blob: aea52243c0593dd90be7ee25262d29d6fa653017 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include "vmexit_priv.h"
#include <bits.h>
#include <platform.h>
#include <trace.h>
#include <arch/arm64/hypervisor/el2_state.h>
#include <arch/hypervisor.h>
#include <dev/psci.h>
#include <dev/timer/arm_generic.h>
#include <hypervisor/ktrace.h>
#include <vm/fault.h>
#include <vm/physmap.h>
#include <zircon/syscalls/hypervisor.h>
#include <zircon/syscalls/port.h>
#define LOCAL_TRACE 0
#define SET_SYSREG(sysreg) \
({ \
guest_state->system_state.sysreg = reg; \
LTRACEF("guest " #sysreg ": %#lx\n", guest_state->system_state.sysreg); \
next_pc(guest_state); \
ZX_OK; \
})
static constexpr size_t kPageTableLevelShift = 3;
static constexpr uint16_t kSmcPsci = 0;
enum TimerControl : uint32_t {
ENABLE = 1u << 0,
IMASK = 1u << 1,
ISTATUS = 1u << 2,
};
ExceptionSyndrome::ExceptionSyndrome(uint32_t esr) {
ec = static_cast<ExceptionClass>(BITS_SHIFT(esr, 31, 26));
iss = BITS(esr, 24, 0);
}
WaitInstruction::WaitInstruction(uint32_t iss) {
is_wfe = BIT(iss, 0);
}
SmcInstruction::SmcInstruction(uint32_t iss) {
imm = static_cast<uint16_t>(BITS(iss, 15, 0));
}
SystemInstruction::SystemInstruction(uint32_t iss) {
sysreg = static_cast<SystemRegister>(BITS(iss, 21, 10) >> 6 | BITS_SHIFT(iss, 4, 1));
xt = static_cast<uint8_t>(BITS_SHIFT(iss, 9, 5));
read = BIT(iss, 0);
}
SgiRegister::SgiRegister(uint64_t sgir) {
aff3 = static_cast<uint8_t>(BITS_SHIFT(sgir, 55, 48));
aff2 = static_cast<uint8_t>(BITS_SHIFT(sgir, 39, 32));
aff1 = static_cast<uint8_t>(BITS_SHIFT(sgir, 23, 16));
rs = static_cast<uint8_t>(BITS_SHIFT(sgir, 47, 44));
target_list = static_cast<uint8_t>(BITS_SHIFT(sgir, 15, 0));
int_id = static_cast<uint8_t>(BITS_SHIFT(sgir, 27, 24));
all_but_local = BIT(sgir, 40);
}
DataAbort::DataAbort(uint32_t iss) {
valid = BIT_SHIFT(iss, 24);
access_size = static_cast<uint8_t>(1u << BITS_SHIFT(iss, 23, 22));
sign_extend = BIT(iss, 21);
xt = static_cast<uint8_t>(BITS_SHIFT(iss, 20, 16));
read = !BIT(iss, 6);
}
static void next_pc(GuestState* guest_state) {
guest_state->system_state.elr_el2 += 4;
}
static bool timer_enabled(GuestState* guest_state) {
bool enabled = guest_state->cntv_ctl_el0 & TimerControl::ENABLE;
bool masked = guest_state->cntv_ctl_el0 & TimerControl::IMASK;
return enabled && !masked;
}
void timer_maybe_interrupt(GuestState* guest_state, GichState* gich_state) {
if (timer_enabled(guest_state) && current_ticks() >= guest_state->cntv_cval_el0 &&
!gich_state->active_interrupts.GetOne(kTimerVector)) {
gich_state->interrupt_tracker.Track(kTimerVector, hypervisor::InterruptType::PHYSICAL);
}
}
static zx_status_t handle_wfi_wfe_instruction(uint32_t iss, GuestState* guest_state,
