|  | use std::sync::atomic::{AtomicUsize, Ordering}; | 
|  |  | 
|  | use super::*; | 
|  | use prelude::*; | 
|  | use rayon_core::*; | 
|  |  | 
|  | use rand::distributions::Standard; | 
|  | use rand::{Rng, SeedableRng}; | 
|  | use rand_xorshift::XorShiftRng; | 
|  | use std::collections::LinkedList; | 
|  | use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet}; | 
|  | use std::collections::{BinaryHeap, VecDeque}; | 
|  | use std::f64; | 
|  | use std::fmt::Debug; | 
|  | use std::sync::mpsc; | 
|  | use std::usize; | 
|  |  | 
|  | fn is_indexed<T: IndexedParallelIterator>(_: T) {} | 
|  |  | 
|  | fn seeded_rng() -> XorShiftRng { | 
|  | let mut seed = <XorShiftRng as SeedableRng>::Seed::default(); | 
|  | (0..).zip(seed.as_mut()).for_each(|(i, x)| *x = i); | 
|  | XorShiftRng::from_seed(seed) | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn execute() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let mut b = vec![]; | 
|  | a.par_iter().map(|&i| i + 1).collect_into_vec(&mut b); | 
|  | let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn execute_cloned() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let mut b: Vec<i32> = vec![]; | 
|  | a.par_iter().cloned().collect_into_vec(&mut b); | 
|  | let c: Vec<i32> = (0..1024).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn execute_range() { | 
|  | let a = 0i32..1024; | 
|  | let mut b = vec![]; | 
|  | a.into_par_iter().map(|i| i + 1).collect_into_vec(&mut b); | 
|  | let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn execute_unindexed_range() { | 
|  | let a = 0i64..1024; | 
|  | let b: LinkedList<i64> = a.into_par_iter().map(|i| i + 1).collect(); | 
|  | let c: LinkedList<i64> = (0..1024).map(|i| i + 1).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn execute_pseudo_indexed_range() { | 
|  | use std::i128::MAX; | 
|  | let range = MAX - 1024..MAX; | 
|  |  | 
|  | // Given `Some` length, collecting `Vec` will try to act indexed. | 
|  | let a = range.clone().into_par_iter(); | 
|  | assert_eq!(a.opt_len(), Some(1024)); | 
|  |  | 
|  | let b: Vec<i128> = a.map(|i| i + 1).collect(); | 
|  | let c: Vec<i128> = range.map(|i| i + 1).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_map_indexed() { | 
|  | let a = [1, 2, 3]; | 
|  | is_indexed(a.par_iter().map(|x| x)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn map_sum() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let r1: i32 = a.par_iter().map(|&i| i + 1).sum(); | 
|  | let r2 = a.iter().map(|&i| i + 1).sum(); | 
|  | assert_eq!(r1, r2); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn map_reduce() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let r1 = a.par_iter().map(|&i| i + 1).reduce(|| 0, |i, j| i + j); | 
|  | let r2 = a.iter().map(|&i| i + 1).sum(); | 
|  | assert_eq!(r1, r2); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn map_reduce_with() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j); | 
|  | let r2 = a.iter().map(|&i| i + 1).sum(); | 
|  | assert_eq!(r1, Some(r2)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn fold_map_reduce() { | 
|  | // Kind of a weird test, but it demonstrates various | 
|  | // transformations that are taking place. Relies on | 
|  | // `with_max_len(1).fold()` being equivalent to `map()`. | 
|  | // | 
|  | // Take each number from 0 to 32 and fold them by appending to a | 
|  | // vector.  Because of `with_max_len(1)`, this will produce 32 vectors, | 
|  | // each with one item.  We then collect all of these into an | 
|  | // individual vector by mapping each into their own vector (so we | 
|  | // have Vec<Vec<i32>>) and then reducing those into a single | 
|  | // vector. | 
|  | let r1 = (0_i32..32) | 
|  | .into_par_iter() | 
|  | .with_max_len(1) | 
|  | .fold( | 
|  | || vec![], | 
|  | |mut v, e| { | 
|  | v.push(e); | 
|  | v | 
|  | }, | 
|  | ) | 
|  | .map(|v| vec![v]) | 
|  | .reduce_with(|mut v_a, v_b| { | 
|  | v_a.extend(v_b); | 
|  | v_a | 
|  | }); | 
|  | assert_eq!( | 
|  | r1, | 
|  | Some(vec![ | 
|  | vec![0], | 
|  | vec![1], | 
|  | vec![2], | 
|  | vec![3], | 
|  | vec![4], | 
|  | vec![5], | 
|  | vec![6], | 
|  | vec![7], | 
|  | vec![8], | 
|  | vec![9], | 
|  | vec![10], | 
|  | vec![11], | 
|  | vec![12], | 
|  | vec![13], | 
|  | vec![14], | 
|  | vec![15], | 
|  | vec![16], | 
|  | vec![17], | 
|  | vec![18], | 
|  | vec![19], | 
|  | vec![20], | 
|  | vec![21], | 
|  | vec![22], | 
|  | vec![23], | 
|  | vec![24], | 
|  | vec![25], | 
|  | vec![26], | 
|  | vec![27], | 
|  | vec![28], | 
|  | vec![29], | 
|  | vec![30], | 
|  | vec![31] | 
|  | ]) | 
|  | ); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn fold_is_full() { | 
|  | let counter = AtomicUsize::new(0); | 
|  | let a = (0_i32..2048) | 
|  | .into_par_iter() | 
|  | .inspect(|_| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | }) | 
|  | .fold(|| 0, |a, b| a + b) | 
|  | .find_any(|_| true); | 
|  | assert!(a.is_some()); | 
|  | assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_enumerate() { | 
|  | let a: Vec<usize> = (0..1024).rev().collect(); | 
|  |  | 
|  | let mut b = vec![]; | 
|  | a.par_iter() | 
|  | .enumerate() | 
|  | .map(|(i, &x)| i + x) | 
|  | .collect_into_vec(&mut b); | 
|  | assert!(b.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_enumerate_rev() { | 
|  | let a: Vec<usize> = (0..1024).rev().collect(); | 
|  |  | 
|  | let mut b = vec![]; | 
|  | a.par_iter() | 
|  | .enumerate() | 
|  | .rev() | 
|  | .map(|(i, &x)| i + x) | 
|  | .collect_into_vec(&mut b); | 
|  | assert!(b.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_indices_after_enumerate_split() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | a.par_iter().enumerate().with_producer(WithProducer); | 
|  |  | 
|  | struct WithProducer; | 
|  | impl<'a> ProducerCallback<(usize, &'a i32)> for WithProducer { | 
|  | type Output = (); | 
|  | fn callback<P>(self, producer: P) | 
|  | where | 
|  | P: Producer<Item = (usize, &'a i32)>, | 
|  | { | 
|  | let (a, b) = producer.split_at(512); | 
|  | for ((index, value), trusted_index) in a.into_iter().zip(0..) { | 
|  | assert_eq!(index, trusted_index); | 
|  | assert_eq!(index, *value as usize); | 
|  | } | 
|  | for ((index, value), trusted_index) in b.into_iter().zip(512..) { | 
|  | assert_eq!(index, trusted_index); | 
|  | assert_eq!(index, *value as usize); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_increment() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  |  | 
|  | a.par_iter_mut().enumerate().for_each(|(i, v)| *v += i); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_skip() { | 
|  | let a: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | let mut v1 = Vec::new(); | 
|  | a.par_iter().skip(16).collect_into_vec(&mut v1); | 
|  | let v2 = a.iter().skip(16).collect::<Vec<_>>(); | 
|  | assert_eq!(v1, v2); | 
|  |  | 
|  | let mut v1 = Vec::new(); | 
|  | a.par_iter().skip(2048).collect_into_vec(&mut v1); | 
|  | let v2 = a.iter().skip(2048).collect::<Vec<_>>(); | 
|  | assert_eq!(v1, v2); | 
|  |  | 
|  | let mut v1 = Vec::new(); | 
|  | a.par_iter().skip(0).collect_into_vec(&mut v1); | 
|  | let v2 = a.iter().skip(0).collect::<Vec<_>>(); | 
|  | assert_eq!(v1, v2); | 
|  |  | 
|  | // Check that the skipped elements side effects are executed | 
|  | use std::sync::atomic::{AtomicUsize, Ordering}; | 
|  | let num = AtomicUsize::new(0); | 
|  | a.par_iter() | 
|  | .map(|&n| num.fetch_add(n, Ordering::Relaxed)) | 
|  | .skip(512) | 
|  | .count(); | 
|  | assert_eq!(num.load(Ordering::Relaxed), a.iter().sum::<usize>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_take() { | 
|  | let a: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | let mut v1 = Vec::new(); | 
