blob: 439301a13961f35870c238cc74d42e23e9db0f1e [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2014 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <kernel/mp.h>
#include <arch/mp.h>
#include <arch/ops.h>
#include <assert.h>
#include <debug.h>
#include <dev/interrupt.h>
#include <err.h>
#include <fbl/algorithm.h>
#include <inttypes.h>
#include <kernel/align.h>
#include <kernel/dpc.h>
#include <kernel/event.h>
#include <kernel/mp.h>
#include <kernel/mutex.h>
#include <kernel/sched.h>
#include <kernel/spinlock.h>
#include <kernel/stats.h>
#include <kernel/timer.h>
#include <lk/init.h>
#include <platform.h>
#include <platform/timer.h>
#include <stdlib.h>
#include <trace.h>
#include <zircon/types.h>
#define LOCAL_TRACE 0
// a global state structure, aligned on cpu cache line to minimize aliasing
struct mp_state mp __CPU_ALIGN_EXCLUSIVE;
// Helpers used for implementing mp_sync
struct mp_sync_context;
static void mp_sync_task(void* context);
void mp_init(void) {
mp.ipi_task_lock = SPIN_LOCK_INITIAL_VALUE;
for (uint i = 0; i < fbl::count_of(mp.ipi_task_list); ++i) {
list_initialize(&mp.ipi_task_list[i]);
}
}
void mp_prepare_current_cpu_idle_state(bool idle) {
arch_prepare_current_cpu_idle_state(idle);
}
void mp_reschedule(cpu_mask_t mask, uint flags) {
// we must be holding the thread lock to access some of the cpu
// state bitmaps and some arch_mp_reschedule implementations.
DEBUG_ASSERT(thread_lock_held());
const cpu_num_t local_cpu = arch_curr_cpu_num();
LTRACEF("local %u, mask %#x\n", local_cpu, mask);
// mask out cpus that are not active and the local cpu
mask &= mp.active_cpus;
mask &= ~cpu_num_to_mask(local_cpu);
// mask out cpus that are currently running realtime code
if ((flags & MP_RESCHEDULE_FLAG_REALTIME) == 0) {
mask &= ~mp.realtime_cpus;
}
LTRACEF("local %u, post mask target now 0x%x\n", local_cpu, mask);
// if we have no work to do, return
if (mask == 0) {
return;
}
arch_mp_reschedule(mask);
}
void mp_interrupt(mp_ipi_target_t target, cpu_mask_t mask) {
arch_mp_send_ipi(target, mask, MP_IPI_INTERRUPT);
}
struct mp_sync_context {
mp_sync_task_t task;
void* task_context;
// Mask of which CPUs need to finish the task
volatile cpu_mask_t outstanding_cpus;
};
static void mp_sync_task(void* raw_context) {
auto context = reinterpret_cast<mp_sync_context*>(raw_context);
context->task(context->task_context);
// use seq-cst atomic to ensure this update is not seen before the
// side-effects of context->task
atomic_and((int*)&context->outstanding_cpus, ~cpu_num_to_mask(arch_curr_cpu_num()));
}
/* @brief Execute a task on the specified CPUs, and block on the calling
* CPU until all CPUs have finished the task.
*
* If MP_IPI_TARGET_ALL or MP_IPI_TARGET_ALL_BUT_LOCAL is the target, the online CPU
* mask will be used to determine actual targets.
*
* Interrupts must be disabled if calling with MP_IPI_TARGET_ALL_BUT_LOCAL as target
*
* The callback in |task| will always be called with |arch_blocking_disallowed()|
* set to true.
