blob: 8b98b5e842cb5aaeac3e35fc190e3f8f0d2e843c [file] [log] [blame]
//! Support for ECDSA signatures encoded as ASN.1 DER.
use crate::{Error, Result};
use core::{
fmt,
ops::{Add, Range},
};
use der::{asn1::UIntBytes, Decodable, Encodable};
use elliptic_curve::{
bigint::Encoding as _,
consts::U9,
generic_array::{ArrayLength, GenericArray},
FieldSize, PrimeCurve,
};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
/// Maximum overhead of an ASN.1 DER-encoded ECDSA signature for a given curve:
/// 9-bytes.
///
/// Includes 3-byte ASN.1 DER header:
///
/// - 1-byte: ASN.1 `SEQUENCE` tag (0x30)
/// - 2-byte: length
///
/// ...followed by two ASN.1 `INTEGER` values, which each have a header whose
/// maximum length is the following:
///
/// - 1-byte: ASN.1 `INTEGER` tag (0x02)
/// - 1-byte: length
/// - 1-byte: zero to indicate value is positive (`INTEGER` is signed)
pub type MaxOverhead = U9;
/// Maximum size of an ASN.1 DER encoded signature for the given elliptic curve.
pub type MaxSize<C> = <<FieldSize<C> as Add>::Output as Add<MaxOverhead>>::Output;
/// Byte array containing a serialized ASN.1 signature
type SignatureBytes<C> = GenericArray<u8, MaxSize<C>>;
/// ASN.1 DER-encoded signature.
///
/// Generic over the scalar size of the elliptic curve.
pub struct Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
/// ASN.1 DER-encoded signature data
bytes: SignatureBytes<C>,
/// Range of the `r` value within the signature
r_range: Range<usize>,
/// Range of the `s` value within the signature
s_range: Range<usize>,
}
impl<C> signature::Signature for Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
/// Parse an ASN.1 DER-encoded ECDSA signature from a byte slice
fn from_bytes(bytes: &[u8]) -> Result<Self> {
bytes.try_into()
}
}
#[allow(clippy::len_without_is_empty)]
impl<C> Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
/// Get the length of the signature in bytes
pub fn len(&self) -> usize {
self.s_range.end
}
/// Borrow this signature as a byte slice
pub fn as_bytes(&self) -> &[u8] {
&self.bytes.as_slice()[..self.len()]
}
/// Serialize this signature as a boxed byte slice
#[cfg(feature = "alloc")]
pub fn to_bytes(&self) -> Box<[u8]> {
self.as_bytes().to_vec().into_boxed_slice()
}
/// Create an ASN.1 DER encoded signature from big endian `r` and `s` scalars
pub(crate) fn from_scalar_bytes(r: &[u8], s: &[u8]) -> der::Result<Self> {
let r = UIntBytes::new(r)?;
let s = UIntBytes::new(s)?;
let mut bytes = SignatureBytes::<C>::default();
let mut encoder = der::Encoder::new(&mut bytes);
encoder.sequence((r.encoded_len()? + s.encoded_len()?)?, |seq| {
seq.encode(&r)?;
seq.encode(&s)
})?;
encoder
.finish()?
.try_into()
.map_err(|_| der::Tag::Sequence.value_error())
}
/// Get the `r` component of the signature (leading zeros removed)
pub(crate) fn r(&self) -> &[u8] {
&self.bytes[self.r_range.clone()]
}
/// Get the `s` component of the signature (leading zeros removed)
pub(crate) fn s(&self) -> &[u8] {
&self.bytes[self.s_range.clone()]
}
}
impl<C> AsRef<[u8]> for Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl<C> fmt::Debug for Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("asn1::Signature")
.field("r", &self.r())
.field("s", &self.s())
.finish()
}
}
impl<C> TryFrom<&[u8]> for Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
type Error = Error;
fn try_from(input: &[u8]) -> Result<Self> {
let (r, s) = der::Decoder::new(input)
.and_then(|mut decoder| {
decoder.sequence(|decoder| {
Ok((UIntBytes::decode(decoder)?, UIntBytes::decode(decoder)?))