|  | a.par_iter().take(16).collect_into_vec(&mut v1); | 
|  | let v2 = a.iter().take(16).collect::<Vec<_>>(); | 
|  | assert_eq!(v1, v2); | 
|  |  | 
|  | let mut v1 = Vec::new(); | 
|  | a.par_iter().take(2048).collect_into_vec(&mut v1); | 
|  | let v2 = a.iter().take(2048).collect::<Vec<_>>(); | 
|  | assert_eq!(v1, v2); | 
|  |  | 
|  | let mut v1 = Vec::new(); | 
|  | a.par_iter().take(0).collect_into_vec(&mut v1); | 
|  | let v2 = a.iter().take(0).collect::<Vec<_>>(); | 
|  | assert_eq!(v1, v2); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_inspect() { | 
|  | use std::sync::atomic::{AtomicUsize, Ordering}; | 
|  |  | 
|  | let a = AtomicUsize::new(0); | 
|  | let b: usize = (0_usize..1024) | 
|  | .into_par_iter() | 
|  | .inspect(|&i| { | 
|  | a.fetch_add(i, Ordering::Relaxed); | 
|  | }) | 
|  | .sum(); | 
|  |  | 
|  | assert_eq!(a.load(Ordering::Relaxed), b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_move() { | 
|  | let a = vec![vec![1, 2, 3]]; | 
|  | let ptr = a[0].as_ptr(); | 
|  |  | 
|  | let mut b = vec![]; | 
|  | a.into_par_iter().collect_into_vec(&mut b); | 
|  |  | 
|  | // a simple move means the inner vec will be completely unchanged | 
|  | assert_eq!(ptr, b[0].as_ptr()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_drops() { | 
|  | use std::sync::atomic::{AtomicUsize, Ordering}; | 
|  |  | 
|  | let c = AtomicUsize::new(0); | 
|  | let a = vec![DropCounter(&c); 10]; | 
|  |  | 
|  | let mut b = vec![]; | 
|  | a.clone().into_par_iter().collect_into_vec(&mut b); | 
|  | assert_eq!(c.load(Ordering::Relaxed), 0); | 
|  |  | 
|  | b.into_par_iter(); | 
|  | assert_eq!(c.load(Ordering::Relaxed), 10); | 
|  |  | 
|  | a.into_par_iter().with_producer(Partial); | 
|  | assert_eq!(c.load(Ordering::Relaxed), 20); | 
|  |  | 
|  | #[derive(Clone)] | 
|  | struct DropCounter<'a>(&'a AtomicUsize); | 
|  | impl<'a> Drop for DropCounter<'a> { | 
|  | fn drop(&mut self) { | 
|  | self.0.fetch_add(1, Ordering::Relaxed); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct Partial; | 
|  | impl<'a> ProducerCallback<DropCounter<'a>> for Partial { | 
|  | type Output = (); | 
|  | fn callback<P>(self, producer: P) | 
|  | where | 
|  | P: Producer<Item = DropCounter<'a>>, | 
|  | { | 
|  | let (a, _) = producer.split_at(5); | 
|  | a.into_iter().next(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_slice_indexed() { | 
|  | let a = vec![1, 2, 3]; | 
|  | is_indexed(a.par_iter()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_slice_mut_indexed() { | 
|  | let mut a = vec![1, 2, 3]; | 
|  | is_indexed(a.par_iter_mut()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_vec_indexed() { | 
|  | let a = vec![1, 2, 3]; | 
|  | is_indexed(a.clone().into_par_iter()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_range_indexed() { | 
|  | is_indexed((1..5).into_par_iter()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_direct() { | 
|  | let a = (0..1024).into_par_iter(); | 
|  | let b = (0..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.cmp(b); | 
|  |  | 
|  | assert!(result == ::std::cmp::Ordering::Equal); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_to_seq() { | 
|  | assert_eq!( | 
|  | (0..1024).into_par_iter().cmp(0..1024), | 
|  | (0..1024).cmp(0..1024) | 
|  | ); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_rng_to_seq() { | 
|  | let mut rng = seeded_rng(); | 
|  | let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); | 
|  | let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); | 
|  | for i in 0..a.len() { | 
|  | let par_result = a[i..].par_iter().cmp(b[i..].par_iter()); | 
|  | let seq_result = a[i..].iter().cmp(b[i..].iter()); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_lt_direct() { | 
|  | let a = (0..1024).into_par_iter(); | 
|  | let b = (1..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.cmp(b); | 
|  |  | 
|  | assert!(result == ::std::cmp::Ordering::Less); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_lt_to_seq() { | 
|  | assert_eq!( | 
|  | (0..1024).into_par_iter().cmp(1..1024), | 
|  | (0..1024).cmp(1..1024) | 
|  | ) | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_gt_direct() { | 
|  | let a = (1..1024).into_par_iter(); | 
|  | let b = (0..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.cmp(b); | 
|  |  | 
|  | assert!(result == ::std::cmp::Ordering::Greater); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_gt_to_seq() { | 
|  | assert_eq!( | 
|  | (1..1024).into_par_iter().cmp(0..1024), | 
|  | (1..1024).cmp(0..1024) | 
|  | ) | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_short_circuit() { | 
|  | let a = vec![0; 1024]; | 
|  | let mut b = a.clone(); | 
|  | b[42] = 1; | 
|  |  | 
|  | let counter = AtomicUsize::new(0); | 
|  | let result = a | 
|  | .par_iter() | 
|  | .inspect(|_| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | }) | 
|  | .cmp(&b); | 
|  | assert!(result == ::std::cmp::Ordering::Less); | 
|  | assert!(counter.load(Ordering::SeqCst) < a.len()); // should not have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_short_circuit() { | 
|  | let a = vec![0; 1024]; | 
|  | let mut b = a.clone(); | 
|  | b[42] = 1; | 
|  |  | 
|  | let counter = AtomicUsize::new(0); | 
|  | let result = a | 
|  | .par_iter() | 
|  | .inspect(|_| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | }) | 
|  | .partial_cmp(&b); | 
|  | assert!(result == Some(::std::cmp::Ordering::Less)); | 
|  | assert!(counter.load(Ordering::SeqCst) < a.len()); // should not have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_nan_short_circuit() { | 
|  | let a = vec![0.0; 1024]; | 
|  | let mut b = a.clone(); | 
|  | b[42] = f64::NAN; | 
|  |  | 
|  | let counter = AtomicUsize::new(0); | 
|  | let result = a | 
|  | .par_iter() | 
|  | .inspect(|_| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | }) | 
|  | .partial_cmp(&b); | 
|  | assert!(result == None); | 
|  | assert!(counter.load(Ordering::SeqCst) < a.len()); // should not have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_direct() { | 
|  | let a = (0..1024).into_par_iter(); | 
|  | let b = (0..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.partial_cmp(b); | 
|  |  | 
|  | assert!(result == Some(::std::cmp::Ordering::Equal)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().partial_cmp(0..1024); | 
|  | let seq_result = (0..1024).partial_cmp(0..1024); | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_rng_to_seq() { | 
|  | let mut rng = seeded_rng(); | 
|  | let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); | 
|  | let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); | 
|  | for i in 0..a.len() { | 
|  | let par_result = a[i..].par_iter().partial_cmp(b[i..].par_iter()); | 
|  | let seq_result = a[i..].iter().partial_cmp(b[i..].iter()); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_lt_direct() { | 
|  | let a = (0..1024).into_par_iter(); | 
|  | let b = (1..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.partial_cmp(b); | 
|  |  | 
|  | assert!(result == Some(::std::cmp::Ordering::Less)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_lt_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().partial_cmp(1..1024); | 
|  | let seq_result = (0..1024).partial_cmp(1..1024); | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_gt_direct() { | 
|  | let a = (1..1024).into_par_iter(); | 
|  | let b = (0..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.partial_cmp(b); | 
|  |  | 
|  | assert!(result == Some(::std::cmp::Ordering::Greater)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_gt_to_seq() { | 
|  | let par_result = (1..1024).into_par_iter().partial_cmp(0..1024); | 
|  | let seq_result = (1..1024).partial_cmp(0..1024); | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_none_direct() { | 