GichState* gich_state) {
next_pc(guest_state);
const WaitInstruction wi(iss);
if (wi.is_wfe) {
ktrace_vcpu_exit(VCPU_WFE_INSTRUCTION, guest_state->system_state.elr_el2);
thread_reschedule();
return ZX_OK;
}
ktrace_vcpu_exit(VCPU_WFI_INSTRUCTION, guest_state->system_state.elr_el2);
zx_time_t deadline = ZX_TIME_INFINITE;
if (timer_enabled(guest_state)) {
if (current_ticks() >= guest_state->cntv_cval_el0) {
return ZX_OK;
}
deadline = cntpct_to_zx_time(guest_state->cntv_cval_el0);
}
return gich_state->interrupt_tracker.Wait(deadline, nullptr);
}
static zx_status_t handle_smc_instruction(uint32_t iss, GuestState* guest_state,
zx_port_packet_t* packet) {
const SmcInstruction si(iss);
if (si.imm != kSmcPsci)
return ZX_ERR_NOT_SUPPORTED;
next_pc(guest_state);
switch (guest_state->x[0]) {
case PSCI64_CPU_ON:
memset(packet, 0, sizeof(*packet));
packet->type = ZX_PKT_TYPE_GUEST_VCPU;
packet->guest_vcpu.type = ZX_PKT_GUEST_VCPU_STARTUP;
packet->guest_vcpu.startup.id = guest_state->x[1];
packet->guest_vcpu.startup.entry = guest_state->x[2];
guest_state->x[0] = PSCI_SUCCESS;
return ZX_ERR_NEXT;
default:
guest_state->x[0] = PSCI_NOT_SUPPORTED;
return ZX_ERR_NOT_SUPPORTED;
}
}
static void clean_invalidate_cache(zx_paddr_t table, size_t index_shift) {
// TODO(abdulla): Make this understand concatenated page tables.
auto* pte = static_cast<pte_t*>(paddr_to_physmap(table));
pte_t page = index_shift > MMU_GUEST_PAGE_SIZE_SHIFT ?
MMU_PTE_L012_DESCRIPTOR_BLOCK : MMU_PTE_L3_DESCRIPTOR_PAGE;
for (size_t i = 0; i < PAGE_SIZE / sizeof(pte_t); i++) {
pte_t desc = pte[i] & MMU_PTE_DESCRIPTOR_MASK;
pte_t paddr = pte[i] & MMU_PTE_OUTPUT_ADDR_MASK;
if (desc == page) {
zx_vaddr_t vaddr = reinterpret_cast<zx_vaddr_t>(paddr_to_physmap(paddr));
arch_clean_invalidate_cache_range(vaddr, 1lu << index_shift);
} else if (desc != MMU_PTE_DESCRIPTOR_INVALID) {
size_t adjust_shift = MMU_GUEST_PAGE_SIZE_SHIFT - kPageTableLevelShift;
clean_invalidate_cache(paddr, index_shift - adjust_shift);
}
}
}
static zx_status_t handle_system_instruction(uint32_t iss, uint64_t* hcr, GuestState* guest_state,
hypervisor::GuestPhysicalAddressSpace* gpas,
zx_port_packet_t* packet) {
const SystemInstruction si(iss);
const uint64_t reg = guest_state->x[si.xt];
switch (si.sysreg) {
case SystemRegister::MAIR_EL1:
return SET_SYSREG(mair_el1);
case SystemRegister::SCTLR_EL1: {
if (si.read) {
return ZX_ERR_NOT_SUPPORTED;
}
// From ARM DDI 0487B.b, Section D10.2.89: If the value of HCR_EL2.{DC,
// TGE} is not {0, 0} then in Non-secure state the PE behaves as if the
// value of the SCTLR_EL1.M field is 0 for all purposes other than
// returning the value of a direct read of the field.
