldn't be dealing with peripheral mappings on riscv.
PANIC_UNIMPLEMENTED;
break;
}
case ZBI_MEM_TYPE_RESERVED:
// Already handled the reserved ranges.
break;
default:
// Treat unknown memory range types as reserved.
dprintf(INFO,
"ZBI: unknown mem range base %#" PRIx64 " size %#" PRIx64 " (type %" PRIu32 ")\n",
mem_range.paddr, mem_range.length, mem_range.type);
boot_reserve_add_range(mem_range.paddr, mem_range.length);
break;
}
}
}
// Called during platform_init_early.
static void ProcessPhysHandoff() {
if (gPhysHandoff->nvram) {
const zbi_nvram_t& nvram = gPhysHandoff->nvram.value();
dprintf(INFO, "boot reserve NVRAM range: phys base %#" PRIx64 " length %#" PRIx64 "\n",
nvram.base, nvram.length);
allocate_persistent_ram(nvram.base, nvram.length);
boot_reserve_add_range(nvram.base, nvram.length);
}
process_mem_ranges(gPhysHandoff->mem_config.get());
}
void platform_early_init() {
// is the cmdline option to bypass dlog set ?
dlog_bypass_init();
// initialize the boot memory reservation system
boot_reserve_init();
ProcessPhysHandoff();
// Check if serial should be enabled
ktl::visit([](const auto& uart) { uart_disabled = uart.extra() == 0; }, gBootOptions->serial);
// Serial port should be active now
// Initialize the PmmChecker now that the cmdline has been parsed.
pmm_checker_init_from_cmdline();
// Add the data ZBI ramdisk to the boot reserve memory list.
ktl::span zbi = ZbiInPhysmap();
paddr_t ramdisk_start_phys = physmap_to_paddr(zbi.data());
paddr_t ramdisk_end_phys = ramdisk_start_phys + ROUNDUP_PAGE_SIZE(zbi.size_bytes());
dprintf(INFO, "reserving ramdisk phys range [%#" PRIx64 ", %#" PRIx64 "]\n", ramdisk_start_phys,
ramdisk_end_phys - 1);
boot_reserve_add_range(ramdisk_start_phys, ramdisk_end_phys - ramdisk_start_phys);
// check if a memory limit was passed in via kernel.memory-limit-mb and
// find memory ranges to use if one is found.
zx_status_t status = memory_limit_init();
bool have_limit = (status == ZX_OK);
for (size_t i = 0; i < arena_count; i++) {
if (have_limit) {
// Figure out and add arenas based on the memory limit and our range of DRAM
status = memory_limit_add_range(mem_arena[i].base, mem_arena[i].size, mem_arena[i]);
}
// If no memory limit was found, or adding arenas from the range failed, then add
// the existing global arena.
if (!have_limit || status != ZX_OK) {
// Init returns not supported if no limit exists
if (status != ZX_ERR_NOT_SUPPORTED) {
dprintf(INFO, "memory limit lib returned an error (%d), falling back to defaults\n",
status);
}
pmm_add_arena(&mem_arena[i]);
}
}
// add any pending memory arenas the memory limit library has pending
if (have_limit) {
status = memory_limit_add_arenas(mem_arena[0]);
DEBUG_ASSERT(status == ZX_OK);
}
// tell the boot allocator to mark ranges we've reserved as off limits
boot_reserve_wire();
}
void platform_prevm_init() {}
// Called after the heap is up but before the system is multithreaded.
