blob: d508bd0fd1cea1c5caff23a88e88ffb8a22d4b8d [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/developer/debug/zxdb/expr/format.h"
#include "gtest/gtest.h"
#include "src/developer/debug/zxdb/common/test_with_loop.h"
#include "src/developer/debug/zxdb/expr/format_expr_value_options.h"
#include "src/developer/debug/zxdb/expr/format_node.h"
#include "src/developer/debug/zxdb/expr/mock_eval_context.h"
#include "src/developer/debug/zxdb/symbols/array_type.h"
#include "src/developer/debug/zxdb/symbols/base_type.h"
#include "src/developer/debug/zxdb/symbols/collection.h"
#include "src/developer/debug/zxdb/symbols/enumeration.h"
#include "src/developer/debug/zxdb/symbols/function.h"
#include "src/developer/debug/zxdb/symbols/function_type.h"
#include "src/developer/debug/zxdb/symbols/inherited_from.h"
#include "src/developer/debug/zxdb/symbols/member_ptr.h"
#include "src/developer/debug/zxdb/symbols/modified_type.h"
#include "src/developer/debug/zxdb/symbols/type_test_support.h"
#include "src/developer/debug/zxdb/symbols/variant.h"
#include "src/developer/debug/zxdb/symbols/variant_part.h"
namespace zxdb {
namespace {
class FormatTest : public TestWithLoop {
public:
FormatTest() : eval_context_(fxl::MakeRefCounted<MockEvalContext>()) {}
fxl::RefPtr<MockEvalContext> eval_context() const { return eval_context_; }
MockSymbolDataProvider* provider() { return eval_context_->data_provider(); }
// Formats a given node synchronously.
void SyncFormat(FormatNode* node, const FormatExprValueOptions& opts) {
// Populate the value.
bool called = false;
FillFormatNodeValue(node, eval_context_, fit::defer_callback([&called]() {
debug_ipc::MessageLoop::Current()->QuitNow();
called = true;
}));
if (!called)
loop().Run();
called = false;
FillFormatNodeDescription(node, opts, eval_context_, fit::defer_callback([&called]() {
debug_ipc::MessageLoop::Current()->QuitNow();
called = true;
}));
if (!called)
loop().Run();
}
std::unique_ptr<FormatNode> GetDescribedNode(const ExprValue& value,
const FormatExprValueOptions& opts) {
auto node = std::make_unique<FormatNode>(std::string(), value);
SyncFormat(node.get(), opts);
return node;
}
// Recursively describes all nodes in the given tree. If update_value is set,
// the value of the node will also be refreshed.
void RecursiveSyncDescribe(FormatNode* node, bool update_value,
const FormatExprValueOptions& opts) {
if (update_value)
SyncFormat(node, opts);
else
FillFormatNodeDescription(node, opts, eval_context_, {});
for (auto& c : node->children())
RecursiveSyncDescribe(c.get(), update_value, opts);
}
// Returns "<type>, <description>" for the given formatted node. Errors
// are also output.
std::string GetTypeDesc(const FormatNode* node) {
if (node->err().has_error())
return "Err: " + node->err().msg();
return node->type() + ", " + node->description();
}
// Returns "<type>, <description>" for the given formatting.
// On error, returns "Err: <msg>".
std::string SyncTypeDesc(const ExprValue& value, const FormatExprValueOptions& opts) {
auto node = GetDescribedNode(value, opts);
return GetTypeDesc(node.get());
}
// Recursively formats the values until everything is described and
// outputs a hierarchical tree structure, each level indented two spaces.
//
// Note that normally the root name will be empty so it will start with
// " = <type>, <description>"
//
// <name> = <type>, <description>
// <child name> = <child type>, <child description>
// <child level 2 name> = <child 2 type>, <child 2 description>
// <child name> = <child type>, <child description>
std::string SyncTreeTypeDesc(const ExprValue& value, const FormatExprValueOptions& opts) {
auto node = std::make_unique<FormatNode>(std::string(), value);
RecursiveSyncDescribe(node.get(), true, opts);
std::string result;
RecursiveTreeTypeDesc(node.get(), &result, 0);
return result;
}
private:
// Recursive backend for SyncTreeTypeDesc.
void RecursiveTreeTypeDesc(const FormatNode* node, std::string* output, int indent) {
output->append(std::string(indent * 2, ' '));
output->append(node->name());
output->append(" = ");
output->append(GetTypeDesc(node));
output->append("\n");
for (auto& c : node->children())
RecursiveTreeTypeDesc(c.get(), output, indent + 1);
}
fxl::RefPtr<MockEvalContext> eval_context_;
};
} // namespace
TEST_F(FormatTest, Signed) {
FormatExprValueOptions opts;
// 8-bit.
