blob: f943a9c6f6efd3ce7f250d68998d494d6e59d5f4 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2014 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include "tests.h"
#include <arch.h>
#include <arch/ops.h>
#include <debug.h>
#include <err.h>
#include <lib/console.h>
#include <fbl/algorithm.h>
#include <platform.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vm/pmm.h>
#include <vm/vm_aspace.h>
#include <zircon/types.h>
static void mem_test_fail(void* ptr, uint32_t should, uint32_t is) {
printf("ERROR at %p: should be 0x%x, is 0x%x\n", ptr, should, is);
ptr = (void*)ROUNDDOWN((uintptr_t)ptr, 64);
hexdump(ptr, 128);
}
static zx_status_t do_pattern_test(void* ptr, size_t len, uint32_t pat) {
volatile uint32_t* vbuf32 = reinterpret_cast<volatile uint32_t*>(ptr);
size_t i;
printf("\tpattern 0x%08x\n", pat);
for (i = 0; i < len / 4; i++) {
vbuf32[i] = pat;
}
for (i = 0; i < len / 4; i++) {
if (vbuf32[i] != pat) {
mem_test_fail((void*)&vbuf32[i], pat, vbuf32[i]);
return ZX_ERR_INTERNAL;
}
}
return ZX_OK;
}
static zx_status_t do_moving_inversion_test(void* ptr, size_t len, uint32_t pat) {
volatile uint32_t* vbuf32 = reinterpret_cast<volatile uint32_t*>(ptr);
size_t i;
printf("\tpattern 0x%08x\n", pat);
/* fill memory */
for (i = 0; i < len / 4; i++) {
vbuf32[i] = pat;
}
/* from the bottom, walk through each cell, inverting the value */
//printf("\t\tbottom up invert\n");
for (i = 0; i < len / 4; i++) {
if (vbuf32[i] != pat) {
mem_test_fail((void*)&vbuf32[i], pat, vbuf32[i]);
return ZX_ERR_INTERNAL;
}
vbuf32[i] = ~pat;
}
/* repeat, walking from top down */
//printf("\t\ttop down invert\n");
for (i = len / 4; i > 0; i--) {
if (vbuf32[i - 1] != ~pat) {
mem_test_fail((void*)&vbuf32[i - 1], ~pat, vbuf32[i - 1]);
return ZX_ERR_INTERNAL;
}
vbuf32[i - 1] = pat;
}
/* verify that we have the original pattern */
//printf("\t\tfinal test\n");
for (i = 0; i < len / 4; i++) {
if (vbuf32[i] != pat) {
mem_test_fail((void*)&vbuf32[i], pat, vbuf32[i]);
return ZX_ERR_INTERNAL;
}
}
return ZX_OK;
}
static void do_mem_tests(void* ptr, size_t len) {
size_t i;
/* test 1: simple write address to memory, read back */
printf("test 1: simple address write, read back\n");
volatile uint32_t* vbuf32 = reinterpret_cast<volatile uint32_t*>(ptr);
for (i = 0; i < len / 4; i++) {
vbuf32[i] = static_cast<uint32_t>(i);
}
for (i = 0; i < len / 4; i++) {
if (vbuf32[i] != i) {
mem_test_fail((void*)&vbuf32[i], static_cast<uint32_t>(i), vbuf32[i]);
goto out;
}
}
/* test 2: write various patterns, read back */
printf("test 2: write patterns, read back\n");
static const uint32_t pat[] = {
0x0, 0xffffffff,
0xaaaaaaaa, 0x55555555,
};
for (size_t p = 0; p < fbl::count_of(pat); p++) {
if (do_pattern_test(ptr, len, pat[p]) < 0)
goto out;
}
// shift bits through 32bit word
for (uint32_t p = 1; p != 0; p <<= 1) {
if (do_pattern_test(ptr, len, p) < 0)
goto out;
}
// shift bits through 16bit word, invert top of 32bit
for (uint16_t p = 1; p != 0; p = static_cast<uint16_t>(p << 1)) {
if (do_pattern_test(ptr, len, ((~p) << 16) | p) < 0)
goto out;
}
/* test 3: moving inversion, patterns */
printf("test 3: moving inversions with patterns\n");
for (size_t p = 0; p < fbl::count_of(pat); p++) {
if (do_moving_inversion_test(ptr, len, pat[p]) < 0)
goto out;
}
// shift bits through 32bit word
for (uint32_t p = 1; p != 0; p <<= 1) {
if (do_moving_inversion_test(ptr, len, p) < 0)
goto out;
}
// shift bits through 16bit word, invert top of 32bit
for (uint16_t p = 1; p != 0; p = static_cast<uint16_t>(p << 1)) {
if (do_moving_inversion_test(ptr, len, ((~p) << 16) | p) < 0)
goto out;
}
out:
printf("done with tests\n");
}
static int mem_test(int argc, const cmd_args* argv, uint32_t flags) {
if (argc < 2) {
printf("not enough arguments\n");
usage:
printf("usage: %s <length>\n", argv[0].str);
printf("usage: %s <base> <length>\n", argv[0].str);
return -1;
}
if (argc == 2) {
void* ptr;
size_t len = argv[1].u;
/* rounding up len to the next page */
len = PAGE_ALIGN(len);
if (len == 0) {
printf("invalid length\n");
return -1;
}
/* allocate a region to test in */
zx_status_t status = VmAspace::kernel_aspace()->AllocContiguous(
"memtest", len, &ptr, 0, VmAspace::VMM_FLAG_COMMIT,
ARCH_MMU_FLAG_UNCACHED | ARCH_MMU_FLAG_PERM_READ | ARCH_MMU_FLAG_PERM_WRITE);
if (status != ZX_OK) {
printf("error %d allocating test region\n", status);
return -1;
}
paddr_t pa;
pa = vaddr_to_paddr(ptr);
printf("physical address 0x%lx\n", pa);
printf("got buffer at %p of length 0x%lx\n", ptr, len);
/* run the tests */
do_mem_tests(ptr, len);
/* free the test memory */
VmAspace::kernel_aspace()->FreeRegion(reinterpret_cast<vaddr_t>(ptr));
} else if (argc == 3) {
void* ptr = argv[1].p;
size_t len = argv[2].u;
/* run the tests */
do_mem_tests(ptr, len);
} else {
goto usage;
}
return 0;
}
STATIC_COMMAND_START
STATIC_COMMAND("mem_test", "test memory", &mem_test)
STATIC_COMMAND_END(mem_tests)