blob: bb83a87c518e4a232962e7ab4c6bb04f4b5b94d3 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <array>
#include <gtest/gtest.h>
#include "tools/fidlcat/interception_tests/interception_workflow_test.h"
namespace fidlcat {
// zx_debuglog_create tests.
std::unique_ptr<SystemCallTest> ZxDebuglogCreate(int64_t result, std::string_view result_name,
zx_handle_t resource, uint32_t options,
zx_handle_t* out) {
auto value = std::make_unique<SystemCallTest>("zx_debuglog_create", result, result_name);
value->AddInput(resource);
value->AddInput(options);
value->AddInput(reinterpret_cast<uint64_t>(out));
return value;
}
#define DEBUGLOG_CREATE_DISPLAY_TEST_CONTENT(result, expected) \
zx_handle_t out = kHandleOut; \
PerformDisplayTest("$plt(zx_debuglog_create)", \
ZxDebuglogCreate(result, #result, kHandle, 0, &out), expected)
#define DEBUGLOG_CREATE_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
DEBUGLOG_CREATE_DISPLAY_TEST_CONTENT(errno, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { \
DEBUGLOG_CREATE_DISPLAY_TEST_CONTENT(errno, expected); \
}
DEBUGLOG_CREATE_DISPLAY_TEST(
ZxDebuglogCreate, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_debuglog_create("
"resource: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m (out: \x1B[32mhandle\x1B[0m = \x1B[31mbde90caf\x1B[0m)\n")
// zx_debuglog_write tests.
std::unique_ptr<SystemCallTest> ZxDebuglogWrite(int64_t result, std::string_view result_name,
zx_handle_t handle, uint32_t options,
const void* buffer, size_t buffer_size) {
auto value = std::make_unique<SystemCallTest>("zx_debuglog_write", result, result_name);
value->AddInput(handle);
value->AddInput(options);
value->AddInput(reinterpret_cast<uint64_t>(buffer));
value->AddInput(buffer_size);
return value;
}
#define DEBUGLOG_WRITE_DISPLAY_TEST_CONTENT(result, expected) \
std::string buffer = "My buffer data"; \
PerformDisplayTest("$plt(zx_debuglog_write)", \
ZxDebuglogWrite(result, #result, kHandle, 0, buffer.c_str(), buffer.size()), \
expected)
#define DEBUGLOG_WRITE_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
DEBUGLOG_WRITE_DISPLAY_TEST_CONTENT(errno, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { \
DEBUGLOG_WRITE_DISPLAY_TEST_CONTENT(errno, expected); \
}
DEBUGLOG_WRITE_DISPLAY_TEST(
ZxDebuglogWrite, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_debuglog_write("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m)\n"
" buffer: \x1B[32mvector<uint8>\x1B[0m = \x1B[31m\"My buffer data\"\x1B[0m\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
// zx_debuglog_read tests.
std::unique_ptr<SystemCallTest> ZxDebuglogRead(int64_t result, std::string_view result_name,
zx_handle_t handle, uint32_t options, char* buffer,
size_t buffer_size) {
auto value = std::make_unique<SystemCallTest>("zx_debuglog_read", result, result_name);
value->AddInput(handle);
value->AddInput(options);
value->AddInput(reinterpret_cast<uint64_t>(buffer));
value->AddInput(buffer_size);
return value;
}
#define DEBUGLOG_READ_DISPLAY_TEST_CONTENT(result, expected) \
std::string buffer = "My buffer data"; \
PerformDisplayTest("$plt(zx_debuglog_read)", \
ZxDebuglogRead(result, #result, kHandle, 0, buffer.data(), buffer.size()), \
expected)
#define DEBUGLOG_READ_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
DEBUGLOG_READ_DISPLAY_TEST_CONTENT(errno, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { DEBUGLOG_READ_DISPLAY_TEST_CONTENT(errno, expected); }
DEBUGLOG_READ_DISPLAY_TEST(
ZxDebuglogRead, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_debuglog_read("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n"
" buffer: \x1B[32mvector<uint8>\x1B[0m = \x1B[31m\"My buffer data\"\x1B[0m\n")
// zx_ktrace_read tests.
std::unique_ptr<SystemCallTest> ZxKtraceRead(int64_t result, std::string_view result_name,
zx_handle_t handle, void* data, uint32_t offset,
size_t data_size, size_t* actual) {
auto value = std::make_unique<SystemCallTest>("zx_ktrace_read", result, result_name);
value->AddInput(handle);
value->AddInput(reinterpret_cast<uint64_t>(data));
value->AddInput(offset);
value->AddInput(data_size);
value->AddInput(reinterpret_cast<uint64_t>(actual));
return value;
}
#define KTRACE_READ_DISPLAY_TEST_CONTENT(result, expected) \
std::vector<char> data(100); \
std::string my_data = "My data"; \
size_t actual = my_data.size(); \
memcpy(data.data(), my_data.c_str(), my_data.size()); \
PerformDisplayTest("$plt(zx_ktrace_read)", \
ZxKtraceRead(result, #result, kHandle, data.data(), 0, data.size(), &actual), \
expected)
#define KTRACE_READ_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { KTRACE_READ_DISPLAY_TEST_CONTENT(errno, expected); } \
TEST_F(InterceptionWorkflowTestArm, name) { KTRACE_READ_DISPLAY_TEST_CONTENT(errno, expected); }
KTRACE_READ_DISPLAY_TEST(ZxKtraceRead, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_ktrace_read("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"offset: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m ("
"actual: \x1B[32msize\x1B[0m = \x1B[34m7\x1B[0m/\x1B[34m100\x1B[0m)\n"
" data: \x1B[32mvector<uint8>\x1B[0m = \x1B[31m\"My data\"\x1B[0m\n")
// zx_ktrace_control tests.