ExprValue val_int8(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSigned, 1, "char"), {123});
EXPECT_EQ("char, 123", SyncTypeDesc(val_int8, opts));
// 16-bit.
ExprValue val_int16(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSigned, 2, "short"),
{0xe0, 0xf0});
EXPECT_EQ("short, -3872", SyncTypeDesc(val_int16, opts));
// 32-bit.
ExprValue val_int32(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSigned, 4, "int"),
{0x01, 0x02, 0x03, 0x04});
EXPECT_EQ("int, 67305985", SyncTypeDesc(val_int32, opts));
// 64-bit.
ExprValue val_int64(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSigned, 8, "long long"),
{0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff});
EXPECT_EQ("long long, -2", SyncTypeDesc(val_int64, opts));
// Force a 32-bit float to an int.
ExprValue val_float(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeFloat, 4, "float"),
{0x04, 0x03, 0x02, 0x01});
opts.num_format = FormatExprValueOptions::NumFormat::kSigned;
EXPECT_EQ("float, 16909060", SyncTypeDesc(val_float, opts));
}
TEST_F(FormatTest, Unsigned) {
FormatExprValueOptions opts;
// 8-bit.
ExprValue val_int8(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsigned, 1, "char"), {123});
EXPECT_EQ("char, 123", SyncTypeDesc(val_int8, opts));
// 16-bit.
ExprValue val_int16(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsigned, 1, "short"),
{0xe0, 0xf0});
EXPECT_EQ("short, 61664", SyncTypeDesc(val_int16, opts));
// 32-bit.
ExprValue val_int32(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsigned, 1, "int"),
{0x01, 0x02, 0x03, 0x04});
EXPECT_EQ("int, 67305985", SyncTypeDesc(val_int32, opts));
// 64-bit.
ExprValue val_int64(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsigned, 1, "long long"),
{0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff});
EXPECT_EQ("long long, 18446744073709551614", SyncTypeDesc(val_int64, opts));
// Force a 32-bit float to an unsigned and a hex.
ExprValue val_float(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeFloat, 4, "float"),
{0x04, 0x03, 0x02, 0x01});
opts.num_format = FormatExprValueOptions::NumFormat::kUnsigned;
EXPECT_EQ("float, 16909060", SyncTypeDesc(val_float, opts));
opts.num_format = FormatExprValueOptions::NumFormat::kHex;
EXPECT_EQ("float, 0x1020304", SyncTypeDesc(val_float, opts));
}
TEST_F(FormatTest, Bool) {
FormatExprValueOptions opts;
// 8-bit true.
ExprValue val_true8(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeBoolean, 1, "bool"), {0x01});
EXPECT_EQ("bool, true", SyncTypeDesc(val_true8, opts));
// 8-bit false.
ExprValue val_false8(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeBoolean, 1, "bool"),
{0x00});
EXPECT_EQ("bool, false", SyncTypeDesc(val_false8, opts));
// 32-bit true.
ExprValue val_false32(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeBoolean, 4, "bool"),
{0x00, 0x01, 0x00, 0x00});
EXPECT_EQ("bool, false", SyncTypeDesc(val_false8, opts));
}
TEST_F(FormatTest, Char) {
FormatExprValueOptions opts;
// 8-bit char.
ExprValue val_char8(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsignedChar, 1, "char"),
{'c'});
EXPECT_EQ("char, 'c'", SyncTypeDesc(val_char8, opts));
// Hex encoded 8-bit char.
ExprValue val_char8_zero(
fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsignedChar, 1, "char"), {0});
EXPECT_EQ(R"(char, '\x00')", SyncTypeDesc(val_char8_zero, opts));
// Backslash-escaped 8-bit char.
ExprValue val_char8_quote(
fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeUnsignedChar, 1, "char"), {'\"'});
EXPECT_EQ(R"(char, '\"')", SyncTypeDesc(val_char8_quote, opts));
// 32-bit char (downcasted to 8 for printing).
