blob: 1f4b0a17af3fe809b3820e2c9b03e40f0232dd97 [file] [log] [blame]
//! A queue of delayed elements.
//!
//! See [`DelayQueue`] for more details.
//!
//! [`DelayQueue`]: struct.DelayQueue.html
use clock::now;
use timer::Handle;
use wheel::{self, Wheel};
use {Delay, Error};
use futures::{Future, Poll, Stream};
use slab::Slab;
use std::cmp;
use std::marker::PhantomData;
use std::time::{Duration, Instant};
/// A queue of delayed elements.
///
/// Once an element is inserted into the `DelayQueue`, it is yielded once the
/// specified deadline has been reached.
///
/// # Usage
///
/// Elements are inserted into `DelayQueue` using the [`insert`] or
/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
/// returned. The key is used to remove the entry or to change the deadline at
/// which it should be yielded back.
///
/// Once delays have been configured, the `DelayQueue` is used via its
/// [`Stream`] implementation. [`poll`] is called. If an entry has reached its
/// deadline, it is returned. If not, `Async::NotReady` indicating that the
/// current task will be notified once the deadline has been reached.
///
/// # `Stream` implementation
///
/// Items are retrieved from the queue via [`Stream::poll`]. If no delays have
/// expired, no items are returned. In this case, `NotReady` is returned and the
/// current task is registered to be notified once the next item's delay has
/// expired.
///
/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
/// returns `Ready(None)`. This indicates that the stream has reached an end.
/// However, if a new item is inserted *after*, `poll` will once again start
/// returning items or `NotReady.
///
/// Items are returned ordered by their expirations. Items that are configured
/// to expire first will be returned first. There are no ordering guarantees
/// for items configured to expire the same instant. Also note that delays are
/// rounded to the closest millisecond.
///
/// # Implementation
///
/// The `DelayQueue` is backed by the same hashed timing wheel implementation as
/// [`Timer`] as such, it offers the same performance benefits. See [`Timer`]
/// for further implementation notes.
///
/// State associated with each entry is stored in a [`slab`]. This allows
/// amortizing the cost of allocation. Space created for expired entries is
/// reused when inserting new entries.
///
/// Capacity can be checked using [`capacity`] and allocated preemptively by using
/// the [`reserve`] method.
///
/// # Usage
///
/// Using `DelayQueue` to manage cache entries.
///
/// ```rust
/// #[macro_use]
/// extern crate futures;
/// extern crate tokio;
/// # type CacheKey = String;
/// # type Value = String;
/// use tokio::timer::{delay_queue, DelayQueue, Error};
/// use futures::{Async, Poll, Stream};
/// use std::collections::HashMap;
/// use std::time::Duration;
///
/// struct Cache {
/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
/// expirations: DelayQueue<CacheKey>,
/// }
///
/// const TTL_SECS: u64 = 30;
///
/// impl Cache {
/// fn insert(&mut self, key: CacheKey, value: Value) {
/// let delay = self.expirations
/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
///
/// self.entries.insert(key, (value, delay));
/// }
///
/// fn get(&self, key: &CacheKey) -> Option<&Value> {
/// self.entries.get(key)
/// .map(|&(ref v, _)| v)
/// }
///
/// fn remove(&mut self, key: &CacheKey) {
/// if let Some((_, cache_key)) = self.entries.remove(key) {
/// self.expirations.remove(&cache_key);
/// }
/// }
///
/// fn poll_purge(&mut self) -> Poll<(), Error> {
/// while let Some(entry) = try_ready!(self.expirations.poll()) {
/// self.entries.remove(entry.get_ref());
/// }
///
/// Ok(Async::Ready(()))
/// }
/// }
/// # fn main() {}
/// ```
///
/// [`insert`]: #method.insert
/// [`insert_at`]: #method.insert_at
/// [`Key`]: struct.Key.html
/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
/// [`poll`]: #method.poll
/// [`Stream::poll`]: #method.poll
/// [`Timer`]: ../struct.Timer.html
/// [`slab`]: https://docs.rs/slab
/// [`capacity`]: #method.capacity
/// [`reserve`]: #method.reserve
#[derive(Debug)]
pub struct DelayQueue<T> {
/// Handle to the timer driving the `DelayQueue`
handle: Handle,
/// Stores data associated with entries
slab: Slab<Data<T>>,
/// Lookup structure tracking all delays in the queue
wheel: Wheel<Stack<T>>,
/// Delays that were inserted when already expired. These cannot be stored
/// in the wheel
expired: Stack<T>,
/// Delay expiring when the *first* item in the queue expires
delay: Option<Delay>,
/// Wheel polling state
poll: wheel::Poll,
/// Instant at which the timer starts
start: Instant,
}
/// An entry in `DelayQueue` that has expired and removed.