*/
void mp_sync_exec(mp_ipi_target_t target, cpu_mask_t mask, mp_sync_task_t task, void* context) {
uint num_cpus = arch_max_num_cpus();
if (target == MP_IPI_TARGET_ALL) {
mask = mp_get_online_mask();
} else if (target == MP_IPI_TARGET_ALL_BUT_LOCAL) {
// targeting all other CPUs but the current one is hazardous
// if the local CPU may be changed underneath us
DEBUG_ASSERT(arch_ints_disabled());
mask = mp_get_online_mask() & ~cpu_num_to_mask(arch_curr_cpu_num());
} else {
// Mask any offline CPUs from target list
mask &= mp_get_online_mask();
}
// disable interrupts so our current CPU doesn't change
spin_lock_saved_state_t irqstate;
arch_interrupt_save(&irqstate, SPIN_LOCK_FLAG_INTERRUPTS);
smp_mb();
const uint local_cpu = arch_curr_cpu_num();
// remove self from target lists, since no need to IPI ourselves
bool targetting_self = !!(mask & cpu_num_to_mask(local_cpu));
mask &= ~cpu_num_to_mask(local_cpu);
// create tasks to enqueue (we need one per target due to each containing
// a linked list node
struct mp_sync_context sync_context = {
.task = task,
.task_context = context,
.outstanding_cpus = mask,
};
struct mp_ipi_task sync_tasks[SMP_MAX_CPUS] = {};
for (uint i = 0; i < num_cpus; ++i) {
sync_tasks[i].func = mp_sync_task;
sync_tasks[i].context = &sync_context;
}
// enqueue tasks
spin_lock(&mp.ipi_task_lock);
cpu_mask_t remaining = mask;
uint cpu_id = 0;
while (remaining && cpu_id < num_cpus) {
if (remaining & 1) {
list_add_tail(&mp.ipi_task_list[cpu_id], &sync_tasks[cpu_id].node);
}
remaining >>= 1;
cpu_id++;
}
spin_unlock(&mp.ipi_task_lock);
// let CPUs know to begin executing
__UNUSED zx_status_t status = arch_mp_send_ipi(MP_IPI_TARGET_MASK, mask, MP_IPI_GENERIC);
DEBUG_ASSERT(status == ZX_OK);
if (targetting_self) {
bool previous_blocking_disallowed = arch_blocking_disallowed();
arch_set_blocking_disallowed(true);
mp_sync_task(&sync_context);
arch_set_blocking_disallowed(previous_blocking_disallowed);
}
smp_mb();
// we can take interrupts again once we've executed our task
arch_interrupt_restore(irqstate, SPIN_LOCK_FLAG_INTERRUPTS);
bool ints_disabled = arch_ints_disabled();
// wait for all other CPUs to be done with the context
while (1) {
// See comment in mp_unplug_trampoline about related CPU hotplug
// guarantees.
cpu_mask_t outstanding = atomic_load_relaxed(
(int*)&sync_context.outstanding_cpus);
cpu_mask_t online = mp_get_online_mask();
if ((outstanding & online) == 0) {
break;
}
// If interrupts are still disabled, we need to attempt to process any
// tasks queued for us in order to prevent deadlock.
if (ints_disabled) {
// Optimistically check if our task list has work without the lock.
// mp_mbx_generic_irq will take the lock and check again.
if (!list_is_empty(&mp.ipi_task_list[local_cpu])) {
bool previous_blocking_disallowed = arch_blocking_disallowed();
arch_set_blocking_disallowed(true);
mp_mbx_generic_irq(nullptr);
arch_set_blocking_disallowed(previous_blocking_disallowed);
continue;
}
}
arch_spinloop_pause();
}
smp_mb();
// make sure the sync_tasks aren't in lists anymore, since they're
// stack allocated
spin_lock_irqsave(&mp.ipi_task_lock, irqstate);
for (uint i = 0; i < num_cpus; ++i) {
// If a task is still around, it's because the CPU went offline.
if (list_in_list(&sync_tasks[i].node)) {
list_delete(&sync_tasks[i].node);
}
}
spin_unlock_irqrestore(&mp.ipi_task_lock, irqstate);
}
static void mp_unplug_trampoline(void) TA_REQ(thread_lock) __NO_RETURN;
static void mp_unplug_trampoline(void) {
// We're still holding the thread lock from the reschedule that took us
// here.
thread_t* ct = get_current_thread();
auto unplug_done = reinterpret_cast<event_t*>(ct->arg);
cpu_num_t cpu_num = arch_curr_cpu_num();
sched_transition_off_cpu(cpu_num);
// Note that before this invocation, but after we stopped accepting
// interrupts, we may have received a synchronous task to perform.