ExprValue val_char32(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSignedChar, 4, "big"),
{'A', 1, 2, 3});
EXPECT_EQ("big, 'A'", SyncTypeDesc(val_char32, opts));
// 32-bit int forced to char.
opts.num_format = FormatExprValueOptions::NumFormat::kChar;
ExprValue val_int32(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSigned, 4, "int32_t"),
{'$', 0x01, 0x00, 0x00});
EXPECT_EQ("int32_t, '$'", SyncTypeDesc(val_int32, opts));
}
TEST_F(FormatTest, Float) {
FormatExprValueOptions opts;
uint8_t buffer[8];
// 32-bit float.
float in_float = 3.14159;
memcpy(buffer, &in_float, 4);
ExprValue val_float(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeFloat, 4, "float"),
std::vector<uint8_t>(&buffer[0], &buffer[4]));
EXPECT_EQ("float, 3.14159", SyncTypeDesc(val_float, opts));
// 64-bit float.
double in_double = 9.875e+12;
memcpy(buffer, &in_double, 8);
ExprValue val_double(fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeFloat, 8, "double"),
std::vector<uint8_t>(&buffer[0], &buffer[8]));
EXPECT_EQ("double, 9.875e+12", SyncTypeDesc(val_double, opts));
}
TEST_F(FormatTest, Structs) {
FormatExprValueOptions opts;
opts.num_format = FormatExprValueOptions::NumFormat::kHex;
auto int32_type = MakeInt32Type();
// Make an int reference. Reference type printing combined with struct type
// printing can get complicated.
auto int_ref =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kReferenceType, LazySymbol(int32_type));
// The references point to this data.
constexpr uint64_t kAddress = 0x1100;
provider()->AddMemory(kAddress, {0x12, 0, 0, 0});
// Struct with two values, an int and a int&, and a pair of two of those
// structs.
auto foo =
MakeCollectionType(DwarfTag::kStructureType, "Foo", {{"a", int32_type}, {"b", int_ref}});
auto pair =
MakeCollectionType(DwarfTag::kStructureType, "Pair", {{"first", foo}, {"second", foo}});
ExprValue pair_value(pair, {0x11, 0x00, 0x11, 0x00, // (int32) a
0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (int32&) b
0x33, 0x00, 0x33, 0x00, // (int32) a
0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}); // (int32&) b
// The references when not printing all types are printed after the
// struct member name.
EXPECT_EQ(
" = Pair, \n"
" first = Foo, \n"
" a = int32_t, 0x110011\n"
" b = int32_t&, 0x1100\n"
" = int32_t, 0x12\n"
" second = Foo, \n"
" a = int32_t, 0x330033\n"
" b = int32_t&, 0x1100\n"
" = int32_t, 0x12\n",
SyncTreeTypeDesc(pair_value, opts));
}
TEST_F(FormatTest, Struct_Anon) {
// Test an anonymous struct. Clang will generate structs with no names for
// things like closures. This struct has no members.
auto anon_struct = fxl::MakeRefCounted<Collection>(DwarfTag::kStructureType);
auto anon_struct_ptr =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kPointerType, LazySymbol(anon_struct));
ExprValue anon_value(anon_struct_ptr, {0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
EXPECT_EQ(
" = (anon struct)*, 0x1100\n"
" * = (anon struct), \n",
SyncTreeTypeDesc(anon_value, FormatExprValueOptions()));
}
// Structure members can be marked as "artifical" by the compiler. We shouldn't
// print these.
TEST_F(FormatTest, Struct_Artificial) {
auto int32_type = MakeInt32Type();
auto foo_type = MakeCollectionType(DwarfTag::kStructureType, "Foo",
{{"normal", int32_type}, {"artificial", int32_type}});
// Print without anything being marked artificial.
ExprValue value(foo_type, {1, 0, 0, 0, 2, 0, 0, 0});
EXPECT_EQ(
" = Foo, \n"
" normal = int32_t, 1\n"
" artificial = int32_t, 2\n",
SyncTreeTypeDesc(value, FormatExprValueOptions()));
// Mark second one as artificial.
DataMember* artificial_member =
const_cast<DataMember*>(foo_type->data_members()[1].Get()->AsDataMember());
artificial_member->set_artificial(true);
EXPECT_EQ(
" = Foo, \n"
" normal = int32_t, 1\n",
SyncTreeTypeDesc(value, FormatExprValueOptions()));
}
// GDB and LLDB both print all members of a union and accept the possibility
// that sometimes one of them might be garbage, we do the same.
TEST_F(FormatTest, Union) {
FormatExprValueOptions opts;
// Define a union type with two int32 values.
auto int32_type = MakeInt32Type();
auto union_type = fxl::MakeRefCounted<Collection>(DwarfTag::kUnionType, "MyUnion");
union_type->set_byte_size(int32_type->byte_size());
std::vector<LazySymbol> data_members;
auto member_1 = fxl::MakeRefCounted<DataMember>();
member_1->set_assigned_name("a");
member_1->set_type(LazySymbol(int32_type));
member_1->set_member_location(0);
data_members.push_back(LazySymbol(member_1));
auto member_2 = fxl::MakeRefCounted<DataMember>();
member_2->set_assigned_name("b");
member_2->set_type(LazySymbol(int32_type));
member_2->set_member_location(0);
data_members.push_back(LazySymbol(member_2));
union_type->set_data_members(std::move(data_members));
ExprValue value(union_type, {42, 0, 0, 0});
EXPECT_EQ(
" = MyUnion, \n"
" a = int32_t, 42\n"
" b = int32_t, 42\n",
SyncTreeTypeDesc(value, opts));
}
// Tests formatting when a class has derived base classes.