void platform_init_pre_thread(uint) {}
LK_INIT_HOOK(platform_init_pre_thread, platform_init_pre_thread, LK_INIT_LEVEL_VM)
void platform_init() { topology_cpu_init(); }
// after the fact create a region to reserve the peripheral map(s)
static void platform_init_postvm(uint level) {}
LK_INIT_HOOK(platform_postvm, platform_init_postvm, LK_INIT_LEVEL_VM)
void legacy_platform_dputs_thread(const char* str, size_t len) {
if (uart_disabled) {
return;
}
uart_puts(str, len, true);
}
void legacy_platform_dputs_irq(const char* str, size_t len) {
if (uart_disabled) {
return;
}
uart_puts(str, len, false);
}
int legacy_platform_dgetc(char* c, bool wait) {
if (uart_disabled) {
return ZX_ERR_NOT_SUPPORTED;
}
int ret = uart_getc(wait);
// uart_getc returns ZX_ERR_INTERNAL if no input was read
if (!wait && ret == ZX_ERR_INTERNAL)
return 0;
if (ret < 0)
return ret;
*c = static_cast<char>(ret);
return 1;
}
void legacy_platform_pputc(char c) {
if (uart_disabled) {
return;
}
uart_pputc(c);
}
int legacy_platform_pgetc(char* c) {
if (uart_disabled) {
return ZX_ERR_NOT_SUPPORTED;
}
int r = uart_pgetc();
if (r < 0) {
return r;
}
*c = static_cast<char>(r);
return 0;
}
void platform_specific_halt(platform_halt_action suggested_action, zircon_crash_reason_t reason,
bool halt_on_panic) {
TRACEF("suggested_action %u, reason %u, halt_on_panic %d\n", suggested_action,
static_cast<unsigned int>(reason), halt_on_panic);
if (suggested_action == HALT_ACTION_REBOOT) {
power_reboot(power_reboot_flags::REBOOT_NORMAL);
printf("reboot failed\n");
} else if (suggested_action == HALT_ACTION_REBOOT_BOOTLOADER) {
power_reboot(power_reboot_flags::REBOOT_BOOTLOADER);
printf("reboot-bootloader failed\n");
} else if (suggested_action == HALT_ACTION_REBOOT_RECOVERY) {
power_reboot(power_reboot_flags::REBOOT_RECOVERY);
printf("reboot-recovery failed\n");
} else if (suggested_action == HALT_ACTION_SHUTDOWN) {
power_shutdown();
printf("shutdown failed\n");
}
if (reason == ZirconCrashReason::Panic) {
Backtrace bt;
Thread::Current::GetBacktrace(bt);
bt.Print();
if (!halt_on_panic) {
power_reboot(power_reboot_flags::REBOOT_NORMAL);
printf("reboot failed\n");
}
#if ENABLE_PANIC_SHELL
dprintf(ALWAYS, "CRASH: starting debug shell... (reason = %d)\n", static_cast<int>(reason));
arch_disable_ints();
panic_shell_start();
#endif // ENABLE_PANIC_SHELL
}
dprintf(ALWAYS, "HALT: spinning forever... (reason = %d)\n", static_cast<int>(reason));
// catch all fallthrough cases
arch_disable_ints();
for (;;) {
arch::Yield();
}
}
zx_status_t platform_mexec_patch_zbi(uint8_t* zbi, const size_t len) { PANIC_UNIMPLEMENTED; }
void platform_mexec_prep(uintptr_t new_bootimage_addr, size_t new_bootimage_len) {
PANIC_UNIMPLEMENTED;
}
void platform_mexec(mexec_asm_func mexec_assembly, memmov_ops_t* ops, uintptr_t new_bootimage_addr,
size_t new_bootimage_len, uintptr_t entry64_addr) {
PANIC_UNIMPLEMENTED;
}
// Initialize Resource system after the heap is initialized.
static void riscv64_resource_dispatcher_init_hook(unsigned int rl) {
// 64 bit address space for MMIO on RISCV64
zx_status_t status = ResourceDispatcher::InitializeAllocator(ZX_RSRC_KIND_MMIO, 0, UINT64_MAX);
if (status != ZX_OK) {
printf("Resources: Failed to initialize MMIO allocator: %d\n", status);
}
// Set up IRQs based on values from the PLIC
const auto max_vector = interrupt_get_max_vector();
// Normally there would be at least one interrupt vector.
DEBUG_ASSERT(max_vector > 0);
status = ResourceDispatcher::InitializeAllocator(ZX_RSRC_KIND_IRQ, interrupt_get_base_vector(),
max_vector);
if (status != ZX_OK) {
printf("Resources: Failed to initialize IRQ allocator: %d\n", status);
}
// Set up range of valid system resources.
status = ResourceDispatcher::InitializeAllocator(ZX_RSRC_KIND_SYSTEM, 0, ZX_RSRC_SYSTEM_COUNT);
if (status != ZX_OK) {
printf("Resources: Failed to initialize system allocator: %d\n", status);
}
}
LK_INIT_HOOK(riscv64_resource_init, riscv64_resource_dispatcher_init_hook, LK_INIT_LEVEL_HEAP)
void topology_init() {
// Setup the CPU distance map with the already initialized topology.
const auto processor_count =
static_cast<uint>(system_topology::GetSystemTopology().processor_count());
CpuDistanceMap::Initialize(processor_count, [](cpu_num_t from_id, cpu_num_t to_id) { return 0; });
const CpuDistanceMap::Distance kDistanceThreshold = 2u;
CpuDistanceMap::Get().set_distance_threshold(kDistanceThreshold);
CpuDistanceMap::Get().Dump();
}
zx_status_t platform_mp_prep_cpu_unplug(cpu_num_t cpu_id) {
return arch_mp_prep_cpu_unplug(cpu_id);
}
zx_status_t platform_mp_cpu_unplug(cpu_num_t cpu_id) { return arch_mp_cpu_unplug(cpu_id); }
zx_status_t platform_append_mexec_data(ktl::span<ktl::byte> data_zbi) { return ZX_OK; }
ktl::optional<uint32_t> PlatformUartGetIrqNumber(uint32_t irq_num) { return irq_num; }
volatile void* PlatformUartMapMmio(paddr_t paddr, size_t size) {
return reinterpret_cast<volatile void*>(paddr_to_physmap(paddr));
}