blob: f05c714acd3f582d81266db967b109b3fce4c954 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <ddk/protocol/usb.h>
#include <usb/usb-request.h>
#include <ddk/debug.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
static inline size_t req_buffer_size(usb_request_t* req, size_t offset) {
size_t remaining = req->size - req->offset - offset;
// May overflow.
if (remaining > req->size) {
remaining = 0;
}
return remaining;
}
static inline void* req_buffer_virt(usb_request_t* req) {
return (void*)(((uintptr_t)req->virt) + req->offset);
}
__EXPORT zx_status_t usb_request_alloc(usb_request_t** out, uint64_t data_size,
uint8_t ep_address, size_t req_size) {
if (req_size < sizeof(usb_request_t)) {
return ZX_ERR_INVALID_ARGS;
}
usb_request_t* req = calloc(1, req_size);
if (!req) {
return ZX_ERR_NO_MEMORY;
}
zx_status_t status = ZX_OK;
if (data_size > 0) {
status = zx_vmo_create(data_size, 0, &req->vmo_handle);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_alloc: Failed to create vmo: %d\n", status);
free(req);
return status;
}
zx_vaddr_t mapped_addr;
status = zx_vmar_map(zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
0, req->vmo_handle, 0, data_size, &mapped_addr);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_alloc: Failed to map the vmo: %d\n", status);
free(req);
return status;
}
req->virt = mapped_addr;
req->offset = 0;
req->size = data_size;
}
req->alloc_size = req_size;
req->header.ep_address = ep_address;
req->header.length = data_size;
req->release_frees = true;
*out = req;
return ZX_OK;
}
// usb_request_alloc_vmo() creates a new usb request with the given VMO.
__EXPORT zx_status_t usb_request_alloc_vmo(usb_request_t** out, zx_handle_t vmo_handle,
uint64_t vmo_offset, uint64_t length,
uint8_t ep_address, size_t req_size) {
usb_request_t* req = calloc(1, req_size);
if (!req) {
return ZX_ERR_NO_MEMORY;
}
zx_handle_t dup_handle;
zx_status_t status = zx_handle_duplicate(vmo_handle, ZX_RIGHT_SAME_RIGHTS, &dup_handle);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_alloc_vmo: Failed to duplicate handle: %d\n", status);
free(req);
return status;
}
uint64_t size;
status = zx_vmo_get_size(dup_handle, &size);
if (status != ZX_OK) {
zx_handle_close(dup_handle);
free(req);
return status;
}
zx_vaddr_t mapped_addr;
status = zx_vmar_map(zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
0, dup_handle, 0, size, &mapped_addr);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_alloc_vmo: zx_vmar_map failed %d size: %zu\n", status, size);
zx_handle_close(dup_handle);
free(req);
return status;
}
req->alloc_size = req_size;
req->vmo_handle = dup_handle;
req->virt = mapped_addr;
req->offset = vmo_offset;
req->size = size;
req->pmt = ZX_HANDLE_INVALID;
req->header.ep_address = ep_address;
req->header.length = length;
req->release_frees = true;
*out = req;
return ZX_OK;
}
// usb_request_init() initializes the statically allocated usb request with the given VMO.
// This will free any resources allocated by the usb request but not the usb request itself.
__EXPORT zx_status_t usb_request_init(usb_request_t* req, zx_handle_t vmo_handle,
uint64_t vmo_offset, uint64_t length, uint8_t ep_address) {
memset(req, 0, req->alloc_size);
zx_handle_t dup_handle;
zx_status_t status = zx_handle_duplicate(vmo_handle, ZX_RIGHT_SAME_RIGHTS, &dup_handle);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_init: Failed to duplicate handle: %d\n", status);
return status;
}
uint64_t size;
status = zx_vmo_get_size(dup_handle, &size);
if (status != ZX_OK) {
zx_handle_close(dup_handle);
return status;
}
//TODO(ravoorir): Do not map the entire vmo. Map only what is needed.
zx_vaddr_t mapped_addr;
status = zx_vmar_map(zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
0, dup_handle, 0, size, &mapped_addr);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_init: zx_vmar_map failed %d size: %zu\n", status, size);
zx_handle_close(dup_handle);
return status;
}
req->vmo_handle = dup_handle;
req->virt = mapped_addr;
req->offset = vmo_offset;
req->size = size;
req->pmt = ZX_HANDLE_INVALID;
req->header.ep_address = ep_address;
req->header.length = length;
req->release_frees = false;
return ZX_OK;
}
__EXPORT zx_status_t usb_request_set_sg_list(usb_request_t* req,
phys_iter_sg_entry_t* sg_list, size_t sg_count) {
if (req->sg_list) {
free(req->sg_list);
req->sg_list = NULL;
req->sg_count = 0;
}
size_t total_length = 0;
// TODO(jocelyndang): disallow overlapping entries?