///
/// Values are returned by [`DelayQueue::poll`].
///
/// [`DelayQueue::poll`]: struct.DelayQueue.html#method.poll
#[derive(Debug)]
pub struct Expired<T> {
/// The data stored in the queue
data: T,
/// The expiration time
deadline: Instant,
/// The key associated with the entry
key: Key,
}
/// Token to a value stored in a `DelayQueue`.
///
/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
/// documentation for more details.
///
/// [`DelayQueue`]: struct.DelayQueue.html
/// [`DelayQueue::insert`]: struct.DelayQueue.html#method.insert
#[derive(Debug, Clone)]
pub struct Key {
index: usize,
}
#[derive(Debug)]
struct Stack<T> {
/// Head of the stack
head: Option<usize>,
_p: PhantomData<T>,
}
#[derive(Debug)]
struct Data<T> {
/// The data being stored in the queue and will be returned at the requested
/// instant.
inner: T,
/// The instant at which the item is returned.
when: u64,
/// Set to true when stored in the `expired` queue
expired: bool,
/// Next entry in the stack
next: Option<usize>,
/// Previous entry in the stack
prev: Option<usize>,
}
/// Maximum number of entries the queue can handle
const MAX_ENTRIES: usize = (1 << 30) - 1;
impl<T> DelayQueue<T> {
/// Create a new, empty, `DelayQueue`
///
/// The queue will not allocate storage until items are inserted into it.
///
/// # Examples
///
/// ```rust
/// # use tokio_timer::DelayQueue;
/// let delay_queue: DelayQueue<u32> = DelayQueue::new();
/// ```
pub fn new() -> DelayQueue<T> {
DelayQueue::with_capacity(0)
}
/// Create a new, empty, `DelayQueue` backed by the specified timer.
///
/// The queue will not allocate storage until items are inserted into it.
///
/// # Examples
///
/// ```rust,no_run
/// # use tokio_timer::DelayQueue;
/// use tokio_timer::timer::Handle;
///
/// let handle = Handle::default();
/// let delay_queue: DelayQueue<u32> = DelayQueue::with_capacity_and_handle(0, &handle);
/// ```
pub fn with_capacity_and_handle(capacity: usize, handle: &Handle) -> DelayQueue<T> {
DelayQueue {
handle: handle.clone(),
wheel: Wheel::new(),
slab: Slab::with_capacity(capacity),
expired: Stack::default(),
delay: None,
poll: wheel::Poll::new(0),
start: now(),
}
}
/// Create a new, empty, `DelayQueue` with the specified capacity.
///
/// The queue will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the queue will not allocate for
/// storage.
///
/// # Examples
///
/// ```rust
/// # use tokio_timer::DelayQueue;
/// # use std::time::Duration;
/// let mut delay_queue = DelayQueue::with_capacity(10);
///
/// // These insertions are done without further allocation
/// for i in 0..10 {
/// delay_queue.insert(i, Duration::from_secs(i));
/// }
///
/// // This will make the queue allocate additional storage
/// delay_queue.insert(11, Duration::from_secs(11));
/// ```
pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
DelayQueue::with_capacity_and_handle(capacity, &Handle::default())
}
/// Insert `value` into the queue set to expire at a specific instant in
/// time.