//
// Therefore if SCTLR_EL1.M is set to 1, we need to set HCR_EL2.DC to 0
// and invalidate the guest physical address space.
uint32_t sctlr_el1 = reg & UINT32_MAX;
if (sctlr_el1 & SCTLR_ELX_M) {
*hcr &= ~HCR_EL2_DC;
// Additionally, if the guest has also set SCTLR_EL1.C to 1, we no
// longer need to trap writes to virtual memory control registers,
// so we can set HCR_EL2.TVM to 0 to improve performance.
if (sctlr_el1 & SCTLR_ELX_C) {
*hcr &= ~HCR_EL2_TVM;
}
clean_invalidate_cache(gpas->arch_aspace()->arch_table_phys(), MMU_GUEST_TOP_SHIFT);
}
guest_state->system_state.sctlr_el1 = sctlr_el1;
LTRACEF("guest sctlr_el1: %#x\n", sctlr_el1);
LTRACEF("guest hcr_el2: %#lx\n", *hcr);
next_pc(guest_state);
return ZX_OK;
}
case SystemRegister::TCR_EL1:
return SET_SYSREG(tcr_el1);
case SystemRegister::TTBR0_EL1:
return SET_SYSREG(ttbr0_el1);
case SystemRegister::TTBR1_EL1:
return SET_SYSREG(ttbr1_el1);
case SystemRegister::OSLAR_EL1:
case SystemRegister::OSLSR_EL1:
case SystemRegister::OSDLR_EL1:
case SystemRegister::DBGPRCR_EL1:
next_pc(guest_state);
// These registers are RAZ/WI. Their state is dictated by the host.
if (si.read) {
guest_state->x[si.xt] = 0;
}
return ZX_OK;
case SystemRegister::ICC_SGI1R_EL1: {
if (si.read) {
// ICC_SGI1R_EL1 is write-only.
return ZX_ERR_INVALID_ARGS;
}
SgiRegister sgi(reg);
if (sgi.aff3 != 0 || sgi.aff2 != 0 || sgi.aff1 != 0 || sgi.rs != 0) {
return ZX_ERR_NOT_SUPPORTED;
}
memset(packet, 0, sizeof(*packet));
packet->type = ZX_PKT_TYPE_GUEST_VCPU;
packet->guest_vcpu.type = ZX_PKT_GUEST_VCPU_INTERRUPT;
if (sgi.all_but_local) {
auto vpid = BITS(guest_state->system_state.vmpidr_el2, 8, 0);
packet->guest_vcpu.interrupt.mask = ~(static_cast<uint64_t>(1) << vpid);
} else {
packet->guest_vcpu.interrupt.mask = sgi.target_list;
}
packet->guest_vcpu.interrupt.vector = sgi.int_id;
next_pc(guest_state);
return ZX_ERR_NEXT;
}
}
dprintf(CRITICAL, "Unhandled system register %#x\n", static_cast<uint16_t>(si.sysreg));
return ZX_ERR_NOT_SUPPORTED;
}
static zx_status_t handle_instruction_abort(GuestState* guest_state,
hypervisor::GuestPhysicalAddressSpace* gpas) {
const zx_vaddr_t guest_paddr = guest_state->hpfar_el2;
zx_status_t status = gpas->PageFault(guest_paddr);
if (status != ZX_OK) {
dprintf(CRITICAL, "Unhandled instruction abort %#lx\n", guest_paddr);
}
return status;
}
static zx_status_t handle_data_abort(uint32_t iss, GuestState* guest_state,
hypervisor::GuestPhysicalAddressSpace* gpas,
hypervisor::TrapMap* traps,
zx_port_packet_t* packet) {
zx_vaddr_t guest_paddr = guest_state->hpfar_el2;
hypervisor::Trap* trap;
zx_status_t status = traps->FindTrap(ZX_GUEST_TRAP_BELL, guest_paddr, &trap);
switch (status) {
case ZX_ERR_NOT_FOUND:
status = gpas->PageFault(guest_paddr);
if (status != ZX_OK) {
dprintf(CRITICAL, "Unhandled data abort %#lx\n", guest_paddr);
}
return status;
case ZX_OK:
break;
default:
return status;
}
next_pc(guest_state);
// Combine the lower bits of FAR_EL2 with HPFAR_EL2 to get the exact IPA.