for (size_t i = 0; i < sg_count; ++i) {
phys_iter_sg_entry_t* entry = &sg_list[i];
if (entry->length == 0 || (req_buffer_size(req, entry->offset) < entry->length)) {
return ZX_ERR_INVALID_ARGS;
}
total_length += entry->length;
}
size_t num_bytes = sg_count * sizeof(phys_iter_sg_entry_t);
req->sg_list = malloc(num_bytes);
if (req->sg_list == NULL) {
zxlogf(ERROR, "usb_request_set_sg_list: out of memory\n");
return ZX_ERR_NO_MEMORY;
}
memcpy(req->sg_list, sg_list, num_bytes);
req->sg_count = sg_count;
req->header.length = total_length;
return ZX_OK;
}
__EXPORT ssize_t usb_request_copy_from(usb_request_t* req, void* data, size_t length, size_t offset) {
length = MIN(req_buffer_size(req, offset), length);
memcpy(data, req_buffer_virt(req) + offset, length);
return length;
}
__EXPORT ssize_t usb_request_copy_to(usb_request_t* req, const void* data, size_t length, size_t offset) {
length = MIN(req_buffer_size(req, offset), length);
memcpy(req_buffer_virt(req) + offset, data, length);
return length;
}
__EXPORT zx_status_t usb_request_mmap(usb_request_t* req, void** data) {
*data = req_buffer_virt(req);
// TODO(jocelyndang): modify this once we start passing usb requests across process boundaries.
return ZX_OK;
}
__EXPORT zx_status_t usb_request_cacheop(usb_request_t* req, uint32_t op, size_t offset, size_t length) {
if (length > 0) {
return zx_vmo_op_range(req->vmo_handle, op, req->offset + offset, length, NULL, 0);
} else {
return ZX_OK;
}
}
__EXPORT zx_status_t usb_request_cache_flush(usb_request_t* req, zx_off_t offset, size_t length) {
if (offset + length < offset || offset + length > req->size) {
return ZX_ERR_OUT_OF_RANGE;
}
return zx_cache_flush(req_buffer_virt(req) + offset, length, ZX_CACHE_FLUSH_DATA);
}
__EXPORT zx_status_t usb_request_cache_flush_invalidate(usb_request_t* req, zx_off_t offset, size_t length) {
if (offset + length < offset || offset + length > req->size) {
return ZX_ERR_OUT_OF_RANGE;
}
return zx_cache_flush(req_buffer_virt(req) + offset, length,
ZX_CACHE_FLUSH_DATA | ZX_CACHE_FLUSH_INVALIDATE);
}
zx_status_t usb_request_physmap(usb_request_t* req, zx_handle_t bti_handle) {
if (req->phys_count > 0) {
return ZX_OK;
}
// zx_bti_pin returns whole pages, so take into account unaligned vmo
// offset and length when calculating the amount of pages returned
uint64_t page_offset = ROUNDDOWN(req->offset, PAGE_SIZE);
// The buffer size is the vmo size from offset 0.
uint64_t page_length = req->size - page_offset;
uint64_t pages = ROUNDUP(page_length, PAGE_SIZE) / PAGE_SIZE;
zx_paddr_t* paddrs = malloc(pages * sizeof(zx_paddr_t));
if (paddrs == NULL) {
zxlogf(ERROR, "usb_request_physmap: out of memory\n");
return ZX_ERR_NO_MEMORY;
}
const size_t sub_offset = page_offset & (PAGE_SIZE - 1);
const size_t pin_offset = page_offset - sub_offset;
const size_t pin_length = ROUNDUP(page_length + sub_offset, PAGE_SIZE);
if (pin_length / PAGE_SIZE != pages) {
return ZX_ERR_INVALID_ARGS;
}
zx_handle_t pmt;
uint32_t options = ZX_BTI_PERM_READ | ZX_BTI_PERM_WRITE;
zx_status_t status = zx_bti_pin(bti_handle, options, req->vmo_handle,
pin_offset, pin_length, paddrs, pages, &pmt);
if (status != ZX_OK) {
zxlogf(ERROR, "usb_request_physmap: zx_bti_pin failed:%d\n", status);
free(paddrs);
return status;
}
// Account for the initial misalignment if any
paddrs[0] += sub_offset;
req->phys_list = paddrs;
req->phys_count = pages;
req->pmt = pmt;
return ZX_OK;
}
__EXPORT void usb_request_release(usb_request_t* req) {
if (req->vmo_handle != ZX_HANDLE_INVALID) {
if (req->pmt != ZX_HANDLE_INVALID) {