///
/// This function is identical to `insert`, but takes an `Instant` instead
/// of a `Duration`.
///
/// `value` is stored in the queue until `when` is reached. At which point,
/// `value` will be returned from [`poll`]. If `when` has already been
/// reached, then `value` is immediately made available to poll.
///
/// The return value represents the insertion and is used at an argument to
/// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
/// `value` is removed from the queue either by calling [`poll`] after
/// `when` is reached or by calling [`remove`]. At this point, the caller
/// must take care to not use the returned [`Key`] again as it may reference
/// a different item in the queue.
///
/// See [type] level documentation for more details.
///
/// # Panics
///
/// This function panics if `when` is too far in the future.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::{Instant, Duration};
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert_at(
/// "foo", Instant::now() + Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
///
/// [`poll`]: #method.poll
/// [`remove`]: #method.remove
/// [`reset`]: #method.reset
/// [`Key`]: struct.Key.html
/// [type]: #
pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
// Normalize the deadline. Values cannot be set to expire in the past.
let when = self.normalize_deadline(when);
// Insert the value in the store
let key = self.slab.insert(Data {
inner: value,
when,
expired: false,
next: None,
prev: None,
});
self.insert_idx(when, key);
// Set a new delay if the current's deadline is later than the one of the new item
let should_set_delay = if let Some(ref delay) = self.delay {
let current_exp = self.normalize_deadline(delay.deadline());
current_exp > when
} else {
true
};
if should_set_delay {
self.delay = Some(self.handle.delay(self.start + Duration::from_millis(when)));
}
Key::new(key)
}
/// Insert `value` into the queue set to expire after the requested duration
/// elapses.
///
/// This function is identical to `insert_at`, but takes a `Duration`
/// instead of an `Instant`.
///
/// `value` is stored in the queue until `when` is reached. At which point,
/// `value` will be returned from [`poll`]. If `when` has already been
/// reached, then `value` is immediately made available to poll.
///
/// The return value represents the insertion and is used at an argument to
/// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
/// `value` is removed from the queue either by calling [`poll`] after
/// `when` is reached or by calling [`remove`]. At this point, the caller
/// must take care to not use the returned [`Key`] again as it may reference
/// a different item in the queue.
///
/// See [type] level documentation for more details.
///
/// # Panics
///
/// This function panics if `timeout` is greater than the maximum supported
/// duration.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
///
/// [`poll`]: #method.poll
/// [`remove`]: #method.remove
/// [`reset`]: #method.reset
/// [`Key`]: struct.Key.html
/// [type]: #
pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
self.insert_at(value, now() + timeout)
}
fn insert_idx(&mut self, when: u64, key: usize) {
use self::wheel::{InsertError, Stack};
// Register the deadline with the timer wheel
match self.wheel.insert(when, key, &mut self.slab) {
Ok(_) => {}
Err((_, InsertError::Elapsed)) => {
self.slab[key].expired = true;
// The delay is already expired, store it in the expired queue
self.expired.push(key, &mut self.slab);
}
Err((_, err)) => panic!("invalid deadline; err={:?}", err),
}
}
/// Remove the item associated with `key` from the queue.
///
/// There must be an item associated with `key`. The function returns the
/// removed item as well as the `Instant` at which it will the delay will
/// have expired.
///
/// # Panics
///
/// The function panics if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
pub fn remove(&mut self, key: &Key) -> Expired<T> {
use wheel::Stack;
// Special case the `expired` queue
if self.slab[key.index].expired {
self.expired.remove(&key.index, &mut self.slab);
} else {
self.wheel.remove(&key.index, &mut self.slab);
}
let data = self.slab.remove(key.index);
Expired {
key: Key::new(key.index),
data: data.inner,
deadline: self.start + Duration::from_millis(data.when),
}
}
/// Sets the delay of the item associated with `key` to expire at `when`.