guest_paddr |= guest_state->far_el2 & (PAGE_SIZE - 1);
LTRACEF("guest far_el2: %#lx\n", guest_state->far_el2);
const DataAbort data_abort(iss);
switch (trap->kind()) {
case ZX_GUEST_TRAP_BELL:
if (data_abort.read)
return ZX_ERR_NOT_SUPPORTED;
*packet = {};
packet->key = trap->key();
packet->type = ZX_PKT_TYPE_GUEST_BELL;
packet->guest_bell.addr = guest_paddr;
if (!trap->HasPort())
return ZX_ERR_BAD_STATE;
return trap->Queue(*packet, nullptr);
case ZX_GUEST_TRAP_MEM:
if (!data_abort.valid)
return ZX_ERR_IO_DATA_INTEGRITY;
*packet = {};
packet->key = trap->key();
packet->type = ZX_PKT_TYPE_GUEST_MEM;
packet->guest_mem.addr = guest_paddr;
packet->guest_mem.access_size = data_abort.access_size;
packet->guest_mem.sign_extend = data_abort.sign_extend;
packet->guest_mem.xt = data_abort.xt;
packet->guest_mem.read = data_abort.read;
if (!data_abort.read)
packet->guest_mem.data = guest_state->x[data_abort.xt];
return ZX_ERR_NEXT;
default:
return ZX_ERR_BAD_STATE;
}
}
zx_status_t vmexit_handler(uint64_t* hcr, GuestState* guest_state, GichState* gich_state,
hypervisor::GuestPhysicalAddressSpace* gpas, hypervisor::TrapMap* traps,
zx_port_packet_t* packet) {
LTRACEF("guest esr_el1: %#x\n", guest_state->system_state.esr_el1);
LTRACEF("guest esr_el2: %#x\n", guest_state->esr_el2);
LTRACEF("guest elr_el2: %#lx\n", guest_state->system_state.elr_el2);
LTRACEF("guest spsr_el2: %#x\n", guest_state->system_state.spsr_el2);
ExceptionSyndrome syndrome(guest_state->esr_el2);
zx_status_t status;
switch (syndrome.ec) {
case ExceptionClass::WFI_WFE_INSTRUCTION:
LTRACEF("handling wfi/wfe instruction, iss %#x\n", syndrome.iss);
status = handle_wfi_wfe_instruction(syndrome.iss, guest_state, gich_state);
break;
case ExceptionClass::SMC_INSTRUCTION:
LTRACEF("handling smc instruction, iss %#x func %#lx\n", syndrome.iss, guest_state->x[0]);
ktrace_vcpu_exit(VCPU_SMC_INSTRUCTION, guest_state->system_state.elr_el2);
status = handle_smc_instruction(syndrome.iss, guest_state, packet);
break;
case ExceptionClass::SYSTEM_INSTRUCTION:
LTRACEF("handling system instruction\n");
ktrace_vcpu_exit(VCPU_SYSTEM_INSTRUCTION, guest_state->system_state.elr_el2);
status = handle_system_instruction(syndrome.iss, hcr, guest_state, gpas, packet);
break;
case ExceptionClass::INSTRUCTION_ABORT:
LTRACEF("handling instruction abort at %#lx\n", guest_state->hpfar_el2);
ktrace_vcpu_exit(VCPU_INSTRUCTION_ABORT, guest_state->system_state.elr_el2);
status = handle_instruction_abort(guest_state, gpas);
break;
case ExceptionClass::DATA_ABORT:
LTRACEF("handling data abort at %#lx\n", guest_state->hpfar_el2);
ktrace_vcpu_exit(VCPU_DATA_ABORT, guest_state->system_state.elr_el2);
status = handle_data_abort(syndrome.iss, guest_state, gpas, traps, packet);
break;
default:
LTRACEF("unhandled exception syndrome, ec %#x iss %#x\n",
static_cast<uint32_t>(syndrome.ec), syndrome.iss);
ktrace_vcpu_exit(VCPU_UNKNOWN, guest_state->system_state.elr_el2);
status = ZX_ERR_NOT_SUPPORTED;
break;
}
if (status != ZX_OK && status != ZX_ERR_NEXT && status != ZX_ERR_CANCELED) {
dprintf(CRITICAL, "VM exit handler for %u (%s) in EL%u at %#lx returned %d\n",
static_cast<uint32_t>(syndrome.ec),
exception_class_name(syndrome.ec),
BITS_SHIFT(guest_state->system_state.spsr_el2, 3, 2),
guest_state->system_state.elr_el2,
status);
}
return status;
}