std::unique_ptr<SystemCallTest> ZxKtraceControl(int64_t result, std::string_view result_name,
zx_handle_t handle, uint32_t action,
uint32_t options, void* ptr) {
auto value = std::make_unique<SystemCallTest>("zx_ktrace_control", result, result_name);
value->AddInput(handle);
value->AddInput(action);
value->AddInput(options);
value->AddInput(reinterpret_cast<uint64_t>(ptr));
return value;
}
#define KTRACE_CONTROL_DISPLAY_TEST_CONTENT(result, action, expected) \
std::array<char, ZX_MAX_NAME_LEN> buffer; \
std::string data = "My_name"; \
memcpy(buffer.data(), data.c_str(), data.size() + 1); \
PerformDisplayTest("$plt(zx_ktrace_control)", \
ZxKtraceControl(result, #result, kHandle, action, 0, buffer.data()), \
expected)
#define KTRACE_CONTROL_DISPLAY_TEST(name, errno, action, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
KTRACE_CONTROL_DISPLAY_TEST_CONTENT(errno, action, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { \
KTRACE_CONTROL_DISPLAY_TEST_CONTENT(errno, action, expected); \
}
KTRACE_CONTROL_DISPLAY_TEST(
ZxKtraceControl1, ZX_OK, 1,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_ktrace_control("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"action: \x1B[32mzx.ktrace_control_action\x1B[0m = \x1B[34mKTRACE_ACTION_START\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
KTRACE_CONTROL_DISPLAY_TEST(
ZxKtraceControl4, ZX_OK, 4,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_ktrace_control("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"action: \x1B[32mzx.ktrace_control_action\x1B[0m = \x1B[34mKTRACE_ACTION_NEW_PROBE\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m, "
"ptr: \x1B[32mstring\x1B[0m = \x1B[31m\"My_name\"\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
// zx_ktrace_write tests.
std::unique_ptr<SystemCallTest> ZxKtraceWrite(int64_t result, std::string_view result_name,
zx_handle_t handle, uint32_t id, uint32_t arg0,
uint32_t arg1) {
auto value = std::make_unique<SystemCallTest>("zx_ktrace_write", result, result_name);
value->AddInput(handle);
value->AddInput(id);
value->AddInput(arg0);
value->AddInput(arg1);
return value;
}
#define KTRACE_WRITE_DISPLAY_TEST_CONTENT(result, expected) \
PerformDisplayTest("$plt(zx_ktrace_write)", ZxKtraceWrite(result, #result, kHandle, 0, 1, 2), \
expected)
#define KTRACE_WRITE_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
KTRACE_WRITE_DISPLAY_TEST_CONTENT(errno, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { KTRACE_WRITE_DISPLAY_TEST_CONTENT(errno, expected); }
KTRACE_WRITE_DISPLAY_TEST(ZxKtraceWrite, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_ktrace_write("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"id: \x1B[32muint32\x1B[0m = \x1B[34m0\x1B[0m, "
"arg0: \x1B[32muint32\x1B[0m = \x1B[34m1\x1B[0m, "
"arg1: \x1B[32muint32\x1B[0m = \x1B[34m2\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
// zx_mtrace_control tests.
std::unique_ptr<SystemCallTest> ZxMtraceControl(int64_t result, std::string_view result_name,
zx_handle_t handle, uint32_t kind, uint32_t action,
uint32_t options, const void* ptr,
size_t ptr_size) {
auto value = std::make_unique<SystemCallTest>("zx_mtrace_control", result, result_name);
value->AddInput(handle);
value->AddInput(kind);
value->AddInput(action);
value->AddInput(options);
value->AddInput(reinterpret_cast<uint64_t>(ptr));
value->AddInput(ptr_size);
return value;
}
#define MTRACE_CONTROL_DISPLAY_TEST_CONTENT(result, expected) \
std::string data = "My data"; \
PerformDisplayTest( \
"$plt(zx_mtrace_control)", \
ZxMtraceControl(result, #result, kHandle, 1, 2, 3, data.c_str(), data.size()), expected)
#define MTRACE_CONTROL_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
MTRACE_CONTROL_DISPLAY_TEST_CONTENT(errno, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { \
MTRACE_CONTROL_DISPLAY_TEST_CONTENT(errno, expected); \
}
MTRACE_CONTROL_DISPLAY_TEST(ZxMtraceControl, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_mtrace_control("
"handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"kind: \x1B[32muint32\x1B[0m = \x1B[34m1\x1B[0m, "
"action: \x1B[32muint32\x1B[0m = \x1B[34m2\x1B[0m, "
"options: \x1B[32muint32\x1B[0m = \x1B[34m3\x1B[0m)\n"
" ptr: \x1B[32mvector<uint8>\x1B[0m = \x1B[31m\"My data\"\x1B[0m\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
// zx_debug_read tests.