|  | let a = vec![f64::NAN, 0.0]; | 
|  | let b = vec![0.0, 1.0]; | 
|  |  | 
|  | let result = a.par_iter().partial_cmp(b.par_iter()); | 
|  |  | 
|  | assert!(result == None); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_none_to_seq() { | 
|  | let a = vec![f64::NAN, 0.0]; | 
|  | let b = vec![0.0, 1.0]; | 
|  |  | 
|  | let par_result = a.par_iter().partial_cmp(b.par_iter()); | 
|  | let seq_result = a.iter().partial_cmp(b.iter()); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_late_nan_direct() { | 
|  | let a = vec![0.0, f64::NAN]; | 
|  | let b = vec![1.0, 1.0]; | 
|  |  | 
|  | let result = a.par_iter().partial_cmp(b.par_iter()); | 
|  |  | 
|  | assert!(result == Some(::std::cmp::Ordering::Less)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partial_cmp_late_nane_to_seq() { | 
|  | let a = vec![0.0, f64::NAN]; | 
|  | let b = vec![1.0, 1.0]; | 
|  |  | 
|  | let par_result = a.par_iter().partial_cmp(b.par_iter()); | 
|  | let seq_result = a.iter().partial_cmp(b.iter()); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_cmp_lengths() { | 
|  | // comparisons should consider length if they are otherwise equal | 
|  | let a = vec![0; 1024]; | 
|  | let b = vec![0; 1025]; | 
|  |  | 
|  | assert_eq!(a.par_iter().cmp(&b), a.iter().cmp(&b)); | 
|  | assert_eq!(a.par_iter().partial_cmp(&b), a.iter().partial_cmp(&b)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_eq_direct() { | 
|  | let a = (0..1024).into_par_iter(); | 
|  | let b = (0..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.eq(b); | 
|  |  | 
|  | assert!(result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_eq_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().eq((0..1024).into_par_iter()); | 
|  | let seq_result = (0..1024).eq(0..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ne_direct() { | 
|  | let a = (0..1024).into_par_iter(); | 
|  | let b = (1..1024).into_par_iter(); | 
|  |  | 
|  | let result = a.ne(b); | 
|  |  | 
|  | assert!(result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ne_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().ne((1..1025).into_par_iter()); | 
|  | let seq_result = (0..1024).ne(1..1025); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ne_lengths() { | 
|  | // equality should consider length too | 
|  | let a = vec![0; 1024]; | 
|  | let b = vec![0; 1025]; | 
|  |  | 
|  | assert_eq!(a.par_iter().eq(&b), a.iter().eq(&b)); | 
|  | assert_eq!(a.par_iter().ne(&b), a.iter().ne(&b)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_lt_direct() { | 
|  | assert!((0..1024).into_par_iter().lt(1..1024)); | 
|  | assert!(!(1..1024).into_par_iter().lt(0..1024)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_lt_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().lt((1..1024).into_par_iter()); | 
|  | let seq_result = (0..1024).lt(1..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_le_equal_direct() { | 
|  | assert!((0..1024).into_par_iter().le((0..1024).into_par_iter())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_le_equal_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().le((0..1024).into_par_iter()); | 
|  | let seq_result = (0..1024).le(0..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_le_less_direct() { | 
|  | assert!((0..1024).into_par_iter().le((1..1024).into_par_iter())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_le_less_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().le((1..1024).into_par_iter()); | 
|  | let seq_result = (0..1024).le(1..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_gt_direct() { | 
|  | assert!((1..1024).into_par_iter().gt((0..1024).into_par_iter())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_gt_to_seq() { | 
|  | let par_result = (1..1024).into_par_iter().gt((0..1024).into_par_iter()); | 
|  | let seq_result = (1..1024).gt(0..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ge_equal_direct() { | 
|  | assert!((0..1024).into_par_iter().ge((0..1024).into_par_iter())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ge_equal_to_seq() { | 
|  | let par_result = (0..1024).into_par_iter().ge((0..1024).into_par_iter()); | 
|  | let seq_result = (0..1024).ge(0..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ge_greater_direct() { | 
|  | assert!((1..1024).into_par_iter().ge((0..1024).into_par_iter())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_ge_greater_to_seq() { | 
|  | let par_result = (1..1024).into_par_iter().ge((0..1024).into_par_iter()); | 
|  | let seq_result = (1..1024).ge(0..1024); | 
|  |  | 
|  | assert_eq!(par_result, seq_result); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter_mut().zip(&b[..]).for_each(|(a, &b)| *a += b); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_into_par_iter() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter_mut() | 
|  | .zip(&b) // here we rely on &b iterating over &usize | 
|  | .for_each(|(a, &b)| *a += b); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_into_mut_par_iter() { | 
|  | let a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let mut b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter().zip(&mut b).for_each(|(&a, b)| *b += a); | 
|  |  | 
|  | assert!(b.iter().all(|&x| x == b.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_range() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  |  | 
|  | a.par_iter_mut() | 
|  | .zip(0usize..1024) | 
|  | .for_each(|(a, b)| *a += b); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_eq() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter_mut().zip_eq(&b[..]).for_each(|(a, &b)| *a += b); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_eq_into_par_iter() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter_mut() | 
|  | .zip_eq(&b) // here we rely on &b iterating over &usize | 
|  | .for_each(|(a, &b)| *a += b); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_eq_into_mut_par_iter() { | 
|  | let a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let mut b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter().zip_eq(&mut b).for_each(|(&a, b)| *b += a); | 
|  |  | 
|  | assert!(b.iter().all(|&x| x == b.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_zip_eq_range() { | 
|  | let mut a: Vec<usize> = (0..1024).rev().collect(); | 
|  |  | 
|  | a.par_iter_mut() | 
|  | .zip_eq(0usize..1024) | 
|  | .for_each(|(a, b)| *a += b); | 
|  |  | 
|  | assert!(a.iter().all(|&x| x == a.len() - 1)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_sum_filtered_ints() { | 
|  | let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; | 
|  | let par_sum_evens: i32 = a.par_iter().filter(|&x| (x & 1) == 0).sum(); | 
|  | let seq_sum_evens = a.iter().filter(|&x| (x & 1) == 0).sum(); | 
|  | assert_eq!(par_sum_evens, seq_sum_evens); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_sum_filtermap_ints() { | 
|  | let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; | 
|  | let par_sum_evens: u32 = a | 
|  | .par_iter() | 
|  | .filter_map(|&x| if (x & 1) == 0 { Some(x as u32) } else { None }) | 
|  | .sum(); | 
|  | let seq_sum_evens = a | 
|  | .iter() | 
|  | .filter_map(|&x| if (x & 1) == 0 { Some(x as u32) } else { None }) | 
|  | .sum(); | 
|  | assert_eq!(par_sum_evens, seq_sum_evens); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_flat_map_nested_ranges() { | 
|  | // FIXME -- why are precise type hints required on the integers here? | 
|  |  | 
|  | let v: i32 = (0_i32..10) | 
|  | .into_par_iter() | 
|  | .flat_map(|i| (0_i32..10).into_par_iter().map(move |j| (i, j))) | 
|  | .map(|(i, j)| i * j) | 
|  | .sum(); | 
|  |  | 
|  | let w = (0_i32..10) | 
|  | .flat_map(|i| (0_i32..10).map(move |j| (i, j))) | 
|  | .map(|(i, j)| i * j) | 