TEST_F(FormatTest, DerivedClasses) {
auto int32_type = MakeInt32Type();
auto base =
MakeCollectionType(DwarfTag::kStructureType, "Base", {{"a", int32_type}, {"b", int32_type}});
// This second base class is empty, it should be omitted from the output.
auto empty_base = fxl::MakeRefCounted<Collection>(DwarfTag::kClassType, "EmptyBase");
// Derived class, leave enough room to hold |Base|.
auto derived =
MakeCollectionTypeWithOffset(DwarfTag::kStructureType, "Derived", base->byte_size(),
{{"c", int32_type}, {"d", int32_type}});
auto inherited = fxl::MakeRefCounted<InheritedFrom>(LazySymbol(base), 0);
auto empty_inherited = fxl::MakeRefCounted<InheritedFrom>(LazySymbol(empty_base), 0);
derived->set_inherited_from({LazySymbol(inherited), LazySymbol(empty_inherited)});
uint8_t kAValue = 1;
uint8_t kBValue = 2;
uint8_t kCValue = 3;
uint8_t kDValue = 4;
ExprValue value(derived, {kAValue, 0, 0, 0, // (int32) Base.a
kBValue, 0, 0, 0, // (int32) Base.b
kCValue, 0, 0, 0, // (int32) Derived.c
kDValue, 0, 0, 0}); // (int32) Derived.d
// Only the Base should be printed, EmptyBase should be omitted because it
// has no data.
FormatExprValueOptions opts;
EXPECT_EQ(
" = Derived, \n"
" Base = Base, \n"
" a = int32_t, 1\n"
" b = int32_t, 2\n"
" c = int32_t, 3\n"
" d = int32_t, 4\n",
SyncTreeTypeDesc(value, opts));
}
TEST_F(FormatTest, Pointer) {
FormatExprValueOptions opts;
auto base_type = MakeInt32Type();
auto ptr_type = fxl::MakeRefCounted<ModifiedType>(DwarfTag::kPointerType, LazySymbol(base_type));
std::vector<uint8_t> data = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
ExprValue value(ptr_type, data);
// The pointer points to invalid memory.
EXPECT_EQ(
" = int32_t*, 0x807060504030201\n"
" * = Err: Invalid pointer 0x807060504030201\n",
SyncTreeTypeDesc(value, opts));
// Provide some memory backing for the request.
constexpr uint64_t kAddress = 0x807060504030201;
provider()->AddMemory(kAddress, {123, 0, 0, 0});
EXPECT_EQ(
" = int32_t*, 0x807060504030201\n"
" * = int32_t, 123\n",
SyncTreeTypeDesc(value, opts));
// Test an invalid one with an incorrect size.
data.resize(7);
opts.verbosity = FormatExprValueOptions::Verbosity::kMedium;
ExprValue bad_value(ptr_type, data);
EXPECT_EQ(
" = Err: The value of type 'int32_t*' is the incorrect size (expecting "
"8, got 7). Please file a bug.\n",
SyncTreeTypeDesc(bad_value, opts));
}
TEST_F(FormatTest, Reference) {
FormatExprValueOptions opts;
auto base_type = fxl::MakeRefCounted<BaseType>(BaseType::kBaseTypeSigned, 1, "int");
auto ref_type =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kReferenceType, LazySymbol(base_type));
constexpr uint64_t kAddress = 0x1100;
provider()->AddMemory(kAddress, {123, 0, 0, 0, 0, 0, 0, 0});
// This data refers to the address above.
std::vector<uint8_t> data = {0x00, 0x11, 0, 0, 0, 0, 0, 0};
ExprValue value(ref_type, data);
EXPECT_EQ(
" = int&, 0x1100\n"
" = int, 123\n",
SyncTreeTypeDesc(value, opts));
// Test an invalid one with an invalid address.
std::vector<uint8_t> bad_data = {0x00, 0x22, 0, 0, 0, 0, 0, 0};
opts.verbosity = FormatExprValueOptions::Verbosity::kMedium;
value = ExprValue(ref_type, bad_data);
EXPECT_EQ(
" = int&, 0x2200\n"
" = Err: Invalid pointer 0x2200\n",
SyncTreeTypeDesc(value, opts));
// Test an rvalue reference. This is treated the same as a regular reference
// from an interpretation and printing perspective.
