blob: 706b8ccec40ae944d39680284d01eb6a23b6e6aa [file] [log] [blame]
use std::iter;
use std::process::Child;
use criterion_plot::prelude::*;
use stats::univariate::Sample;
use stats::Distribution;
use super::*;
use estimate::Statistic;
use kde;
use report::{BenchmarkId, ComparisonData, MeasurementData, ReportContext};
use Estimate;
fn abs_distribution(
id: &BenchmarkId,
context: &ReportContext,
statistic: Statistic,
distribution: &Distribution<f64>,
estimate: &Estimate,
size: Option<Size>,
) -> Child {
let ci = estimate.confidence_interval;
let (lb, ub) = (ci.lower_bound, ci.upper_bound);
let start = lb - (ub - lb) / 9.;
let end = ub + (ub - lb) / 9.;
let (xs, ys) = kde::sweep(distribution, KDE_POINTS, Some((start, end)));
let xs_ = Sample::new(&xs);
let (x_scale, prefix) = scale_time(xs_.max());
let y_scale = x_scale.recip();
let p = estimate.point_estimate;
let n_p = xs.iter().enumerate().find(|&(_, &x)| x >= p).unwrap().0;
let y_p = ys[n_p - 1] + (ys[n_p] - ys[n_p - 1]) / (xs[n_p] - xs[n_p - 1]) * (p - xs[n_p - 1]);
let zero = iter::repeat(0);
let start = xs.iter().enumerate().find(|&(_, &x)| x >= lb).unwrap().0;
let end = xs
.iter()
.enumerate()
.rev()
.find(|&(_, &x)| x <= ub)
.unwrap()
.0;
let len = end - start;
let mut figure = Figure::new();
figure
.set(Font(DEFAULT_FONT))
.set(size.unwrap_or(SIZE))
.set(Title(format!(
"{}: {}",
escape_underscores(id.as_title()),
statistic
)))
.configure(Axis::BottomX, |a| {
a.set(Label(format!("Average time ({}s)", prefix)))
.set(Range::Limits(xs_.min() * x_scale, xs_.max() * x_scale))
.set(ScaleFactor(x_scale))
})
.configure(Axis::LeftY, |a| {
a.set(Label("Density (a.u.)")).set(ScaleFactor(y_scale))
})
.configure(Key, |k| {
k.set(Justification::Left)
.set(Order::SampleText)
.set(Position::Outside(Vertical::Top, Horizontal::Right))
})
.plot(Lines { x: &*xs, y: &*ys }, |c| {
c.set(DARK_BLUE)
.set(LINEWIDTH)
.set(Label("Bootstrap distribution"))
.set(LineType::Solid)
})
.plot(
FilledCurve {
x: xs.iter().skip(start).take(len),
y1: ys.iter().skip(start),
y2: zero,
},
|c| {
c.set(DARK_BLUE)
.set(Label("Confidence interval"))
.set(Opacity(0.25))
},
)
.plot(
Lines {
x: &[p, p],
y: &[0., y_p],
},
|c| {
c.set(DARK_BLUE)
.set(LINEWIDTH)
.set(Label("Point estimate"))
.set(LineType::Dash)
},
);
let path = context.report_path(id, &format!("{}.svg", statistic));
debug_script(&path, &figure);
figure.set(Output(path)).draw().unwrap()
}
pub(crate) fn abs_distributions(
id: &BenchmarkId,
context: &ReportContext,
measurements: &MeasurementData,
size: Option<Size>,
) -> Vec<Child> {
measurements
.distributions
.iter()
.map(|(&statistic, distribution)| {
abs_distribution(
id,
context,
statistic,
distribution,
&measurements.absolute_estimates[&statistic],
size,
)
})
.collect::<Vec<_>>()
}
fn rel_distribution(
id: &BenchmarkId,
context: &ReportContext,
statistic: Statistic,
distribution: &Distribution<f64>,
estimate: &Estimate,
noise_threshold: f64,
size: Option<Size>,
) -> Child {
let ci = estimate.confidence_interval;
let (lb, ub) = (ci.lower_bound, ci.upper_bound);
let start = lb - (ub - lb) / 9.;
let end = ub + (ub - lb) / 9.;
let (xs, ys) = kde::sweep(distribution, KDE_POINTS, Some((start, end)));
let xs_ = Sample::new(&xs);
let p = estimate.point_estimate;
let n_p = xs.iter().enumerate().find(|&(_, &x)| x >= p).unwrap().0;
let y_p = ys[n_p - 1] + (ys[n_p] - ys[n_p - 1]) / (xs[n_p] - xs[n_p - 1]) * (p - xs[n_p - 1]);
let one = iter::repeat(1);
let zero = iter::repeat(0);
let start = xs.iter().enumerate().find(|&(_, &x)| x >= lb).unwrap().0;
let end = xs
.iter()
.enumerate()
.rev()
.find(|&(_, &x)| x <= ub)
.unwrap()
.0;
let len = end - start;
let x_min = xs_.min();
let x_max = xs_.max();
let (fc_start, fc_end) = if noise_threshold < x_min || -noise_threshold > x_max {
let middle = (x_min + x_max) / 2.;
(middle, middle)
} else {
(
if -noise_threshold < x_min {
x_min
} else {
-noise_threshold
},
if noise_threshold > x_max {
x_max
} else {
noise_threshold
},
)
};
let mut figure = Figure::new();
figure
.set(Font(DEFAULT_FONT))
.set(size.unwrap_or(SIZE))
.configure(Axis::LeftY, |a| a.set(Label("Density (a.u.)")))
.configure(Key, |k| {
k.set(Justification::Left)
.set(Order::SampleText)
.set(Position::Outside(Vertical::Top, Horizontal::Right))
})
.set(Title(format!(
"{}: {}",
escape_underscores(id.as_title()),
statistic
)))
.configure(Axis::BottomX, |a| {
a.set(Label("Relative change (%)"))
.set(Range::Limits(x_min * 100., x_max * 100.))
.set(ScaleFactor(100.))
})
.plot(Lines { x: &*xs, y: &*ys }, |c| {
c.set(DARK_BLUE)
.set(LINEWIDTH)
.set(Label("Bootstrap distribution"))
.set(LineType::Solid)
})
.plot(
FilledCurve {
x: xs.iter().skip(start).take(len),
y1: ys.iter().skip(start),
y2: zero.clone(),
},
|c| {
c.set(DARK_BLUE)
.set(Label("Confidence interval"))
.set(Opacity(0.25))
},
)
.plot(
Lines {
x: &[p, p],
y: &[0., y_p],
},
|c| {
c.set(DARK_BLUE)
.set(LINEWIDTH)
.set(Label("Point estimate"))
.set(LineType::Dash)
},
)
.plot(
FilledCurve {
x: &[fc_start, fc_end],
y1: one,
y2: zero,
},
|c| {
c.set(Axes::BottomXRightY)
.set(DARK_RED)
.set(Label("Noise threshold"))
.set(Opacity(0.1))
},
);
let path = context.report_path(id, &format!("change/{}.svg", statistic));
debug_script(&path, &figure);
figure.set(Output(path)).draw().unwrap()
}
pub(crate) fn rel_distributions(
id: &BenchmarkId,
context: &ReportContext,
_measurements: &MeasurementData,
comparison: &ComparisonData,
size: Option<Size>,
) -> Vec<Child> {
comparison
.relative_distributions
.iter()
.map(|(&statistic, distribution)| {
rel_distribution(
id,
context,
statistic,
distribution,
&comparison.relative_estimates[&statistic],
comparison.noise_threshold,
size,
)
})
.collect::<Vec<_>>()
}