})
})
.map_err(|_| Error::new())?;
if r.as_bytes().len() > C::UInt::BYTE_SIZE || s.as_bytes().len() > C::UInt::BYTE_SIZE {
return Err(Error::new());
}
let r_range = find_scalar_range(input, r.as_bytes())?;
let s_range = find_scalar_range(input, s.as_bytes())?;
if s_range.end != input.len() {
return Err(Error::new());
}
let mut bytes = SignatureBytes::<C>::default();
bytes[..s_range.end].copy_from_slice(input);
Ok(Signature {
bytes,
r_range,
s_range,
})
}
}
impl<C> TryFrom<Signature<C>> for super::Signature<C>
where
C: PrimeCurve,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
type Error = Error;
fn try_from(sig: Signature<C>) -> Result<super::Signature<C>> {
let mut bytes = super::SignatureBytes::<C>::default();
let r_begin = C::UInt::BYTE_SIZE.saturating_sub(sig.r().len());
let s_begin = bytes.len().saturating_sub(sig.s().len());
bytes[r_begin..C::UInt::BYTE_SIZE].copy_from_slice(sig.r());
bytes[s_begin..].copy_from_slice(sig.s());
Self::try_from(bytes.as_slice())
}
}
/// Locate the range within a slice at which a particular subslice is located
fn find_scalar_range(outer: &[u8], inner: &[u8]) -> Result<Range<usize>> {
let outer_start = outer.as_ptr() as usize;
let inner_start = inner.as_ptr() as usize;
let start = inner_start
.checked_sub(outer_start)
.ok_or_else(Error::new)?;
let end = start.checked_add(inner.len()).ok_or_else(Error::new)?;
Ok(Range { start, end })
}
#[cfg(all(feature = "digest", feature = "hazmat"))]
impl<C> signature::PrehashSignature for Signature<C>
where
C: PrimeCurve + crate::hazmat::DigestPrimitive,
MaxSize<C>: ArrayLength<u8>,
<FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
type Digest = C::Digest;
}
#[cfg(all(test, feature = "arithmetic"))]
mod tests {
use elliptic_curve::dev::MockCurve;
use signature::Signature as _;
type Signature = crate::Signature<MockCurve>;
const EXAMPLE_SIGNATURE: [u8; 64] = [
0xf3, 0xac, 0x80, 0x61, 0xb5, 0x14, 0x79, 0x5b, 0x88, 0x43, 0xe3, 0xd6, 0x62, 0x95, 0x27,
0xed, 0x2a, 0xfd, 0x6b, 0x1f, 0x6a, 0x55, 0x5a, 0x7a, 0xca, 0xbb, 0x5e, 0x6f, 0x79, 0xc8,
0xc2, 0xac, 0x8b, 0xf7, 0x78, 0x19, 0xca, 0x5, 0xa6, 0xb2, 0x78, 0x6c, 0x76, 0x26, 0x2b,
0xf7, 0x37, 0x1c, 0xef, 0x97, 0xb2, 0x18, 0xe9, 0x6f, 0x17, 0x5a, 0x3c, 0xcd, 0xda, 0x2a,
0xcc, 0x5, 0x89, 0x3,
];
#[test]
fn test_fixed_to_asn1_signature_roundtrip() {
let signature1 = Signature::from_bytes(&EXAMPLE_SIGNATURE).unwrap();
// Convert to ASN.1 DER and back
let asn1_signature = signature1.to_der();
let signature2 = Signature::from_der(asn1_signature.as_ref()).unwrap();
assert_eq!(signature1, signature2);
}
#[test]
fn test_asn1_too_short_signature() {
assert!(Signature::from_der(&[]).is_err());
assert!(Signature::from_der(&[der::Tag::Sequence.into()]).is_err());
assert!(Signature::from_der(&[der::Tag::Sequence.into(), 0x00]).is_err());
assert!(Signature::from_der(&[
der::Tag::Sequence.into(),
0x03,
der::Tag::Integer.into(),
0x01,
0x01
])
.is_err());
}
#[test]
fn test_asn1_non_der_signature() {
// A minimal 8-byte ASN.1 signature parses OK.
assert!(Signature::from_der(&[
der::Tag::Sequence.into(),
0x06, // length of below
der::Tag::Integer.into(),
0x01, // length of value
0x01, // value=1
der::Tag::Integer.into(),
0x01, // length of value
0x01, // value=1
])
.is_ok());
// But length fields that are not minimally encoded should be rejected, as they are not
// valid DER, cf.
// https://github.com/google/wycheproof/blob/2196000605e4/testvectors/ecdsa_secp256k1_sha256_test.json#L57-L66
assert!(Signature::from_der(&[
der::Tag::Sequence.into(),
0x81, // extended length: 1 length byte to come
0x06, // length of below
der::Tag::Integer.into(),
0x01, // length of value
0x01, // value=1
der::Tag::Integer.into(),
0x01, // length of value
0x01, // value=1
])
.is_err());
}
}