auto rvalue_ref_type =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kRvalueReferenceType, LazySymbol(base_type));
value = ExprValue(rvalue_ref_type, data);
opts.verbosity = FormatExprValueOptions::Verbosity::kMedium;
EXPECT_EQ(
" = int&&, 0x1100\n"
" = int, 123\n",
SyncTreeTypeDesc(value, opts));
}
TEST_F(FormatTest, GoodStrings) {
FormatExprValueOptions opts;
constexpr uint64_t kAddress = 0x1100;
std::vector<uint8_t> data = {'A', 'B', 'C', 'D', 'E', 'F', '\n', 0x01, 'z', '\\', '"', 0};
provider()->AddMemory(kAddress, data);
// The expected children of the string, not counting the null terminator.
std::string expected_members_no_null =
R"( [0] = char, 'A'
[1] = char, 'B'
[2] = char, 'C'
[3] = char, 'D'
[4] = char, 'E'
[5] = char, 'F'
[6] = char, '\n'
[7] = char, '\x01'
[8] = char, 'z'
[9] = char, '\\'
[10] = char, '\"'
)";
// The expected children of the string, including the null terminator.
std::string expected_members_with_null = expected_members_no_null + " [11] = char, '\\x00'\n";
std::string expected_desc_string = R"("ABCDEF\n\x01z\\\"")";
// Little-endian version of the address.
std::vector<uint8_t> address_data = {0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// This string is a char*. It should show the string contents (stopping before the null
// terminator). Note that Visual Studio shows the same thing in the description that we do, but
// the children is like a normal pointer so there is only see the first character.
auto ptr_type = MakeCharPointerType();
EXPECT_EQ(" = char*, " + expected_desc_string + "\n" + expected_members_no_null,
SyncTreeTypeDesc(ExprValue(ptr_type, address_data), opts));
// This string has the same data but is type encoded as char[12], it should
// give the same output (except for type info).
auto array_type = fxl::MakeRefCounted<ArrayType>(MakeSignedChar8Type(), 12);
EXPECT_EQ(" = char[12], " + expected_desc_string + "\n" + expected_members_with_null,
SyncTreeTypeDesc(ExprValue(array_type, data), opts));
// This type is a "const array of const char". I don't know how to type this
// in C (most related things end up as "const pointer to const char") and the
// type name looks wrong but GCC will generate this for the type of
// compiler-generated variables like __func__.
auto char_type = MakeSignedChar8Type();
auto const_char = fxl::MakeRefCounted<ModifiedType>(DwarfTag::kConstType, LazySymbol(char_type));
auto array_const_char = fxl::MakeRefCounted<ArrayType>(const_char, 12);
auto const_array_const_char =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kConstType, LazySymbol(array_const_char));
EXPECT_EQ(std::string(" = const const char[12], ") + expected_desc_string + "\n" +
expected_members_with_null,
SyncTreeTypeDesc(ExprValue(const_array_const_char, data), opts));
}
TEST_F(FormatTest, BadStrings) {
FormatExprValueOptions opts;
std::vector<uint8_t> address_data = {0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// Should report invalid pointer.
auto ptr_type = MakeCharPointerType();
ExprValue ptr_value(ptr_type, address_data);
EXPECT_EQ(" = Err: 0x1100 «invalid pointer»\n", SyncTreeTypeDesc(ptr_value, opts));
// A null string should print just the null and not say invalid.
ExprValue null_value(ptr_type, std::vector<uint8_t>(sizeof(uint64_t)));
EXPECT_EQ(" = char*, 0x0\n", SyncTreeTypeDesc(null_value, opts));
}
TEST_F(FormatTest, TruncatedString) {
FormatExprValueOptions opts;
constexpr uint64_t kAddress = 0x1100;
provider()->AddMemory(kAddress, {'A', 'B', 'C', 'D', 'E', 'F'});
// Little-endian version of kAddress.
std::vector<uint8_t> address_data = {0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// This string doesn't end in a null terminator but rather invalid memory.
// We should print as much as we have.
auto ptr_type = MakeCharPointerType();
EXPECT_EQ(
" = char*, \"ABCDEF\"\n"
" [0] = char, 'A'\n"
" [1] = char, 'B'\n"
" [2] = char, 'C'\n"
" [3] = char, 'D'\n"
" [4] = char, 'E'\n"
" [5] = char, 'F'\n",
SyncTreeTypeDesc(ExprValue(ptr_type, address_data), opts));
// Should only report the first 4 chars with a ... indicator.
opts.max_array_size = 4; // Truncate past this value.
