| // Copyright ©2017 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package mathext |
| |
| import ( |
| "math" |
| ) |
| |
| // EllipticRF computes the symmetric elliptic integral R_F(x,y,z): |
| // R_F(x,y,z) = (1/2)\int_{0}^{\infty}{1/s(t)} dt, |
| // s(t) = \sqrt{(t+x)(t+y)(t+z)}. |
| // |
| // The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN(): |
| // 0 ≤ x,y,z ≤ upper, |
| // lower ≤ x+y,y+z,z+x, |
| // where: |
| // lower = 5/(2^1022) = 1.112536929253601e-307, |
| // upper = (2^1022)/5 = 8.988465674311580e+306. |
| // |
| // The definition of the symmetric elliptic integral R_F can be found in NIST |
| // Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E1). |
| func EllipticRF(x, y, z float64) float64 { |
| // The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970). |
| // This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described |
| // an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227). |
| const ( |
| lower = 5.0 / (1 << 256) / (1 << 256) / (1 << 256) / (1 << 254) // 5*2^-1022 |
| upper = 1 / lower |
| tol = 1.2674918778210762260320167734407048051023273568443e-02 // (3ε)^(1/8) |
| ) |
| if x < 0 || y < 0 || z < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) { |
| return math.NaN() |
| } |
| if upper < x || upper < y || upper < z { |
| return math.NaN() |
| } |
| if x+y < lower || y+z < lower || z+x < lower { |
| return math.NaN() |
| } |
| |
| A0 := (x + y + z) / 3 |
| An := A0 |
| Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol |
| xn, yn, zn := x, y, z |
| mul := 1.0 |
| |
| for Q >= mul*math.Abs(An) { |
| xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn) |
| lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt |
| An = (An + lambda) * 0.25 |
| xn = (xn + lambda) * 0.25 |
| yn = (yn + lambda) * 0.25 |
| zn = (zn + lambda) * 0.25 |
| mul *= 4 |
| } |
| |
| X := (A0 - x) / (mul * An) |
| Y := (A0 - y) / (mul * An) |
| Z := -(X + Y) |
| E2 := X*Y - Z*Z |
| E3 := X * Y * Z |
| |
| // http://dlmf.nist.gov/19.36.E1 |
| return (1 - 1/10.0*E2 + 1/14.0*E3 + 1/24.0*E2*E2 - 3/44.0*E2*E3 - 5/208.0*E2*E2*E2 + 3/104.0*E3*E3 + 1/16.0*E2*E2*E3) / math.Sqrt(An) |
| } |
| |
| // EllipticRD computes the symmetric elliptic integral R_D(x,y,z): |
| // R_D(x,y,z) = (1/2)\int_{0}^{\infty}{1/(s(t)(t+z))} dt, |
| // s(t) = \sqrt{(t+x)(t+y)(t+z)}. |
| // |
| // The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN(): |
| // 0 ≤ x,y ≤ upper, |
| // lower ≤ z ≤ upper, |
| // lower ≤ x+y, |
| // where: |
| // lower = (5/(2^1022))^(1/3) = 4.809554074311679e-103, |
| // upper = ((2^1022)/5)^(1/3) = 2.079194837087086e+102. |
| // |
| // The definition of the symmetric elliptic integral R_D can be found in NIST |
| // Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E5). |
| func EllipticRD(x, y, z float64) float64 { |
| // The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970). |
| // This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described |
| // an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227). |
| const ( |
| lower = 4.8095540743116787026618007863123676393525016818363e-103 // (5*2^-1022)^(1/3) |
| upper = 1 / lower |
| tol = 9.0351169339315770474760122547068324993857488849382e-03 // (ε/5)^(1/8) |
| ) |
| if x < 0 || y < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) { |
| return math.NaN() |
| } |
| if upper < x || upper < y || upper < z { |
| return math.NaN() |
| } |
| if x+y < lower || z < lower { |
| return math.NaN() |
| } |
| |
| A0 := (x + y + 3*z) / 5 |
| An := A0 |
| Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol |
| xn, yn, zn := x, y, z |
| mul, s := 1.0, 0.0 |
| |
| for Q >= mul*math.Abs(An) { |
| xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn) |
| lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt |
| s += 1 / (mul * znsqrt * (zn + lambda)) |
| An = (An + lambda) * 0.25 |
| xn = (xn + lambda) * 0.25 |
| yn = (yn + lambda) * 0.25 |
| zn = (zn + lambda) * 0.25 |
| mul *= 4 |
| } |
| |
| X := (A0 - x) / (mul * An) |
| Y := (A0 - y) / (mul * An) |
| Z := -(X + Y) / 3 |
| E2 := X*Y - 6*Z*Z |
| E3 := (3*X*Y - 8*Z*Z) * Z |
| E4 := 3 * (X*Y - Z*Z) * Z * Z |
| E5 := X * Y * Z * Z * Z |
| |
| // http://dlmf.nist.gov/19.36.E2 |
| return (1-3/14.0*E2+1/6.0*E3+9/88.0*E2*E2-3/22.0*E4-9/52.0*E2*E3+3/26.0*E5-1/16.0*E2*E2*E2+3/40.0*E3*E3+3/20.0*E2*E4+45/272.0*E2*E2*E3-9/68.0*(E3*E4+E2*E5))/(mul*An*math.Sqrt(An)) + 3*s |
| } |
| |
| // EllipticF computes the Legendre's elliptic integral of the 1st kind F(phi,m), 0≤m<1: |
| // F(\phi,m) = \int_{0}^{\phi} 1 / \sqrt{1-m\sin^2(\theta)} d\theta |
| // |
| // Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case: |
| // F(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1) |
| // |
| // The definition of F(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical |
| // Functions (http://dlmf.nist.gov/19.2.E4). |
| func EllipticF(phi, m float64) float64 { |
| s, c := math.Sincos(phi) |
| return s * EllipticRF(c*c, 1-m*s*s, 1) |
| } |
| |
| // EllipticE computes the Legendre's elliptic integral of the 2nd kind E(phi,m), 0≤m<1: |
| // E(\phi,m) = \int_{0}^{\phi} \sqrt{1-m\sin^2(\theta)} d\theta |
| // |
| // Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case: |
| // E(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)-(m/3)\sin^3\phi R_D(\cos^2\phi,1-m\sin^2\phi,1) |
| // |
| // The definition of E(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical |
| // Functions (http://dlmf.nist.gov/19.2.E5). |
| func EllipticE(phi, m float64) float64 { |
| s, c := math.Sincos(phi) |
| x, y := c*c, 1-m*s*s |
| return s * (EllipticRF(x, y, 1) - (m/3)*s*s*EllipticRD(x, y, 1)) |
| } |