///
/// This function is identical to `reset` but takes an `Instant` instead of
/// a `Duration`.
///
/// The item remains in the queue but the delay is set to expire at `when`.
/// If `when` is in the past, then the item is immediately made available to
/// the caller.
///
/// # Panics
///
/// This function panics if `when` is too far in the future or if `key` is
/// not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::{Duration, Instant};
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // "foo" is scheduled to be returned in 5 seconds
///
/// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
///
/// // "foo"is now scheduled to be returned in 10 seconds
/// # }
/// ```
pub fn reset_at(&mut self, key: &Key, when: Instant) {
self.wheel.remove(&key.index, &mut self.slab);
// Normalize the deadline. Values cannot be set to expire in the past.
let when = self.normalize_deadline(when);
self.slab[key.index].when = when;
self.insert_idx(when, key.index);
let next_deadline = self.next_deadline();
if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
delay.reset(deadline);
}
}
/// Returns the next time poll as determined by the wheel
fn next_deadline(&mut self) -> Option<Instant> {
self.wheel
.poll_at()
.map(|poll_at| self.start + Duration::from_millis(poll_at))
}
/// Sets the delay of the item associated with `key` to expire after
/// `timeout`.
///
/// This function is identical to `reset_at` but takes a `Duration` instead
/// of an `Instant`.
///
/// The item remains in the queue but the delay is set to expire after
/// `timeout`. If `timeout` is zero, then the item is immediately made
/// available to the caller.
///
/// # Panics
///
/// This function panics if `timeout` is greater than the maximum supported
/// duration or if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // "foo" is scheduled to be returned in 5 seconds
///
/// delay_queue.reset(&key, Duration::from_secs(10));
///
/// // "foo"is now scheduled to be returned in 10 seconds
/// # }
/// ```
pub fn reset(&mut self, key: &Key, timeout: Duration) {
self.reset_at(key, now() + timeout);
}
/// Clears the queue, removing all items.
///
/// After calling `clear`, [`poll`] will return `Ok(Ready(None))`.
///
/// Note that this method has no effect on the allocated capacity.
///
/// [`poll`]: #method.poll
///
/// # Examples
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
///
/// delay_queue.insert("foo", Duration::from_secs(5));
///
/// assert!(!delay_queue.is_empty());
///
/// delay_queue.clear();
///
/// assert!(delay_queue.is_empty());
/// # }
/// ```
pub fn clear(&mut self) {
self.slab.clear();
self.expired = Stack::default();
self.wheel = Wheel::new();
self.delay = None;
}
/// Returns the number of elements the queue can hold without reallocating.
///
/// # Examples
///
/// ```rust
/// # use tokio_timer::DelayQueue;
/// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
/// assert_eq!(delay_queue.capacity(), 10);
/// ```
pub fn capacity(&self) -> usize {
self.slab.capacity()
}
/// Reserve capacity for at least `additional` more items to be queued
/// without allocating.
///
/// `reserve` does nothing if the queue already has sufficient capacity for
/// `additional` more values. If more capacity is required, a new segment of
/// memory will be allocated and all existing values will be copied into it.
/// As such, if the queue is already very large, a call to `reserve` can end
/// up being expensive.
///
/// The queue may reserve more than `additional` extra space in order to
/// avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity exceeds the maximum number of entries the
/// queue can contain.
///
/// # Examples
///
/// ```
/// # use tokio_timer::DelayQueue;
/// # use std::time::Duration;
/// let mut delay_queue = DelayQueue::new();
/// delay_queue.insert("hello", Duration::from_secs(10));
/// delay_queue.reserve(10);
/// assert!(delay_queue.capacity() >= 11);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.slab.reserve(additional);
}
/// Returns `true` if there are no items in the queue.
///
/// Note that this function returns `false` even if all items have not yet
/// expired and a call to `poll` will return `NotReady`.