EXPECT_EQ(
" = char*, \"ABCD\"...\n"
" [0] = char, 'A'\n"
" [1] = char, 'B'\n"
" [2] = char, 'C'\n"
" [3] = char, 'D'\n"
" ... = , \n",
SyncTreeTypeDesc(ExprValue(ptr_type, address_data), opts));
}
TEST_F(FormatTest, RustEnum) {
auto rust_enum = MakeTestRustEnum();
// Since "none" is the default, random disciminant values (here, the 32-bit
// "100" value) will match it.
ExprValue none_value(rust_enum, {100, 0, 0, 0, // Discriminant
0, 0, 0, 0, 0, 0, 0, 0}); // Unused
FormatExprValueOptions opts;
EXPECT_EQ(" = RustEnum, None\n", SyncTreeTypeDesc(none_value, opts));
// Scalar value.
ExprValue scalar_value(rust_enum, {0, 0, 0, 0, // Discriminant
51, 0, 0, 0, // Scalar value.
0, 0, 0, 0}); // Unused
EXPECT_EQ(
" = RustEnum, Scalar\n"
" Scalar = Scalar, \n"
" 0 = int32_t, 51\n",
SyncTreeTypeDesc(scalar_value, opts));
// Point value.
ExprValue point_value(rust_enum, {1, 0, 0, 0, // Discriminant
1, 0, 0, 0, // x
2, 0, 0, 0}); // y
EXPECT_EQ(
" = RustEnum, Point\n"
" Point = Point, \n"
" x = int32_t, 1\n"
" y = int32_t, 2\n",
SyncTreeTypeDesc(point_value, opts));
}
TEST_F(FormatTest, RustTuple) {
auto tuple_two_type =
MakeTestRustTuple("(int32_t, uint64_t)", {MakeInt32Type(), MakeUint64Type()});
ExprValue tuple_two(tuple_two_type, {123, 0, 0, 0, // int32_t member 0
78, 0, 0, 0, 0, 0, 0, 0}); // uint64_t member 1
FormatExprValueOptions opts;
EXPECT_EQ(
" = (int32_t, uint64_t), \n"
" 0 = int32_t, 123\n"
" 1 = uint64_t, 78\n",
SyncTreeTypeDesc(tuple_two, opts));
// 1-element tuple struct.
auto tuple_struct_one_type = MakeTestRustTuple("Some", {MakeInt32Type()});
ExprValue tuple_struct_one(tuple_struct_one_type, {123, 0, 0, 0}); // int32_t member 0
EXPECT_EQ(
" = Some, \n"
" 0 = int32_t, 123\n",
SyncTreeTypeDesc(tuple_struct_one, opts));
}
TEST_F(FormatTest, Enumeration) {
// Unsigned 64-bit enum.
Enumeration::Map unsigned_map;
unsigned_map[0] = "kZero";
unsigned_map[1] = "kOne";
unsigned_map[std::numeric_limits<uint64_t>::max()] = "kMax";
auto unsigned_enum =
fxl::MakeRefCounted<Enumeration>("UnsignedEnum", LazySymbol(), 8, false, unsigned_map);
// Found value
FormatExprValueOptions opts;
EXPECT_EQ(" = UnsignedEnum, kZero\n",
SyncTreeTypeDesc(ExprValue(unsigned_enum, {0, 0, 0, 0, 0, 0, 0, 0}), opts));
EXPECT_EQ(" = UnsignedEnum, kMax\n",
SyncTreeTypeDesc(
ExprValue(unsigned_enum, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}), opts));
// Found value forced to hex.
FormatExprValueOptions hex_opts;
hex_opts.num_format = FormatExprValueOptions::NumFormat::kHex;
EXPECT_EQ(
" = UnsignedEnum, 0xffffffffffffffff\n",
SyncTreeTypeDesc(ExprValue(unsigned_enum, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}),
hex_opts));
// Not found value.
EXPECT_EQ(" = UnsignedEnum, 12\n",
SyncTreeTypeDesc(ExprValue(unsigned_enum, {12, 0, 0, 0, 0, 0, 0, 0}), opts));
// Signed 32-bit enum.
Enumeration::Map signed_map;
signed_map[0] = "kZero";
signed_map[static_cast<uint64_t>(-5)] = "kMinusFive";
signed_map[static_cast<uint64_t>(std::numeric_limits<int32_t>::max())] = "kMax";
auto signed_enum =
fxl::MakeRefCounted<Enumeration>("SignedEnum", LazySymbol(), 4, true, signed_map);
// Found values.