|  | .sum(); | 
|  |  | 
|  | assert_eq!(v, w); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_empty_flat_map_sum() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let empty = &a[..0]; | 
|  |  | 
|  | // empty on the inside | 
|  | let b: i32 = a.par_iter().flat_map(|_| empty).sum(); | 
|  | assert_eq!(b, 0); | 
|  |  | 
|  | // empty on the outside | 
|  | let c: i32 = empty.par_iter().flat_map(|_| a.par_iter()).sum(); | 
|  | assert_eq!(c, 0); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_flatten_vec() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: Vec<Vec<i32>> = vec![a.clone(), a.clone(), a.clone(), a.clone()]; | 
|  | let c: Vec<i32> = b.par_iter().flatten().cloned().collect(); | 
|  | let mut d = a.clone(); | 
|  | d.extend(&a); | 
|  | d.extend(&a); | 
|  | d.extend(&a); | 
|  |  | 
|  | assert_eq!(d, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_flatten_vec_empty() { | 
|  | let a: Vec<Vec<i32>> = vec![vec![]]; | 
|  | let b: Vec<i32> = a.par_iter().flatten().cloned().collect(); | 
|  |  | 
|  | assert_eq!(vec![] as Vec<i32>, b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_slice_split() { | 
|  | let v: Vec<_> = (0..1000).collect(); | 
|  | for m in 1..100 { | 
|  | let a: Vec<_> = v.split(|x| x % m == 0).collect(); | 
|  | let b: Vec<_> = v.par_split(|x| x % m == 0).collect(); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | // same as std::slice::split() examples | 
|  | let slice = [10, 40, 33, 20]; | 
|  | let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); | 
|  | assert_eq!(v, &[&slice[..2], &slice[3..]]); | 
|  |  | 
|  | let slice = [10, 40, 33]; | 
|  | let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); | 
|  | assert_eq!(v, &[&slice[..2], &slice[..0]]); | 
|  |  | 
|  | let slice = [10, 6, 33, 20]; | 
|  | let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); | 
|  | assert_eq!(v, &[&slice[..1], &slice[..0], &slice[3..]]); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_slice_split_mut() { | 
|  | let mut v1: Vec<_> = (0..1000).collect(); | 
|  | let mut v2 = v1.clone(); | 
|  | for m in 1..100 { | 
|  | let a: Vec<_> = v1.split_mut(|x| x % m == 0).collect(); | 
|  | let b: Vec<_> = v2.par_split_mut(|x| x % m == 0).collect(); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | // same as std::slice::split_mut() example | 
|  | let mut v = [10, 40, 30, 20, 60, 50]; | 
|  | v.par_split_mut(|num| num % 3 == 0).for_each(|group| { | 
|  | group[0] = 1; | 
|  | }); | 
|  | assert_eq!(v, [1, 40, 30, 1, 60, 1]); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chunks() { | 
|  | let a: Vec<i32> = vec![1, 5, 10, 4, 100, 3, 1000, 2, 10000, 1]; | 
|  | let par_sum_product_pairs: i32 = a.par_chunks(2).map(|c| c.iter().product::<i32>()).sum(); | 
|  | let seq_sum_product_pairs = a.chunks(2).map(|c| c.iter().product::<i32>()).sum(); | 
|  | assert_eq!(par_sum_product_pairs, 12345); | 
|  | assert_eq!(par_sum_product_pairs, seq_sum_product_pairs); | 
|  |  | 
|  | let par_sum_product_triples: i32 = a.par_chunks(3).map(|c| c.iter().product::<i32>()).sum(); | 
|  | let seq_sum_product_triples = a.chunks(3).map(|c| c.iter().product::<i32>()).sum(); | 
|  | assert_eq!(par_sum_product_triples, 5_0 + 12_00 + 2_000_0000 + 1); | 
|  | assert_eq!(par_sum_product_triples, seq_sum_product_triples); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chunks_mut() { | 
|  | let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; | 
|  | let mut b: Vec<i32> = a.clone(); | 
|  | a.par_chunks_mut(2).for_each(|c| c[0] = c.iter().sum()); | 
|  | b.chunks_mut(2).for_each(|c| c[0] = c.iter().sum()); | 
|  | assert_eq!(a, &[3, 2, 7, 4, 11, 6, 15, 8, 19, 10]); | 
|  | assert_eq!(a, b); | 
|  |  | 
|  | let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; | 
|  | let mut b: Vec<i32> = a.clone(); | 
|  | a.par_chunks_mut(3).for_each(|c| c[0] = c.iter().sum()); | 
|  | b.chunks_mut(3).for_each(|c| c[0] = c.iter().sum()); | 
|  | assert_eq!(a, &[6, 2, 3, 15, 5, 6, 24, 8, 9, 10]); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_windows() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let par: Vec<_> = a.par_windows(2).collect(); | 
|  | let seq: Vec<_> = a.windows(2).collect(); | 
|  | assert_eq!(par, seq); | 
|  |  | 
|  | let par: Vec<_> = a.par_windows(100).collect(); | 
|  | let seq: Vec<_> = a.windows(100).collect(); | 
|  | assert_eq!(par, seq); | 
|  |  | 
|  | let par: Vec<_> = a.par_windows(1_000_000).collect(); | 
|  | let seq: Vec<_> = a.windows(1_000_000).collect(); | 
|  | assert_eq!(par, seq); | 
|  |  | 
|  | let par: Vec<_> = a | 
|  | .par_windows(2) | 
|  | .chain(a.par_windows(1_000_000)) | 
|  | .zip(a.par_windows(2)) | 
|  | .collect(); | 
|  | let seq: Vec<_> = a | 
|  | .windows(2) | 
|  | .chain(a.windows(1_000_000)) | 
|  | .zip(a.windows(2)) | 
|  | .collect(); | 
|  | assert_eq!(par, seq); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_options() { | 
|  | let mut a = vec![None, Some(1), None, None, Some(2), Some(4)]; | 
|  |  | 
|  | assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>()); | 
|  | assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>()); | 
|  |  | 
|  | a.par_iter_mut() | 
|  | .flat_map(|opt| opt) | 
|  | .for_each(|x| *x = *x * *x); | 
|  |  | 
|  | assert_eq!(21, a.into_par_iter().flat_map(|opt| opt).sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_results() { | 
|  | let mut a = vec![Err(()), Ok(1i32), Err(()), Err(()), Ok(2), Ok(4)]; | 
|  |  | 
|  | assert_eq!(7, a.par_iter().flat_map(|res| res).sum::<i32>()); | 
|  |  | 
|  | assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().sum()); | 
|  | assert_eq!(Ok(7), a.par_iter().cloned().filter(Result::is_ok).sum()); | 
|  |  | 
|  | assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().product()); | 
|  | assert_eq!(Ok(8), a.par_iter().cloned().filter(Result::is_ok).product()); | 
|  |  | 
|  | a.par_iter_mut() | 
|  | .flat_map(|res| res) | 
|  | .for_each(|x| *x = *x * *x); | 
|  |  | 
|  | assert_eq!(21, a.into_par_iter().flat_map(|res| res).sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_binary_heap() { | 
|  | use std::collections::BinaryHeap; | 
|  |  | 
|  | let a: BinaryHeap<i32> = (0..10).collect(); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().sum::<i32>()); | 
|  | assert_eq!(45, a.into_par_iter().sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_btree_map() { | 
|  | use std::collections::BTreeMap; | 
|  |  | 
|  | let mut a: BTreeMap<i32, i32> = (0..10).map(|i| (i, -i)).collect(); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>()); | 
|  | assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>()); | 
|  |  | 
|  | a.par_iter_mut().for_each(|(k, v)| *v += *k); | 
|  |  | 
|  | assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_btree_set() { | 
|  | use std::collections::BTreeSet; | 
|  |  | 
|  | let a: BTreeSet<i32> = (0..10).collect(); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().sum::<i32>()); | 
|  | assert_eq!(45, a.into_par_iter().sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_hash_map() { | 
|  | use std::collections::HashMap; | 
|  |  | 
|  | let mut a: HashMap<i32, i32> = (0..10).map(|i| (i, -i)).collect(); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>()); | 
|  | assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>()); | 
|  |  | 
|  | a.par_iter_mut().for_each(|(k, v)| *v += *k); | 
|  |  | 
|  | assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_hash_set() { | 
|  | use std::collections::HashSet; | 
|  |  | 
|  | let a: HashSet<i32> = (0..10).collect(); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().sum::<i32>()); | 
|  | assert_eq!(45, a.into_par_iter().sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_linked_list() { | 