///
/// # Examples
///
/// ```
/// # use tokio_timer::DelayQueue;
/// use std::time::Duration;
/// let mut delay_queue = DelayQueue::new();
/// assert!(delay_queue.is_empty());
///
/// delay_queue.insert("hello", Duration::from_secs(5));
/// assert!(!delay_queue.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.slab.is_empty()
}
/// Polls the queue, returning the index of the next slot in the slab that
/// should be returned.
///
/// A slot should be returned when the associated deadline has been reached.
fn poll_idx(&mut self) -> Poll<Option<usize>, Error> {
use self::wheel::Stack;
let expired = self.expired.pop(&mut self.slab);
if expired.is_some() {
return Ok(expired.into());
}
loop {
if let Some(ref mut delay) = self.delay {
if !delay.is_elapsed() {
try_ready!(delay.poll());
}
let now = ::ms(delay.deadline() - self.start, ::Round::Down);
self.poll = wheel::Poll::new(now);
}
self.delay = None;
if let Some(idx) = self.wheel.poll(&mut self.poll, &mut self.slab) {
return Ok(Some(idx).into());
}
if let Some(deadline) = self.next_deadline() {
self.delay = Some(self.handle.delay(deadline));
} else {
return Ok(None.into());
}
}
}
fn normalize_deadline(&self, when: Instant) -> u64 {
let when = if when < self.start {
0
} else {
::ms(when - self.start, ::Round::Up)
};
cmp::max(when, self.wheel.elapsed())
}
}
impl<T> Stream for DelayQueue<T> {
type Item = Expired<T>;
type Error = Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, Error> {
let item = try_ready!(self.poll_idx()).map(|idx| {
let data = self.slab.remove(idx);
debug_assert!(data.next.is_none());
debug_assert!(data.prev.is_none());
Expired {
key: Key::new(idx),
data: data.inner,
deadline: self.start + Duration::from_millis(data.when),
}
});
Ok(item.into())
}
}
impl<T> wheel::Stack for Stack<T> {
type Owned = usize;
type Borrowed = usize;
type Store = Slab<Data<T>>;
fn is_empty(&self) -> bool {
self.head.is_none()
}
fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
// Ensure the entry is not already in a stack.
debug_assert!(store[item].next.is_none());
debug_assert!(store[item].prev.is_none());
// Remove the old head entry
let old = self.head.take();
if let Some(idx) = old {
store[idx].prev = Some(item);
}
store[item].next = old;
self.head = Some(item)
}
fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
if let Some(idx) = self.head {
self.head = store[idx].next;
if let Some(idx) = self.head {
store[idx].prev = None;
}
store[idx].next = None;
debug_assert!(store[idx].prev.is_none());
Some(idx)
} else {
None
}
}
fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
assert!(store.contains(*item));
// Ensure that the entry is in fact contained by the stack
debug_assert!({
// This walks the full linked list even if an entry is found.
let mut next = self.head;
let mut contains = false;
while let Some(idx) = next {
if idx == *item {
debug_assert!(!contains);
contains = true;
}
next = store[idx].next;
}
contains
});
if let Some(next) = store[*item].next {
store[next].prev = store[*item].prev;
}
if let Some(prev) = store[*item].prev {
store[prev].next = store[*item].next;
} else {
self.head = store[*item].next;
}
store[*item].next = None;
store[*item].prev = None;
}
fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
store[*item].when
}
}
impl<T> Default for Stack<T> {
fn default() -> Stack<T> {
Stack {
head: None,
_p: PhantomData,
}
}
}
impl Key {
pub(crate) fn new(index: usize) -> Key {
Key { index }
}
}
impl<T> Expired<T> {
/// Returns a reference to the inner value.
pub fn get_ref(&self) -> &T {
&self.data
}
/// Returns a mutable reference to the inner value.
pub fn get_mut(&mut self) -> &mut T {
&mut self.data
}
/// Consumes `self` and returns the inner value.
pub fn into_inner(self) -> T {
self.data
}
}