// Clearing this flag will cause the mp_sync_exec caller to consider
// this CPU done. If this CPU comes back online before other all
// of the other CPUs finish their work (very unlikely, since tasks
// should be quick), then this CPU may execute the task.
mp_set_curr_cpu_online(false);
// We had better not be holding any OwnedWaitQueues at this point in time
// (it is unclear how we would have ever obtained any in the first place
// since everything this thread ever does is in this function).
DEBUG_ASSERT(ct->owned_wait_queues.is_empty());
// do *not* enable interrupts, we want this CPU to never receive another
// interrupt
spin_unlock(&thread_lock);
// Stop and then shutdown this CPU's platform timer.
platform_stop_timer();
platform_shutdown_timer();
// Shutdown the interrupt controller for this CPU. On some platforms (arm64 with GIC) receiving
// an interrupt at a powered off CPU can result in implementation defined behavior (including
// resetting the whole system).
shutdown_interrupts_curr_cpu();
// flush all of our caches
arch_flush_state_and_halt(unplug_done);
}
// Hotplug the given cpus. Blocks until the CPUs are up, or a failure is
// detected.
//
// This should be called in a thread context
zx_status_t mp_hotplug_cpu_mask(cpu_mask_t cpu_mask) {
DEBUG_ASSERT(!arch_ints_disabled());
Guard<Mutex>(&mp.hotplug_lock);
// Make sure all of the requested CPUs are offline
if (cpu_mask & mp_get_online_mask()) {
return ZX_ERR_BAD_STATE;
}
while (cpu_mask != 0) {
cpu_num_t cpu_id = highest_cpu_set(cpu_mask);
cpu_mask &= ~cpu_num_to_mask(cpu_id);
zx_status_t status = platform_mp_cpu_hotplug(cpu_id);
if (status != ZX_OK) {
return status;
}
}
return ZX_OK;
}
// Unplug a single CPU. Must be called while holding the hotplug lock
static zx_status_t mp_unplug_cpu_mask_single_locked(cpu_num_t cpu_id) {
// Wait for |cpu_id| to complete any in-progress DPCs and terminate its DPC thread. Later, once
// nothing is running on it, we'll migrate its queued DPCs to another CPU.
dpc_shutdown(cpu_id);
// TODO(maniscalco): |cpu_id| is about to shutdown. We should ensure it has no pinned threads
// (except maybe the idle thread). Once we're confident we've terminated/migrated them all,
// this would be a good place to DEBUG_ASSERT.
// Create a thread for the unplug. We will cause the target CPU to
// context switch to this thread. After this happens, it should no
// longer be accessing system state and can be safely shut down.
//
// This thread is pinned to the target CPU and set to run with the
// highest priority. This should cause it to pick up the thread
// immediately (or very soon, if for some reason there is another
// HIGHEST_PRIORITY task scheduled in between when we resume the
// thread and when the CPU is woken up).
event_t unplug_done = EVENT_INITIAL_VALUE(unplug_done, false, 0);
thread_t* t = thread_create_etc(
NULL,
"unplug_thread",
NULL,
&unplug_done,
HIGHEST_PRIORITY,
mp_unplug_trampoline);
if (t == NULL) {
return ZX_ERR_NO_MEMORY;
}
zx_status_t status = platform_mp_prep_cpu_unplug(cpu_id);
if (status != ZX_OK) {
return status;
}
// Pin to the target CPU
thread_set_cpu_affinity(t, cpu_num_to_mask(cpu_id));
// Set real time to cancel the pre-emption timer
thread_set_real_time(t);
status = thread_detach_and_resume(t);
if (status != ZX_OK) {
goto cleanup_thread;
}
// Wait for the unplug thread to get scheduled on the target
do {
status = event_wait(&unplug_done);
} while (status != ZX_OK);
// Now that the CPU is no longer processing tasks, move all of its timers
timer_transition_off_cpu(cpu_id);
// Move the CPU's queued DPCs to the current CPU.