zx_status_t status = zx_pmt_unpin(req->pmt);
ZX_DEBUG_ASSERT(status == ZX_OK);
req->pmt = ZX_HANDLE_INVALID;
}
zx_vmar_unmap(zx_vmar_root_self(), (uintptr_t)req->virt, req->size);
zx_handle_close(req->vmo_handle);
req->vmo_handle = ZX_HANDLE_INVALID;
}
if (req->phys_list && req->pmt != ZX_HANDLE_INVALID) {
zx_status_t status = zx_pmt_unpin(req->pmt);
ZX_DEBUG_ASSERT(status == ZX_OK);
req->pmt = ZX_HANDLE_INVALID;
}
free(req->phys_list);
req->phys_list = NULL;
req->phys_count = 0;
free(req->sg_list);
req->sg_list = NULL;
req->sg_count = 0;
if (req->release_frees) {
free(req);
}
}
__EXPORT void usb_request_complete(usb_request_t* req, zx_status_t status, zx_off_t actual,
usb_request_complete_cb complete_cb, void* complete_cb_cookie) {
req->response.status = status;
req->response.actual = actual;
if (complete_cb) {
complete_cb(req, complete_cb_cookie);
}
}
__EXPORT void usb_request_phys_iter_init(phys_iter_t* iter, usb_request_t* req, size_t max_length) {
phys_iter_buffer_t buf = {
.length = req->header.length,
.vmo_offset = req->offset,
.phys = req->phys_list,
.phys_count = req->phys_count,
.sg_list = req->sg_list,
.sg_count = req->sg_count
};
phys_iter_init(iter, &buf, max_length);
}
__EXPORT size_t usb_request_phys_iter_next(phys_iter_t* iter, zx_paddr_t* out_paddr) {
return phys_iter_next(iter, out_paddr);
}
__EXPORT void usb_request_pool_init(usb_request_pool_t* pool, uint64_t node_offset) {
mtx_init(&pool->lock, mtx_plain);
list_initialize(&pool->free_reqs);
pool->node_offset = node_offset;
}
__EXPORT zx_status_t usb_request_pool_add(usb_request_pool_t* pool, usb_request_t* req) {
mtx_lock(&pool->lock);
if (req->alloc_size < (pool->node_offset + sizeof(list_node_t))) {
mtx_unlock(&pool->lock);
return ZX_ERR_INVALID_ARGS;
}
list_add_tail(&pool->free_reqs, (list_node_t*)((uintptr_t)req + pool->node_offset));
mtx_unlock(&pool->lock);
return ZX_OK;
}
__EXPORT usb_request_t* usb_request_pool_get(usb_request_pool_t* pool, size_t length) {
usb_request_t* req = NULL;
bool found = false;
mtx_lock(&pool->lock);
list_node_t* node;
list_for_every(&pool->free_reqs, node) {
req = (usb_request_t*)((uintptr_t)node - pool->node_offset);
if (req->size == length) {
found = true;
break;
}
}
if (found) {
list_delete(node);
}
mtx_unlock(&pool->lock);
return found ? req : NULL;
}
__EXPORT void usb_request_pool_release(usb_request_pool_t* pool) {
mtx_lock(&pool->lock);
usb_request_t* req;
list_node_t* node;
while ((node = list_remove_tail(&pool->free_reqs)) != NULL) {
req = (usb_request_t*)((uintptr_t)node - pool->node_offset);
usb_request_release(req);
}
mtx_unlock(&pool->lock);
}
__EXPORT zx_status_t usb_req_list_add_head(list_node_t* list, usb_request_t* req,
size_t parent_req_size) {
if (req->alloc_size < parent_req_size + sizeof(list_node_t)) {
return ZX_ERR_INVALID_ARGS;
}
usb_req_internal_t* req_int = USB_REQ_TO_REQ_INTERNAL(req, parent_req_size);
list_add_head(list, &req_int->node);
return ZX_OK;
}
__EXPORT zx_status_t usb_req_list_add_tail(list_node_t* list, usb_request_t* req,
size_t parent_req_size) {
if (req->alloc_size < parent_req_size + sizeof(list_node_t)) {
return ZX_ERR_INVALID_ARGS;
}
usb_req_internal_t* req_int = USB_REQ_TO_REQ_INTERNAL(req, parent_req_size);
list_add_tail(list, &req_int->node);
return ZX_OK;
}
__EXPORT usb_request_t* usb_req_list_remove_head(list_node_t* list, size_t parent_req_size) {
usb_req_internal_t* req_int = list_remove_head_type(list, usb_req_internal_t, node);
if (req_int) {
return REQ_INTERNAL_TO_USB_REQ(req_int, parent_req_size);
}
return NULL;
}