|  | use std::collections::LinkedList; | 
|  |  | 
|  | let mut a: LinkedList<i32> = (0..10).collect(); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().sum::<i32>()); | 
|  |  | 
|  | a.par_iter_mut().for_each(|x| *x = -*x); | 
|  |  | 
|  | assert_eq!(-45, a.into_par_iter().sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_vec_deque() { | 
|  | use std::collections::VecDeque; | 
|  |  | 
|  | let mut a: VecDeque<i32> = (0..10).collect(); | 
|  |  | 
|  | // try to get it to wrap around | 
|  | a.drain(..5); | 
|  | a.extend(0..5); | 
|  |  | 
|  | assert_eq!(45, a.par_iter().sum::<i32>()); | 
|  |  | 
|  | a.par_iter_mut().for_each(|x| *x = -*x); | 
|  |  | 
|  | assert_eq!(-45, a.into_par_iter().sum::<i32>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chain() { | 
|  | let mut res = vec![]; | 
|  |  | 
|  | // stays indexed in the face of madness | 
|  | Some(0) | 
|  | .into_par_iter() | 
|  | .chain(Ok::<_, ()>(1)) | 
|  | .chain(1..4) | 
|  | .chain(Err("huh?")) | 
|  | .chain(None) | 
|  | .chain(vec![5, 8, 13]) | 
|  | .map(|x| (x as u8 + b'a') as char) | 
|  | .chain(vec!['x', 'y', 'z']) | 
|  | .zip((0i32..1000).into_par_iter().map(|x| -x)) | 
|  | .enumerate() | 
|  | .map(|(a, (b, c))| (a, b, c)) | 
|  | .chain(None) | 
|  | .collect_into_vec(&mut res); | 
|  |  | 
|  | assert_eq!( | 
|  | res, | 
|  | vec![ | 
|  | (0, 'a', 0), | 
|  | (1, 'b', -1), | 
|  | (2, 'b', -2), | 
|  | (3, 'c', -3), | 
|  | (4, 'd', -4), | 
|  | (5, 'f', -5), | 
|  | (6, 'i', -6), | 
|  | (7, 'n', -7), | 
|  | (8, 'x', -8), | 
|  | (9, 'y', -9), | 
|  | (10, 'z', -10) | 
|  | ] | 
|  | ); | 
|  |  | 
|  | // unindexed is ok too | 
|  | let res: Vec<i32> = Some(1i32) | 
|  | .into_par_iter() | 
|  | .chain( | 
|  | (2i32..4) | 
|  | .into_par_iter() | 
|  | .chain(vec![5, 6, 7, 8, 9]) | 
|  | .chain(Some((10, 100)).into_par_iter().flat_map(|(a, b)| a..b)) | 
|  | .filter(|x| x & 1 == 1), | 
|  | ) | 
|  | .collect(); | 
|  | let other: Vec<i32> = (0..100).filter(|x| x & 1 == 1).collect(); | 
|  | assert_eq!(res, other); | 
|  |  | 
|  | // chain collect is ok with the "fake" specialization | 
|  | let res: Vec<i32> = Some(1i32).into_par_iter().chain(None).collect(); | 
|  | assert_eq!(res, &[1]); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_count() { | 
|  | let c0 = (0_u32..24 * 1024).filter(|i| i % 2 == 0).count(); | 
|  | let c1 = (0_u32..24 * 1024) | 
|  | .into_par_iter() | 
|  | .filter(|i| i % 2 == 0) | 
|  | .count(); | 
|  | assert_eq!(c0, c1); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn find_any() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  |  | 
|  | assert!(a.par_iter().find_any(|&&x| x % 42 == 41).is_some()); | 
|  | assert_eq!( | 
|  | a.par_iter().find_any(|&&x| x % 19 == 1 && x % 53 == 0), | 
|  | Some(&742_i32) | 
|  | ); | 
|  | assert_eq!(a.par_iter().find_any(|&&x| x < 0), None); | 
|  |  | 
|  | assert!(a.par_iter().position_any(|&x| x % 42 == 41).is_some()); | 
|  | assert_eq!( | 
|  | a.par_iter().position_any(|&x| x % 19 == 1 && x % 53 == 0), | 
|  | Some(742_usize) | 
|  | ); | 
|  | assert_eq!(a.par_iter().position_any(|&x| x < 0), None); | 
|  |  | 
|  | assert!(a.par_iter().any(|&x| x > 1000)); | 
|  | assert!(!a.par_iter().any(|&x| x < 0)); | 
|  |  | 
|  | assert!(!a.par_iter().all(|&x| x > 1000)); | 
|  | assert!(a.par_iter().all(|&x| x >= 0)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn find_first_or_last() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  |  | 
|  | assert_eq!(a.par_iter().find_first(|&&x| x % 42 == 41), Some(&41_i32)); | 
|  | assert_eq!( | 
|  | a.par_iter().find_first(|&&x| x % 19 == 1 && x % 53 == 0), | 
|  | Some(&742_i32) | 
|  | ); | 
|  | assert_eq!(a.par_iter().find_first(|&&x| x < 0), None); | 
|  |  | 
|  | assert_eq!( | 
|  | a.par_iter().position_first(|&x| x % 42 == 41), | 
|  | Some(41_usize) | 
|  | ); | 
|  | assert_eq!( | 
|  | a.par_iter().position_first(|&x| x % 19 == 1 && x % 53 == 0), | 
|  | Some(742_usize) | 
|  | ); | 
|  | assert_eq!(a.par_iter().position_first(|&x| x < 0), None); | 
|  |  | 
|  | assert_eq!(a.par_iter().find_last(|&&x| x % 42 == 41), Some(&1007_i32)); | 
|  | assert_eq!( | 
|  | a.par_iter().find_last(|&&x| x % 19 == 1 && x % 53 == 0), | 
|  | Some(&742_i32) | 
|  | ); | 
|  | assert_eq!(a.par_iter().find_last(|&&x| x < 0), None); | 
|  |  | 
|  | assert_eq!( | 
|  | a.par_iter().position_last(|&x| x % 42 == 41), | 
|  | Some(1007_usize) | 
|  | ); | 
|  | assert_eq!( | 
|  | a.par_iter().position_last(|&x| x % 19 == 1 && x % 53 == 0), | 
|  | Some(742_usize) | 
|  | ); | 
|  | assert_eq!(a.par_iter().position_last(|&x| x < 0), None); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn find_map_first_or_last_or_any() { | 
|  | let mut a: Vec<i32> = vec![]; | 
|  |  | 
|  | assert!(a.par_iter().find_map_any(half_if_positive).is_none()); | 
|  | assert!(a.par_iter().find_map_first(half_if_positive).is_none()); | 
|  | assert!(a.par_iter().find_map_last(half_if_positive).is_none()); | 
|  |  | 
|  | a = (-1024..-3).collect(); | 
|  |  | 
|  | assert!(a.par_iter().find_map_any(half_if_positive).is_none()); | 
|  | assert!(a.par_iter().find_map_first(half_if_positive).is_none()); | 
|  | assert!(a.par_iter().find_map_last(half_if_positive).is_none()); | 
|  |  | 
|  | assert!(a.par_iter().find_map_any(half_if_negative).is_some()); | 
|  | assert_eq!( | 
|  | a.par_iter().find_map_first(half_if_negative), | 
|  | Some(-512_i32) | 
|  | ); | 
|  | assert_eq!(a.par_iter().find_map_last(half_if_negative), Some(-2_i32)); | 
|  |  | 
|  | a.append(&mut (2..1025).collect()); | 
|  |  | 
|  | assert!(a.par_iter().find_map_any(half_if_positive).is_some()); | 
|  | assert_eq!(a.par_iter().find_map_first(half_if_positive), Some(1_i32)); | 
|  | assert_eq!(a.par_iter().find_map_last(half_if_positive), Some(512_i32)); | 
|  |  | 
|  | fn half_if_positive(x: &i32) -> Option<i32> { | 
|  | if *x > 0 { | 
|  | Some(x / 2) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  |  | 
|  | fn half_if_negative(x: &i32) -> Option<i32> { | 
|  | if *x < 0 { | 
|  | Some(x / 2) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_find_not_present() { | 
|  | let counter = AtomicUsize::new(0); | 
|  | let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | p >= 2048 | 
|  | }); | 
|  | assert!(value.is_none()); | 
|  | assert!(counter.load(Ordering::SeqCst) == 2048); // should have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_find_is_present() { | 
|  | let counter = AtomicUsize::new(0); | 
|  | let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | p >= 1024 && p < 1096 | 
|  | }); | 
|  | let q = value.unwrap(); | 
|  | assert!(q >= 1024 && q < 1096); | 
|  | assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_while_some() { | 
|  | let value = (0_i32..2048).into_par_iter().map(Some).while_some().max(); | 
|  | assert_eq!(value, Some(2047)); | 
|  |  | 
|  | let counter = AtomicUsize::new(0); | 
|  | let value = (0_i32..2048) | 
|  | .into_par_iter() | 
|  | .map(|x| { | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | if x < 1024 { | 
|  | Some(x) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | }) | 
|  | .while_some() | 
|  | .max(); | 
|  | assert!(value < Some(1024)); | 
|  | assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_option() { | 
|  | let a: Option<Vec<_>> = (0_i32..2048).map(Some).collect(); | 
|  | let b: Option<Vec<_>> = (0_i32..2048).into_par_iter().map(Some).collect(); | 
|  | assert_eq!(a, b); | 
|  |  | 
|  | let c: Option<Vec<_>> = (0_i32..2048) | 
|  | .into_par_iter() | 
|  | .map(|x| if x == 1234 { None } else { Some(x) }) | 
|  | .collect(); | 
|  | assert_eq!(c, None); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_result() { | 
