blob: 415436844c0cbd3d849eb3778108899efafcfdf8 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <lib/fidl/coding.h>
#include <lib/fidl/internal.h>
#include <lib/fidl/visitor.h>
#include <lib/fidl/walker.h>
#include <lib/fit/variant.h>
#include <stdalign.h>
#include <zircon/assert.h>
#include <zircon/compiler.h>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#ifdef __Fuchsia__
#include <zircon/syscalls.h>
#endif
// TODO(kulakowski) Design zx_status_t error values.
namespace {
struct Position {
uint8_t* addr;
Position operator+(uint32_t size) const { return Position{addr + size}; }
Position& operator+=(uint32_t size) {
addr += size;
return *this;
}
template <typename T>
constexpr T* Get() const {
return reinterpret_cast<T*>(addr);
}
};
struct EnvelopeCheckpoint {
uint32_t num_bytes;
uint32_t num_handles;
};
constexpr zx_rights_t subtract_rights(zx_rights_t minuend, zx_rights_t subtrahend) {
return minuend & ~subtrahend;
}
static_assert(subtract_rights(0b011, 0b101) == 0b010, "ensure rights subtraction works correctly");
class FidlDecoder final
: public fidl::Visitor<fidl::MutatingVisitorTrait, Position, EnvelopeCheckpoint> {
public:
FidlDecoder(void* bytes, uint32_t num_bytes, const zx_handle_t* handles, uint32_t num_handles,
uint32_t next_out_of_line, const char** out_error_msg)
: bytes_(static_cast<uint8_t*>(bytes)),
num_bytes_(num_bytes),
num_handles_(num_handles),
next_out_of_line_(next_out_of_line),
out_error_msg_(out_error_msg) {
if (likely(handles != nullptr)) {
handles_ = handles;
}
}
FidlDecoder(void* bytes, uint32_t num_bytes, const zx_handle_info_t* handle_infos,
uint32_t num_handle_infos, uint32_t next_out_of_line, const char** out_error_msg)
: bytes_(static_cast<uint8_t*>(bytes)),
num_bytes_(num_bytes),
num_handles_(num_handle_infos),
next_out_of_line_(next_out_of_line),
out_error_msg_(out_error_msg) {
if (likely(handle_infos != nullptr)) {
handles_ = handle_infos;
}
}
using Position = Position;
static constexpr bool kContinueAfterConstraintViolation = false;
Status VisitAbsentPointerInNonNullableCollection(ObjectPointerPointer object_ptr_ptr) {
SetError("absent pointer disallowed in non-nullable collection");
return Status::kConstraintViolationError;
}
Status VisitPointer(Position ptr_position, PointeeType pointee_type,
ObjectPointerPointer object_ptr_ptr, uint32_t inline_size,
Position* out_position) {
uint32_t new_offset;
if (unlikely(!FidlAddOutOfLine(next_out_of_line_, inline_size, &new_offset))) {
SetError("overflow updating out-of-line offset");
return Status::kMemoryError;
}
if (unlikely(new_offset > num_bytes_)) {
SetError("message tried to decode more than provided number of bytes");
return Status::kMemoryError;
}
{
auto status = ValidatePadding(&bytes_[next_out_of_line_ + inline_size],
new_offset - next_out_of_line_ - inline_size);
if (status != Status::kSuccess) {
return status;
}
}
if (unlikely(pointee_type == PointeeType::kString)) {
auto status = fidl_validate_string(reinterpret_cast<const char*>(&bytes_[next_out_of_line_]),
inline_size);
if (status != ZX_OK) {
SetError("decoder encountered invalid UTF8 string");
return Status::kConstraintViolationError;
}
}
*out_position = Position{bytes_ + next_out_of_line_};
*object_ptr_ptr = reinterpret_cast<void*>(&bytes_[next_out_of_line_]);
next_out_of_line_ = new_offset;
return Status::kSuccess;
}
Status VisitHandleInfo(Position handle_position, HandlePointer handle,
zx_rights_t required_handle_rights,
zx_obj_type_t required_handle_subtype) {
assert(has_handle_infos());
zx_handle_info_t received_handle_info = handle_infos()[handle_idx_];
zx_handle_t received_handle = received_handle_info.handle;
if (unlikely(received_handle == ZX_HANDLE_INVALID)) {
SetError("invalid handle detected in handle table");
return Status::kConstraintViolationError;
}
if (unlikely(required_handle_subtype != received_handle_info.type &&
required_handle_subtype != ZX_OBJ_TYPE_NONE)) {
SetError("decoded handle object type does not match expected type");
return Status::kConstraintViolationError;
}
// Special case: ZX_HANDLE_SAME_RIGHTS allows all handles through unchanged.
if (required_handle_rights == ZX_RIGHT_SAME_RIGHTS) {
*handle = received_handle;
handle_idx_++;
return Status::kSuccess;
}
// Check for required rights that are not present on the received handle.