std::unique_ptr<SystemCallTest> ZxDebugRead(int64_t result, std::string_view result_name,
zx_handle_t handle, char* buffer, size_t buffer_size,
size_t* actual) {
auto value = std::make_unique<SystemCallTest>("zx_debug_read", result, result_name);
value->AddInput(handle);
value->AddInput(reinterpret_cast<uint64_t>(buffer));
value->AddInput(buffer_size);
value->AddInput(reinterpret_cast<uint64_t>(actual));
return value;
}
#define DEBUG_READ_DISPLAY_TEST_CONTENT(result, expected) \
std::array<char, ZX_MAX_NAME_LEN> buffer; \
std::string data = "My data"; \
memcpy(buffer.data(), data.c_str(), data.size()); \
size_t actual = data.size(); \
PerformDisplayTest("$plt(zx_debug_read)", \
ZxDebugRead(result, #result, kHandle, buffer.data(), buffer.size(), &actual), \
expected)
#define DEBUG_READ_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { DEBUG_READ_DISPLAY_TEST_CONTENT(errno, expected); } \
TEST_F(InterceptionWorkflowTestArm, name) { DEBUG_READ_DISPLAY_TEST_CONTENT(errno, expected); }
DEBUG_READ_DISPLAY_TEST(ZxDebugRead, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_debug_read(handle: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m ("
"actual: \x1B[32msize\x1B[0m = \x1B[34m7\x1B[0m/\x1B[34m32\x1B[0m, "
"buffer: \x1B[32mstring\x1B[0m = \x1B[31m\"My data\"\x1B[0m)\n")
// zx_debug_write tests.
std::unique_ptr<SystemCallTest> ZxDebugWrite(int64_t result, std::string_view result_name,
const char* buffer, size_t buffer_size) {
auto value = std::make_unique<SystemCallTest>("zx_debug_write", result, result_name);
value->AddInput(reinterpret_cast<uint64_t>(buffer));
value->AddInput(buffer_size);
return value;
}
#define DEBUG_WRITE_DISPLAY_TEST_CONTENT(result, expected) \
std::string buffer = "My data"; \
PerformDisplayTest("$plt(zx_debug_write)", \
ZxDebugWrite(result, #result, buffer.data(), buffer.size()), expected)
#define DEBUG_WRITE_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { DEBUG_WRITE_DISPLAY_TEST_CONTENT(errno, expected); } \
TEST_F(InterceptionWorkflowTestArm, name) { DEBUG_WRITE_DISPLAY_TEST_CONTENT(errno, expected); }
DEBUG_WRITE_DISPLAY_TEST(
ZxDebugWrite, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_debug_write(buffer: \x1B[32mstring\x1B[0m = \x1B[31m\"My data\"\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
// zx_debug_send_command tests.
std::unique_ptr<SystemCallTest> ZxDebugSendCommand(int64_t result, std::string_view result_name,
zx_handle_t resource, const char* buffer,
size_t buffer_size) {
auto value = std::make_unique<SystemCallTest>("zx_debug_send_command", result, result_name);
value->AddInput(resource);
value->AddInput(reinterpret_cast<uint64_t>(buffer));
value->AddInput(buffer_size);
return value;
}
#define DEBUG_SEND_COMMAND_DISPLAY_TEST_CONTENT(result, expected) \
std::string buffer = "My data"; \
PerformDisplayTest("$plt(zx_debug_send_command)", \
ZxDebugSendCommand(result, #result, kHandle, buffer.data(), buffer.size()), \
expected)
#define DEBUG_SEND_COMMAND_DISPLAY_TEST(name, errno, expected) \
TEST_F(InterceptionWorkflowTestX64, name) { \
DEBUG_SEND_COMMAND_DISPLAY_TEST_CONTENT(errno, expected); \
} \
TEST_F(InterceptionWorkflowTestArm, name) { \
DEBUG_SEND_COMMAND_DISPLAY_TEST_CONTENT(errno, expected); \
}
DEBUG_SEND_COMMAND_DISPLAY_TEST(ZxDebugSendCommand, ZX_OK,
"\n"
"\x1B[32m0.000000\x1B[0m "
"test_3141 \x1B[31m3141\x1B[0m:\x1B[31m8764\x1B[0m "
"zx_debug_send_command("
"resource: \x1B[32mhandle\x1B[0m = \x1B[31mcefa1db0\x1B[0m, "
"buffer: \x1B[32mstring\x1B[0m = \x1B[31m\"My data\"\x1B[0m)\n"
"\x1B[32m0.000000\x1B[0m "
" -> \x1B[32mZX_OK\x1B[0m\n")
} // namespace fidlcat