|  | let a: Result<Vec<_>, ()> = (0_i32..2048).map(Ok).collect(); | 
|  | let b: Result<Vec<_>, ()> = (0_i32..2048).into_par_iter().map(Ok).collect(); | 
|  | assert_eq!(a, b); | 
|  |  | 
|  | let c: Result<Vec<_>, _> = (0_i32..2048) | 
|  | .into_par_iter() | 
|  | .map(|x| if x == 1234 { Err(x) } else { Ok(x) }) | 
|  | .collect(); | 
|  | assert_eq!(c, Err(1234)); | 
|  |  | 
|  | let d: Result<Vec<_>, _> = (0_i32..2048) | 
|  | .into_par_iter() | 
|  | .map(|x| if x % 100 == 99 { Err(x) } else { Ok(x) }) | 
|  | .collect(); | 
|  | assert_eq!(d.map_err(|x| x % 100), Err(99)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: Vec<i32> = a.par_iter().map(|&i| i + 1).collect(); | 
|  | let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_vecdeque() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: VecDeque<i32> = a.par_iter().cloned().collect(); | 
|  | let c: VecDeque<i32> = a.iter().cloned().collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_binaryheap() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let mut b: BinaryHeap<i32> = a.par_iter().cloned().collect(); | 
|  | assert_eq!(b.peek(), Some(&1023)); | 
|  | assert_eq!(b.len(), 1024); | 
|  | for n in (0..1024).rev() { | 
|  | assert_eq!(b.pop(), Some(n)); | 
|  | assert_eq!(b.len() as i32, n); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_hashmap() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: HashMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}", i))).collect(); | 
|  | assert_eq!(&b[&3], "3"); | 
|  | assert_eq!(b.len(), 1024); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_hashset() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: HashSet<i32> = a.par_iter().cloned().collect(); | 
|  | assert_eq!(b.len(), 1024); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_btreemap() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: BTreeMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}", i))).collect(); | 
|  | assert_eq!(&b[&3], "3"); | 
|  | assert_eq!(b.len(), 1024); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_btreeset() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: BTreeSet<i32> = a.par_iter().cloned().collect(); | 
|  | assert_eq!(b.len(), 1024); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_linked_list() { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let b: LinkedList<_> = a.par_iter().map(|&i| (i, format!("{}", i))).collect(); | 
|  | let c: LinkedList<_> = a.iter().map(|&i| (i, format!("{}", i))).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_linked_list_flat_map_filter() { | 
|  | let b: LinkedList<i32> = (0_i32..1024) | 
|  | .into_par_iter() | 
|  | .flat_map(|i| (0..i)) | 
|  | .filter(|&i| i % 2 == 0) | 
|  | .collect(); | 
|  | let c: LinkedList<i32> = (0_i32..1024) | 
|  | .flat_map(|i| (0..i)) | 
|  | .filter(|&i| i % 2 == 0) | 
|  | .collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_collect_cows() { | 
|  | use std::borrow::Cow; | 
|  |  | 
|  | let s = "Fearless Concurrency with Rust"; | 
|  |  | 
|  | // Collects `i32` into a `Vec` | 
|  | let a: Cow<'_, [i32]> = (0..1024).collect(); | 
|  | let b: Cow<'_, [i32]> = a.par_iter().cloned().collect(); | 
|  | assert_eq!(a, b); | 
|  |  | 
|  | // Collects `char` into a `String` | 
|  | let a: Cow<'_, str> = s.chars().collect(); | 
|  | let b: Cow<'_, str> = s.par_chars().collect(); | 
|  | assert_eq!(a, b); | 
|  |  | 
|  | // Collects `str` into a `String` | 
|  | let a: Cow<'_, str> = s.split_whitespace().collect(); | 
|  | let b: Cow<'_, str> = s.par_split_whitespace().collect(); | 
|  | assert_eq!(a, b); | 
|  |  | 
|  | // Collects `String` into a `String` | 
|  | let a: Cow<'_, str> = s.split_whitespace().map(str::to_owned).collect(); | 
|  | let b: Cow<'_, str> = s.par_split_whitespace().map(str::to_owned).collect(); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn par_iter_unindexed_flat_map() { | 
|  | let b: Vec<i64> = (0_i64..1024).into_par_iter().flat_map(Some).collect(); | 
|  | let c: Vec<i64> = (0_i64..1024).flat_map(Some).collect(); | 
|  | assert_eq!(b, c); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn min_max() { | 
|  | let mut rng = seeded_rng(); | 
|  | let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); | 
|  | for i in 0..=a.len() { | 
|  | let slice = &a[..i]; | 
|  | assert_eq!(slice.par_iter().min(), slice.iter().min()); | 
|  | assert_eq!(slice.par_iter().max(), slice.iter().max()); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn min_max_by() { | 
|  | let mut rng = seeded_rng(); | 
|  | // Make sure there are duplicate keys, for testing sort stability | 
|  | let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect(); | 
|  | let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect(); | 
|  | for i in 0..=a.len() { | 
|  | let slice = &a[..i]; | 
|  | assert_eq!( | 
|  | slice.par_iter().min_by(|x, y| x.0.cmp(&y.0)), | 
|  | slice.iter().min_by(|x, y| x.0.cmp(&y.0)) | 
|  | ); | 
|  | assert_eq!( | 
|  | slice.par_iter().max_by(|x, y| x.0.cmp(&y.0)), | 
|  | slice.iter().max_by(|x, y| x.0.cmp(&y.0)) | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn min_max_by_key() { | 
|  | let mut rng = seeded_rng(); | 
|  | // Make sure there are duplicate keys, for testing sort stability | 
|  | let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect(); | 
|  | let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect(); | 
|  | for i in 0..=a.len() { | 
|  | let slice = &a[..i]; | 
|  | assert_eq!( | 
|  | slice.par_iter().min_by_key(|x| x.0), | 
|  | slice.iter().min_by_key(|x| x.0) | 
|  | ); | 
|  | assert_eq!( | 
|  | slice.par_iter().max_by_key(|x| x.0), | 
|  | slice.iter().max_by_key(|x| x.0) | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_rev() { | 
|  | let a: Vec<usize> = (0..1024).rev().collect(); | 
|  | let b: Vec<usize> = (0..1024).collect(); | 
|  |  | 
|  | assert!(a.par_iter().rev().zip(b).all(|(&a, b)| a == b)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn scope_mix() { | 
|  | let counter_p = &AtomicUsize::new(0); | 
|  | scope(|s| { | 
|  | s.spawn(move |s| { | 
|  | divide_and_conquer(s, counter_p, 1024); | 
|  | }); | 
|  | s.spawn(move |_| { | 
|  | let a: Vec<i32> = (0..1024).collect(); | 
|  | let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j); | 
|  | let r2 = a.iter().map(|&i| i + 1).sum(); | 
|  | assert_eq!(r1.unwrap(), r2); | 
|  | }); | 
|  | }); | 
|  | } | 
|  |  | 
|  | fn divide_and_conquer<'scope>(scope: &Scope<'scope>, counter: &'scope AtomicUsize, size: usize) { | 
|  | if size > 1 { | 
|  | scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2)); | 
|  | scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2)); | 
|  | } else { | 
|  | // count the leaves | 
|  | counter.fetch_add(1, Ordering::SeqCst); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_split() { | 
|  | use std::ops::Range; | 
|  |  | 
|  | let a = (0..1024).into_par_iter(); | 
|  |  | 
|  | let b = split(0..1024, |Range { start, end }| { | 
|  | let mid = (end - start) / 2; | 
|  | if mid > start { | 
|  | (start..mid, Some(mid..end)) | 
|  | } else { | 
|  | (start..end, None) | 
|  | } | 
|  | }) | 
|  | .flat_map(|range| range); | 
|  |  | 
|  | assert_eq!(a.collect::<Vec<_>>(), b.collect::<Vec<_>>()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_lengths() { | 
|  | fn check(min: usize, max: usize) { | 
|  | let range = 0..1024 * 1024; | 
|  |  | 
|  | // Check against normalized values. | 
|  | let min_check = cmp::min(cmp::max(min, 1), range.len()); | 
|  | let max_check = cmp::max(max, min_check.saturating_add(min_check - 1)); | 
|  |  | 
|  | assert!( | 
|  | range | 
|  | .into_par_iter() | 
|  | .with_min_len(min) | 
|  | .with_max_len(max) | 