dpc_shutdown_transition_off_cpu(cpu_id);
status = platform_mp_cpu_unplug(cpu_id);
if (status != ZX_OK) {
// Do not cleanup the unplug thread in this case. We have successfully
// unplugged the CPU from the scheduler's perspective, but the platform
// may have failed to shut down the CPU
return status;
}
// Fall through. Since the thread is scheduled, it should not be in any
// queues. Since the CPU running this thread is now shutdown, we can just
// erase the thread's existence.
cleanup_thread:
// ZX-2232: workaround race in thread cleanup by leaking the thread
// and stack structure. Since we're only using this while turning off
// the system currently, it's not a big problem leaking the thread structure
// and stack.
// thread_forget(t);
TRACEF("WARNING: leaking thread for cpu %u\n", cpu_id);
return status;
}
// Unplug the given cpus. Blocks until the CPUs are removed. Partial
// failure may occur (in which some CPUs are removed but not others).
//
// This should be called in a thread context
zx_status_t mp_unplug_cpu_mask(cpu_mask_t cpu_mask) {
DEBUG_ASSERT(!arch_ints_disabled());
Guard<Mutex>(&mp.hotplug_lock);
// Make sure all of the requested CPUs are online
if (cpu_mask & ~mp_get_online_mask()) {
return ZX_ERR_BAD_STATE;
}
while (cpu_mask != 0) {
cpu_num_t cpu_id = highest_cpu_set(cpu_mask);
cpu_mask &= ~cpu_num_to_mask(cpu_id);
zx_status_t status = mp_unplug_cpu_mask_single_locked(cpu_id);
if (status != ZX_OK) {
return status;
}
}
return ZX_OK;
}
interrupt_eoi mp_mbx_generic_irq(void*) {
DEBUG_ASSERT(arch_ints_disabled());
const cpu_num_t local_cpu = arch_curr_cpu_num();
CPU_STATS_INC(generic_ipis);
while (1) {
struct mp_ipi_task* task;
spin_lock(&mp.ipi_task_lock);
task = list_remove_head_type(&mp.ipi_task_list[local_cpu], struct mp_ipi_task, node);
spin_unlock(&mp.ipi_task_lock);
if (task == NULL) {
break;
}
task->func(task->context);
}
return IRQ_EOI_DEACTIVATE;
}
interrupt_eoi mp_mbx_reschedule_irq(void*) {
const cpu_num_t cpu = arch_curr_cpu_num();
LTRACEF("cpu %u\n", cpu);
CPU_STATS_INC(reschedule_ipis);
if (mp.active_cpus & cpu_num_to_mask(cpu)) {
thread_preempt_set_pending();
}
return IRQ_EOI_DEACTIVATE;
}
interrupt_eoi mp_mbx_interrupt_irq(void*) {
const cpu_num_t cpu = arch_curr_cpu_num();
LTRACEF("cpu %u\n", cpu);
// do nothing, the entire point of this interrupt is to simply have one
// delivered to the cpu.
return IRQ_EOI_DEACTIVATE;
}
__WEAK zx_status_t arch_mp_cpu_hotplug(uint cpu_id) {
return ZX_ERR_NOT_SUPPORTED;
}
__WEAK zx_status_t arch_mp_prep_cpu_unplug(uint cpu_id) {
return ZX_ERR_NOT_SUPPORTED;
}
__WEAK zx_status_t arch_mp_cpu_unplug(uint cpu_id) {
return ZX_ERR_NOT_SUPPORTED;
}
__WEAK zx_status_t platform_mp_cpu_hotplug(uint cpu_id) {
return arch_mp_cpu_hotplug(cpu_id);
}
__WEAK zx_status_t platform_mp_prep_cpu_unplug(uint cpu_id) {
return arch_mp_prep_cpu_unplug(cpu_id);
}
__WEAK zx_status_t platform_mp_cpu_unplug(uint cpu_id) {
return arch_mp_cpu_unplug(cpu_id);
}