if (unlikely(subtract_rights(required_handle_rights, received_handle_info.rights) != 0)) {
SetError("decoded handle missing required rights");
return Status::kConstraintViolationError;
}
// Check for non-requested rights that are present on the received handle.
if (subtract_rights(received_handle_info.rights, required_handle_rights)) {
#ifdef __Fuchsia__
// The handle has more rights than required. Reduce the rights.
zx_status_t status =
zx_handle_replace(received_handle_info.handle, required_handle_rights, &received_handle);
assert(status != ZX_ERR_BAD_HANDLE);
if (unlikely(status != ZX_OK)) {
SetError("failed to replace handle");
return Status::kConstraintViolationError;
}
#else
SetError("more rights received than required");
return Status::kConstraintViolationError;
#endif
}
*handle = received_handle;
handle_idx_++;
return Status::kSuccess;
}
Status VisitHandle(Position handle_position, HandlePointer handle,
zx_rights_t required_handle_rights, zx_obj_type_t required_handle_subtype) {
if (unlikely(*handle != FIDL_HANDLE_PRESENT)) {
SetError("message tried to decode a garbage handle");
return Status::kConstraintViolationError;
}
if (unlikely(handle_idx_ == num_handles_)) {
SetError("message decoded too many handles");
return Status::kConstraintViolationError;
}
if (has_handles()) {
if (unlikely(handles()[handle_idx_] == ZX_HANDLE_INVALID)) {
SetError("invalid handle detected in handle table");
return Status::kConstraintViolationError;
}
*handle = handles()[handle_idx_];
handle_idx_++;
return Status::kSuccess;
} else if (likely(has_handle_infos())) {
return VisitHandleInfo(handle_position, handle, required_handle_rights,
required_handle_subtype);
} else {
SetError("decoder noticed a handle is present but the handle table is empty");
*handle = ZX_HANDLE_INVALID;
return Status::kConstraintViolationError;
}
}
Status VisitVectorOrStringCount(CountPointer ptr) { return Status::kSuccess; }
Status VisitInternalPadding(Position padding_position, uint32_t padding_length) {
auto padding_ptr = padding_position.template Get<const uint8_t>();
return ValidatePadding(padding_ptr, padding_length);
}
EnvelopeCheckpoint EnterEnvelope() {
return {
.num_bytes = next_out_of_line_,
.num_handles = handle_idx_,
};
}
Status LeaveEnvelope(EnvelopePointer envelope, EnvelopeCheckpoint prev_checkpoint) {
// Now that the envelope has been consumed, check the correctness of the envelope header.
uint32_t num_bytes = next_out_of_line_ - prev_checkpoint.num_bytes;
uint32_t num_handles = handle_idx_ - prev_checkpoint.num_handles;
if (unlikely(envelope->num_bytes != num_bytes)) {
SetError("Envelope num_bytes was mis-sized");
return Status::kConstraintViolationError;
}
if (unlikely(envelope->num_handles != num_handles)) {
SetError("Envelope num_handles was mis-sized");
return Status::kConstraintViolationError;
}
return Status::kSuccess;
}
Status VisitUnknownEnvelope(EnvelopePointer envelope) {
// If we do not have the coding table for this payload,
// treat it as unknown and close its contained handles
if (unlikely(envelope->num_handles > 0)) {
if (has_handles()) {
memcpy(&unknown_handles_[unknown_handle_idx_], &handles()[handle_idx_],
envelope->num_handles * sizeof(zx_handle_t));
handle_idx_ += envelope->num_handles;
unknown_handle_idx_ += envelope->num_handles;
} else if (has_handle_infos()) {
uint32_t end = handle_idx_ + envelope->num_handles;
for (; handle_idx_ < end; handle_idx_++, unknown_handle_idx_++) {
unknown_handles_[unknown_handle_idx_] = handle_infos()[handle_idx_].handle;
}
}
}
return Status::kSuccess;
}
void OnError(const char* error) { SetError(error); }
zx_status_t status() const { return status_; }
bool DidConsumeAllBytes() const { return next_out_of_line_ == num_bytes_; }
bool DidConsumeAllHandles() const { return handle_idx_ == num_handles_; }
uint32_t unknown_handle_idx() const { return unknown_handle_idx_; }
const zx_handle_t* unknown_handles() const { return unknown_handles_; }
private:
void SetError(const char* error) {
if (status_ != ZX_OK) {
return;
}
status_ = ZX_ERR_INVALID_ARGS;
if (!out_error_msg_) {
return;
}
*out_error_msg_ = error;
}
Status ValidatePadding(const uint8_t* padding_ptr, uint32_t padding_length) {
for (uint32_t i = 0; i < padding_length; i++) {
if (unlikely(padding_ptr[i] != 0)) {
SetError("non-zero padding bytes detected during decoding");
return Status::kConstraintViolationError;
}
}
return Status::kSuccess;
}
bool has_handles() const { return fit::holds_alternative<const zx_handle_t*>(handles_); }
bool has_handle_infos() const {
return fit::holds_alternative<const zx_handle_info_t*>(handles_);
}
const zx_handle_t* handles() const { return fit::get<const zx_handle_t*>(handles_); }
const zx_handle_info_t* handle_infos() const {
return fit::get<const zx_handle_info_t*>(handles_);
}
// Message state passed in to the constructor.