|  | .fold(|| 0, |count, _| count + 1) | 
|  | .all(|c| c >= min_check && c <= max_check), | 
|  | "check_lengths failed {:?} -> {:?} ", | 
|  | (min, max), | 
|  | (min_check, max_check) | 
|  | ); | 
|  | } | 
|  |  | 
|  | let lengths = [0, 1, 10, 100, 1_000, 10_000, 100_000, 1_000_000, usize::MAX]; | 
|  | for &min in &lengths { | 
|  | for &max in &lengths { | 
|  | check(min, max); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_map_with() { | 
|  | let (sender, receiver) = mpsc::channel(); | 
|  | let a: HashSet<_> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter() | 
|  | .cloned() | 
|  | .map_with(sender, |s, i| s.send(i).unwrap()) | 
|  | .count(); | 
|  |  | 
|  | let b: HashSet<_> = receiver.iter().collect(); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_fold_with() { | 
|  | let (sender, receiver) = mpsc::channel(); | 
|  | let a: HashSet<_> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter() | 
|  | .cloned() | 
|  | .fold_with(sender, |s, i| { | 
|  | s.send(i).unwrap(); | 
|  | s | 
|  | }) | 
|  | .count(); | 
|  |  | 
|  | let b: HashSet<_> = receiver.iter().collect(); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_for_each_with() { | 
|  | let (sender, receiver) = mpsc::channel(); | 
|  | let a: HashSet<_> = (0..1024).collect(); | 
|  |  | 
|  | a.par_iter() | 
|  | .cloned() | 
|  | .for_each_with(sender, |s, i| s.send(i).unwrap()); | 
|  |  | 
|  | let b: HashSet<_> = receiver.iter().collect(); | 
|  | assert_eq!(a, b); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_extend_items() { | 
|  | fn check<C>() | 
|  | where | 
|  | C: Default | 
|  | + Eq | 
|  | + Debug | 
|  | + Extend<i32> | 
|  | + for<'a> Extend<&'a i32> | 
|  | + ParallelExtend<i32> | 
|  | + for<'a> ParallelExtend<&'a i32>, | 
|  | { | 
|  | let mut serial = C::default(); | 
|  | let mut parallel = C::default(); | 
|  |  | 
|  | // extend with references | 
|  | let v: Vec<_> = (0..128).collect(); | 
|  | serial.extend(&v); | 
|  | parallel.par_extend(&v); | 
|  | assert_eq!(serial, parallel); | 
|  |  | 
|  | // extend with values | 
|  | serial.extend(-128..0); | 
|  | parallel.par_extend(-128..0); | 
|  | assert_eq!(serial, parallel); | 
|  | } | 
|  |  | 
|  | check::<BTreeSet<_>>(); | 
|  | check::<HashSet<_>>(); | 
|  | check::<LinkedList<_>>(); | 
|  | check::<Vec<_>>(); | 
|  | check::<VecDeque<_>>(); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_extend_heap() { | 
|  | let mut serial: BinaryHeap<_> = Default::default(); | 
|  | let mut parallel: BinaryHeap<_> = Default::default(); | 
|  |  | 
|  | // extend with references | 
|  | let v: Vec<_> = (0..128).collect(); | 
|  | serial.extend(&v); | 
|  | parallel.par_extend(&v); | 
|  | assert_eq!( | 
|  | serial.clone().into_sorted_vec(), | 
|  | parallel.clone().into_sorted_vec() | 
|  | ); | 
|  |  | 
|  | // extend with values | 
|  | serial.extend(-128..0); | 
|  | parallel.par_extend(-128..0); | 
|  | assert_eq!(serial.into_sorted_vec(), parallel.into_sorted_vec()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_extend_pairs() { | 
|  | fn check<C>() | 
|  | where | 
|  | C: Default | 
|  | + Eq | 
|  | + Debug | 
|  | + Extend<(usize, i32)> | 
|  | + for<'a> Extend<(&'a usize, &'a i32)> | 
|  | + ParallelExtend<(usize, i32)> | 
|  | + for<'a> ParallelExtend<(&'a usize, &'a i32)>, | 
|  | { | 
|  | let mut serial = C::default(); | 
|  | let mut parallel = C::default(); | 
|  |  | 
|  | // extend with references | 
|  | let m: HashMap<_, _> = (0..128).enumerate().collect(); | 
|  | serial.extend(&m); | 
|  | parallel.par_extend(&m); | 
|  | assert_eq!(serial, parallel); | 
|  |  | 
|  | // extend with values | 
|  | let v: Vec<(_, _)> = (-128..0).enumerate().collect(); | 
|  | serial.extend(v.clone()); | 
|  | parallel.par_extend(v); | 
|  | assert_eq!(serial, parallel); | 
|  | } | 
|  |  | 
|  | check::<BTreeMap<usize, i32>>(); | 
|  | check::<HashMap<usize, i32>>(); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_unzip_into_vecs() { | 
|  | let mut a = vec![]; | 
|  | let mut b = vec![]; | 
|  | (0..1024) | 
|  | .into_par_iter() | 
|  | .map(|i| i * i) | 
|  | .enumerate() | 
|  | .unzip_into_vecs(&mut a, &mut b); | 
|  |  | 
|  | let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); | 
|  | assert_eq!(a, c); | 
|  | assert_eq!(b, d); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_unzip() { | 
|  | // indexed, unindexed | 
|  | let (a, b): (Vec<_>, HashSet<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); | 
|  | let (c, d): (Vec<_>, HashSet<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); | 
|  | assert_eq!(a, c); | 
|  | assert_eq!(b, d); | 
|  |  | 
|  | // unindexed, indexed | 
|  | let (a, b): (HashSet<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); | 
|  | let (c, d): (HashSet<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); | 
|  | assert_eq!(a, c); | 
|  | assert_eq!(b, d); | 
|  |  | 
|  | // indexed, indexed | 
|  | let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); | 
|  | let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); | 
|  | assert_eq!(a, c); | 
|  | assert_eq!(b, d); | 
|  |  | 
|  | // unindexed producer | 
|  | let (a, b): (Vec<_>, Vec<_>) = (0..1024) | 
|  | .into_par_iter() | 
|  | .filter_map(|i| Some((i, i * i))) | 
|  | .unzip(); | 
|  | let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| (i, i * i)).unzip(); | 
|  | assert_eq!(a, c); | 
|  | assert_eq!(b, d); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partition() { | 
|  | let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().partition(|&i| i % 3 == 0); | 
|  | let (c, d): (Vec<_>, Vec<_>) = (0..1024).partition(|&i| i % 3 == 0); | 
|  | assert_eq!(a, c); | 
|  | assert_eq!(b, d); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_partition_map() { | 
|  | let input = "a b c 1 2 3 x y z"; | 
|  | let (a, b): (Vec<_>, String) = | 
|  | input | 
|  | .par_split_whitespace() | 
|  | .partition_map(|s| match s.parse::<i32>() { | 
|  | Ok(n) => Either::Left(n), | 
|  | Err(_) => Either::Right(s), | 
|  | }); | 
|  | assert_eq!(a, vec![1, 2, 3]); | 
|  | assert_eq!(b, "abcxyz"); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_either() { | 
|  | type I = ::vec::IntoIter<i32>; | 
|  | type E = Either<I, I>; | 
|  |  | 
|  | let v: Vec<i32> = (0..1024).collect(); | 
|  |  | 
|  | // try iterating the left side | 
|  | let left: E = Either::Left(v.clone().into_par_iter()); | 
|  | assert!(left.eq(v.clone())); | 
|  |  | 
|  | // try iterating the right side | 
|  | let right: E = Either::Right(v.clone().into_par_iter()); | 
|  | assert!(right.eq(v.clone())); | 
|  |  | 
|  | // try an indexed iterator | 
|  | let left: E = Either::Left(v.clone().into_par_iter()); | 
|  | assert!(left.enumerate().eq(v.clone().into_par_iter().enumerate())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_either_extend() { | 
|  | type E = Either<Vec<i32>, HashSet<i32>>; | 
|  |  | 
|  | let v: Vec<i32> = (0..1024).collect(); | 
|  |  | 
|  | // try extending the left side | 
|  | let mut left: E = Either::Left(vec![]); | 
|  | left.par_extend(v.clone()); | 
|  | assert_eq!(left.as_ref(), Either::Left(&v)); | 
|  |  | 
|  | // try extending the right side | 
|  | let mut right: E = Either::Right(HashSet::default()); | 
|  | right.par_extend(v.clone()); | 
|  | assert_eq!(right, Either::Right(v.iter().cloned().collect())); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_interleave_eq() { | 
|  | let xs: Vec<usize> = (0..10).collect(); | 
|  | let ys: Vec<usize> = (10..20).collect(); | 
|  |  | 
|  | let mut actual = vec![]; | 
|  | xs.par_iter() | 
|  | .interleave(&ys) | 
|  | .map(|&i| i) | 
|  | .collect_into_vec(&mut actual); | 
|  |  | 