EXPECT_EQ(" = SignedEnum, kZero\n", SyncTreeTypeDesc(ExprValue(signed_enum, {0, 0, 0, 0}), opts));
EXPECT_EQ(" = SignedEnum, kMinusFive\n",
SyncTreeTypeDesc(ExprValue(signed_enum, {0xfb, 0xff, 0xff, 0xff}), opts));
// Not-found value.
EXPECT_EQ(" = SignedEnum, -4\n",
SyncTreeTypeDesc(ExprValue(signed_enum, {0xfc, 0xff, 0xff, 0xff}), opts));
// Not-found signed value printed as hex should be unsigned.
EXPECT_EQ(" = SignedEnum, 0xffffffff\n",
SyncTreeTypeDesc(ExprValue(signed_enum, {0xff, 0xff, 0xff, 0xff}), hex_opts));
}
TEST_F(FormatTest, ZxStatusT) {
// Types in the global namespace named "zx_status_t" of the right size should get the enum name
// expanded (Zircon special-case).
auto int32_type = MakeInt32Type();
auto status_t_type =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kTypedef, LazySymbol(int32_type));
status_t_type->set_assigned_name("zx_status_t");
ExprValue status_ok(status_t_type, {0, 0, 0, 0});
FormatExprValueOptions opts;
EXPECT_EQ(" = zx_status_t, 0 (ZX_OK)\n", SyncTreeTypeDesc(status_ok, opts));
// -15 = ZX_ERR_BUFFER_TOO_SMALL
ExprValue status_too_small(status_t_type, {0xf1, 0xff, 0xff, 0xff});
EXPECT_EQ(" = zx_status_t, -15 (ZX_ERR_BUFFER_TOO_SMALL)\n",
SyncTreeTypeDesc(status_too_small, opts));
// Invalid negative number.
ExprValue status_invalid(status_t_type, {0xf0, 0xd8, 0xff, 0xff});
EXPECT_EQ(" = zx_status_t, -10000 (<unknown>)\n", SyncTreeTypeDesc(status_invalid, opts));
// Positive values.
ExprValue status_one(status_t_type, {1, 0, 0, 0});
EXPECT_EQ(" = zx_status_t, 1 (<unknown>)\n", SyncTreeTypeDesc(status_one, opts));
// Hex formatting should be applied if requested.
opts.num_format = FormatExprValueOptions::NumFormat::kHex;
EXPECT_EQ(" = zx_status_t, 0xfffffff1 (ZX_ERR_BUFFER_TOO_SMALL)\n",
SyncTreeTypeDesc(status_too_small, opts));
}
TEST_F(FormatTest, EmptyAndBadArray) {
FormatExprValueOptions opts;
// Array of two int32's: [1, 2]
constexpr uint64_t kAddress = 0x1100;
ExprValueSource source(kAddress);
// Empty array with valid pointer.
auto empty_array_type = fxl::MakeRefCounted<ArrayType>(MakeInt32Type(), 0);
EXPECT_EQ(" = int32_t[0], \n",
SyncTreeTypeDesc(ExprValue(empty_array_type, std::vector<uint8_t>(), source), opts));
// Array type declares a size but there's no data.
auto array_type = fxl::MakeRefCounted<ArrayType>(MakeInt32Type(), 1);
EXPECT_EQ(" = Err: Array data (0 bytes) is too small for the expected size (4 bytes).\n",
SyncTreeTypeDesc(ExprValue(array_type, std::vector<uint8_t>(), source), opts));
}
TEST_F(FormatTest, TruncatedArray) {
FormatExprValueOptions opts;
opts.max_array_size = 2;
// Array of two int32's: {1, 2}
constexpr uint64_t kAddress = 0x1100;
ExprValueSource source(kAddress);
std::vector<uint8_t> data = {0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00};
auto array_type = fxl::MakeRefCounted<ArrayType>(MakeInt32Type(), 2);
// This array has exactly the max size, we shouldn't mark it as truncated.
EXPECT_EQ(
" = int32_t[2], \n"
" [0] = int32_t, 1\n"
" [1] = int32_t, 2\n",
SyncTreeTypeDesc(ExprValue(array_type, data, source), opts));
// This one is truncated.
opts.max_array_size = 1;
EXPECT_EQ(
" = int32_t[2], \n"
" [0] = int32_t, 1\n"
" ... = , \n",
SyncTreeTypeDesc(ExprValue(array_type, data, source), opts));
}
// Tests printing nullptr_t which is defined as "typedef decltype(nullptr) nullptr_t;".