uint8_t* const bytes_;
const uint32_t num_bytes_;
fit::variant<fit::monostate, const zx_handle_t*, const zx_handle_info_t*> handles_;
const uint32_t num_handles_;
uint32_t next_out_of_line_;
const char** const out_error_msg_;
// Decoder state
zx_status_t status_ = ZX_OK;
uint32_t handle_idx_ = 0;
uint32_t unknown_handle_idx_ = 0;
zx_handle_t unknown_handles_[ZX_CHANNEL_MAX_MSG_HANDLES];
};
template <typename HandleType>
zx_status_t fidl_decode_impl(const fidl_type_t* type, void* bytes, uint32_t num_bytes,
const HandleType* handles, uint32_t num_handles,
const char** out_error_msg,
void (*close_handles)(const HandleType*, uint32_t)) {
auto drop_all_handles = [&]() { close_handles(handles, num_handles); };
auto set_error = [&out_error_msg](const char* msg) {
if (out_error_msg)
*out_error_msg = msg;
};
if (unlikely(handles == nullptr && num_handles != 0)) {
set_error("Cannot provide non-zero handle count and null handle pointer");
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(bytes == nullptr)) {
set_error("Cannot decode null bytes");
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(!FidlIsAligned(reinterpret_cast<uint8_t*>(bytes)))) {
set_error("Bytes must be aligned to FIDL_ALIGNMENT");
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
uint32_t next_out_of_line;
zx_status_t status;
if (unlikely((status = fidl::StartingOutOfLineOffset(type, num_bytes, &next_out_of_line,
out_error_msg)) != ZX_OK)) {
drop_all_handles();
return status;
}
FidlDecoder decoder(bytes, num_bytes, handles, num_handles, next_out_of_line, out_error_msg);
fidl::Walk(decoder, type, Position{reinterpret_cast<uint8_t*>(bytes)});
if (unlikely(decoder.status() != ZX_OK)) {
drop_all_handles();
return decoder.status();
}
if (unlikely(!decoder.DidConsumeAllBytes())) {
set_error("message did not decode all provided bytes");
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(!decoder.DidConsumeAllHandles())) {
set_error("message did not decode all provided handles");
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
#ifdef __Fuchsia__
if (unlikely(decoder.unknown_handle_idx() > 0)) {
(void)zx_handle_close_many(decoder.unknown_handles(), decoder.unknown_handle_idx());
}
#endif
return ZX_OK;
}
void close_handles_op(const zx_handle_t* handles, uint32_t max_idx) {
#ifdef __Fuchsia__
if (handles) {
// Return value intentionally ignored. This is best-effort cleanup.
zx_handle_close_many(handles, max_idx);
}
#endif
}
void close_handle_infos_op(const zx_handle_info_t* handle_infos, uint32_t max_idx) {
#ifdef __Fuchsia__
if (handle_infos) {
zx_handle_t* handles = reinterpret_cast<zx_handle_t*>(alloca(sizeof(zx_handle_t) * max_idx));
for (uint32_t i = 0; i < max_idx; i++) {
handles[i] = handle_infos[i].handle;
}
// Return value intentionally ignored. This is best-effort cleanup.
zx_handle_close_many(handles, max_idx);
}
#endif
}
} // namespace
zx_status_t fidl_decode(const fidl_type_t* type, void* bytes, uint32_t num_bytes,
const zx_handle_t* handles, uint32_t num_handles,
const char** out_error_msg) {
return fidl_decode_impl<zx_handle_t>(type, bytes, num_bytes, handles, num_handles, out_error_msg,
close_handles_op);
}
zx_status_t fidl_decode_etc(const fidl_type_t* type, void* bytes, uint32_t num_bytes,
const zx_handle_info_t* handle_infos, uint32_t num_handle_infos,
const char** out_error_msg) {
return fidl_decode_impl<zx_handle_info_t>(type, bytes, num_bytes, handle_infos, num_handle_infos,
out_error_msg, close_handle_infos_op);
}
zx_status_t fidl_decode_msg(const fidl_type_t* type, fidl_msg_t* msg, const char** out_error_msg) {
return fidl_decode(type, msg->bytes, msg->num_bytes, msg->handles, msg->num_handles,
out_error_msg);
}