|  | let expected: Vec<usize> = (0..10) | 
|  | .zip(10..20) | 
|  | .flat_map(|(i, j)| vec![i, j].into_iter()) | 
|  | .collect(); | 
|  | assert_eq!(expected, actual); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_interleave_uneven() { | 
|  | let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![ | 
|  | ( | 
|  | (0..9).collect(), | 
|  | vec![10], | 
|  | vec![0, 10, 1, 2, 3, 4, 5, 6, 7, 8], | 
|  | ), | 
|  | ( | 
|  | vec![10], | 
|  | (0..9).collect(), | 
|  | vec![10, 0, 1, 2, 3, 4, 5, 6, 7, 8], | 
|  | ), | 
|  | ( | 
|  | (0..5).collect(), | 
|  | (5..10).collect(), | 
|  | (0..5) | 
|  | .zip(5..10) | 
|  | .flat_map(|(i, j)| vec![i, j].into_iter()) | 
|  | .collect(), | 
|  | ), | 
|  | (vec![], (0..9).collect(), (0..9).collect()), | 
|  | ((0..9).collect(), vec![], (0..9).collect()), | 
|  | ( | 
|  | (0..50).collect(), | 
|  | (50..100).collect(), | 
|  | (0..50) | 
|  | .zip(50..100) | 
|  | .flat_map(|(i, j)| vec![i, j].into_iter()) | 
|  | .collect(), | 
|  | ), | 
|  | ]; | 
|  |  | 
|  | for (i, (xs, ys, expected)) in cases.into_iter().enumerate() { | 
|  | let mut res = vec![]; | 
|  | xs.par_iter() | 
|  | .interleave(&ys) | 
|  | .map(|&i| i) | 
|  | .collect_into_vec(&mut res); | 
|  | assert_eq!(expected, res, "Case {} failed", i); | 
|  |  | 
|  | res.truncate(0); | 
|  | xs.par_iter() | 
|  | .interleave(&ys) | 
|  | .rev() | 
|  | .map(|&i| i) | 
|  | .collect_into_vec(&mut res); | 
|  | assert_eq!( | 
|  | expected.into_iter().rev().collect::<Vec<usize>>(), | 
|  | res, | 
|  | "Case {} reversed failed", | 
|  | i | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_interleave_shortest() { | 
|  | let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![ | 
|  | ((0..9).collect(), vec![10], vec![0, 10, 1]), | 
|  | (vec![10], (0..9).collect(), vec![10, 0]), | 
|  | ( | 
|  | (0..5).collect(), | 
|  | (5..10).collect(), | 
|  | (0..5) | 
|  | .zip(5..10) | 
|  | .flat_map(|(i, j)| vec![i, j].into_iter()) | 
|  | .collect(), | 
|  | ), | 
|  | (vec![], (0..9).collect(), vec![]), | 
|  | ((0..9).collect(), vec![], vec![0]), | 
|  | ( | 
|  | (0..50).collect(), | 
|  | (50..100).collect(), | 
|  | (0..50) | 
|  | .zip(50..100) | 
|  | .flat_map(|(i, j)| vec![i, j].into_iter()) | 
|  | .collect(), | 
|  | ), | 
|  | ]; | 
|  |  | 
|  | for (i, (xs, ys, expected)) in cases.into_iter().enumerate() { | 
|  | let mut res = vec![]; | 
|  | xs.par_iter() | 
|  | .interleave_shortest(&ys) | 
|  | .map(|&i| i) | 
|  | .collect_into_vec(&mut res); | 
|  | assert_eq!(expected, res, "Case {} failed", i); | 
|  |  | 
|  | res.truncate(0); | 
|  | xs.par_iter() | 
|  | .interleave_shortest(&ys) | 
|  | .rev() | 
|  | .map(|&i| i) | 
|  | .collect_into_vec(&mut res); | 
|  | assert_eq!( | 
|  | expected.into_iter().rev().collect::<Vec<usize>>(), | 
|  | res, | 
|  | "Case {} reversed failed", | 
|  | i | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | #[should_panic(expected = "chunk_size must not be zero")] | 
|  | fn check_chunks_zero_size() { | 
|  | let _: Vec<Vec<i32>> = vec![1, 2, 3].into_par_iter().chunks(0).collect(); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chunks_even_size() { | 
|  | assert_eq!( | 
|  | vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]], | 
|  | (1..10).into_par_iter().chunks(3).collect::<Vec<Vec<i32>>>() | 
|  | ); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chunks_empty() { | 
|  | let v: Vec<i32> = vec![]; | 
|  | let expected: Vec<Vec<i32>> = vec![]; | 
|  | assert_eq!( | 
|  | expected, | 
|  | v.into_par_iter().chunks(2).collect::<Vec<Vec<i32>>>() | 
|  | ); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chunks_len() { | 
|  | assert_eq!(4, (0..8).into_par_iter().chunks(2).len()); | 
|  | assert_eq!(3, (0..9).into_par_iter().chunks(3).len()); | 
|  | assert_eq!(3, (0..8).into_par_iter().chunks(3).len()); | 
|  | assert_eq!(1, (&[1]).par_iter().chunks(3).len()); | 
|  | assert_eq!(0, (0..0).into_par_iter().chunks(3).len()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_chunks_uneven() { | 
|  | let cases: Vec<(Vec<u32>, usize, Vec<Vec<u32>>)> = vec![ | 
|  | ((0..5).collect(), 3, vec![vec![0, 1, 2], vec![3, 4]]), | 
|  | (vec![1], 5, vec![vec![1]]), | 
|  | ((0..4).collect(), 3, vec![vec![0, 1, 2], vec![3]]), | 
|  | ]; | 
|  |  | 
|  | for (i, (v, n, expected)) in cases.into_iter().enumerate() { | 
|  | let mut res: Vec<Vec<u32>> = vec![]; | 
|  | v.par_iter() | 
|  | .chunks(n) | 
|  | .map(|v| v.into_iter().cloned().collect()) | 
|  | .collect_into_vec(&mut res); | 
|  | assert_eq!(expected, res, "Case {} failed", i); | 
|  |  | 
|  | res.truncate(0); | 
|  | v.into_par_iter().chunks(n).rev().collect_into_vec(&mut res); | 
|  | assert_eq!( | 
|  | expected.into_iter().rev().collect::<Vec<Vec<u32>>>(), | 
|  | res, | 
|  | "Case {} reversed failed", | 
|  | i | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | #[ignore] // it's quick enough on optimized 32-bit platforms, but otherwise... ... ... | 
|  | #[should_panic(expected = "overflow")] | 
|  | #[cfg(debug_assertions)] | 
|  | fn check_repeat_unbounded() { | 
|  | // use just one thread, so we don't get infinite adaptive splitting | 
|  | // (forever stealing and re-splitting jobs that will panic on overflow) | 
|  | let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap(); | 
|  | pool.install(|| { | 
|  | println!("counted {} repeats", repeat(()).count()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_repeat_find_any() { | 
|  | let even = repeat(4).find_any(|&x| x % 2 == 0); | 
|  | assert_eq!(even, Some(4)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_repeat_take() { | 
|  | let v: Vec<_> = repeat(4).take(4).collect(); | 
|  | assert_eq!(v, [4, 4, 4, 4]); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_repeat_zip() { | 
|  | let v = vec![4, 4, 4, 4]; | 
|  | let mut fours: Vec<_> = repeat(4).zip(v).collect(); | 
|  | assert_eq!(fours.len(), 4); | 
|  | while let Some(item) = fours.pop() { | 
|  | assert_eq!(item, (4, 4)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_repeatn_zip_left() { | 
|  | let v = vec![4, 4, 4, 4]; | 
|  | let mut fours: Vec<_> = repeatn(4, usize::MAX).zip(v).collect(); | 
|  | assert_eq!(fours.len(), 4); | 
|  | while let Some(item) = fours.pop() { | 
|  | assert_eq!(item, (4, 4)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_repeatn_zip_right() { | 
|  | let v = vec![4, 4, 4, 4]; | 
|  | let mut fours: Vec<_> = v.into_par_iter().zip(repeatn(4, usize::MAX)).collect(); | 
|  | assert_eq!(fours.len(), 4); | 
|  | while let Some(item) = fours.pop() { | 
|  | assert_eq!(item, (4, 4)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_empty() { | 
|  | // drive_unindexed | 
|  | let mut v: Vec<i32> = empty().filter(|_| unreachable!()).collect(); | 
|  | assert!(v.is_empty()); | 
|  |  | 
|  | // drive (indexed) | 
|  | empty().collect_into_vec(&mut v); | 
|  | assert!(v.is_empty()); | 
|  |  | 
|  | // with_producer | 
|  | let v: Vec<(i32, i32)> = empty().zip(1..10).collect(); | 
|  | assert!(v.is_empty()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_once() { | 
|  | // drive_unindexed | 
|  | let mut v: Vec<i32> = once(42).filter(|_| true).collect(); | 
|  | assert_eq!(v, &[42]); | 
|  |  | 
|  | // drive (indexed) | 
|  | once(42).collect_into_vec(&mut v); | 
|  | assert_eq!(v, &[42]); | 
|  |  | 
|  | // with_producer | 
|  | let v: Vec<(i32, i32)> = once(42).zip(1..10).collect(); | 
|  | assert_eq!(v, &[(42, 1)]); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn check_update() { | 
|  | let mut v: Vec<Vec<_>> = vec![vec![1], vec![3, 2, 1]]; | 
|  | v.par_iter_mut().update(|v| v.push(0)).for_each(|_| ()); | 
|  |  | 
|  | assert_eq!(v, vec![vec![1, 0], vec![3, 2, 1, 0]]); | 
|  | } |