TEST_F(FormatTest, NullptrT) {
// Clang and GCC currently defined "decltype(nullptr)" as an "unspecified"
// type. Our decoder will force these to be the size of a pointer (the
// symbols don't seem to define a size).
auto underlying_type = fxl::MakeRefCounted<Type>(DwarfTag::kUnspecifiedType);
underlying_type->set_assigned_name("decltype(nullptr_t)");
underlying_type->set_byte_size(8);
// The nullptr_t is defined as a typedef for the above.
auto nullptr_t_type =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kTypedef, LazySymbol(underlying_type));
nullptr_t_type->set_assigned_name("nullptr_t");
ExprValue null_value(nullptr_t_type, {0, 0, 0, 0, 0, 0, 0, 0});
FormatExprValueOptions opts;
EXPECT_EQ(" = nullptr_t, 0x0\n", SyncTreeTypeDesc(null_value, opts));
}
TEST_F(FormatTest, FunctionPtr) {
// This is a function type. There isn't a corresponding C/C++ type for a function type (without a
// pointer modifier) but we define it anyway in case it comes up (possibly another language).
auto func_type = fxl::MakeRefCounted<FunctionType>(LazySymbol(), std::vector<LazySymbol>());
// This type is "void (*)()"
auto func_ptr_type =
fxl::MakeRefCounted<ModifiedType>(DwarfTag::kPointerType, LazySymbol(func_type));
SymbolContext symbol_context = SymbolContext::ForRelativeAddresses();
auto function = fxl::MakeRefCounted<Function>(DwarfTag::kSubprogram);
function->set_assigned_name("MyFunc");
// Map the address to point to the function.
constexpr uint64_t kAddress = 0x1234;
eval_context()->AddLocation(kAddress, Location(kAddress, FileLine("file.cc", 21), 0,
symbol_context, LazySymbol(function)));
// Function.
FormatExprValueOptions opts;
ExprValue null_func(func_type, {0, 0, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = void(), 0x0\n", SyncTreeTypeDesc(null_func, opts));
// Null function pointer.
ExprValue null_ptr(func_ptr_type, {0, 0, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = void (*)(), 0x0\n", SyncTreeTypeDesc(null_ptr, opts));
// Function pointer to unknown memory is printed in hex.
EXPECT_EQ(" = void (*)(), 0x5\n",
SyncTreeTypeDesc(ExprValue(func_ptr_type, {5, 0, 0, 0, 0, 0, 0, 0}), opts));
// Found symbol (matching kAddress) should be printed.
ExprValue good_ptr(func_ptr_type, {0x34, 0x12, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = void (*)(), &MyFunc (0x1234)\n", SyncTreeTypeDesc(good_ptr, opts));
// Member function pointer. The type naming of function pointers is tested by
// the MemberPtr class, and otherwise the code paths are the same, so here
// we only need to verify things are hooked up.
auto containing = fxl::MakeRefCounted<Collection>(DwarfTag::kClassType, "MyClass");
auto member_func = fxl::MakeRefCounted<MemberPtr>(LazySymbol(containing), LazySymbol(func_type));
ExprValue null_member_func_ptr(member_func, {0, 0, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = void (MyClass::*)(), 0x0\n", SyncTreeTypeDesc(null_member_func_ptr, opts));
// Member function to a known symbol. This doesn't resolve to something that
// looks like a class member, but that's OK, wherever the address points to
// is what we print.
ExprValue good_member_func_ptr(member_func, {0x34, 0x12, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = void (MyClass::*)(), &MyFunc (0x1234)\n",
SyncTreeTypeDesc(good_member_func_ptr, opts));
}
// This tests pointers to member data. Pointers to member functions were tested by the FunctionPtr
// test.
TEST_F(FormatTest, MemberPtr) {
auto containing = fxl::MakeRefCounted<Collection>(DwarfTag::kClassType, "MyClass");
auto int32_type = MakeInt32Type();
auto member_int32 =
fxl::MakeRefCounted<MemberPtr>(LazySymbol(containing), LazySymbol(int32_type));
// Null pointer.
FormatExprValueOptions opts;
ExprValue null_member_ptr(member_int32, {0, 0, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = int32_t MyClass::*, 0x0\n", SyncTreeTypeDesc(null_member_ptr, opts));
// Regular pointer.
ExprValue good_member_ptr(member_int32, {0x34, 0x12, 0, 0, 0, 0, 0, 0});
EXPECT_EQ(" = int32_t MyClass::*, 0x1234\n", SyncTreeTypeDesc(good_member_ptr, opts));
}
} // namespace zxdb