blob: 2557edeaa409892cd74ae30849daa1bd5f3f43a8 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2014 Google Inc. All rights reserved
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <arch/arm64/el2_state.h>
#include <arch/arm64/mmu.h>
#include <arch/aspace.h>
#include <arch/mmu.h>
#include <assert.h>
#include <bitmap/raw-bitmap.h>
#include <bitmap/storage.h>
#include <bits.h>
#include <debug.h>
#include <err.h>
#include <fbl/atomic.h>
#include <fbl/auto_call.h>
#include <fbl/auto_lock.h>
#include <inttypes.h>
#include <kernel/mutex.h>
#include <lib/heap.h>
#include <lib/ktrace.h>
#include <rand.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <trace.h>
#include <vm/arch_vm_aspace.h>
#include <vm/physmap.h>
#include <vm/pmm.h>
#include <vm/vm.h>
#include <zircon/types.h>
#define LOCAL_TRACE 0
#define TRACE_CONTEXT_SWITCH 0
/* ktraces just local to this file */
#define LOCAL_KTRACE 0
#if LOCAL_KTRACE
#define LOCAL_KTRACE0(probe) ktrace_probe0(probe)
#define LOCAL_KTRACE2(probe, x, y) ktrace_probe2(probe, x, y)
#define LOCAL_KTRACE64(probe, x) ktrace_probe64(probe, x)
#else
#define LOCAL_KTRACE0(probe)
#define LOCAL_KTRACE2(probe, x, y)
#define LOCAL_KTRACE64(probe, x)
#endif
static_assert(((long)KERNEL_BASE >> MMU_KERNEL_SIZE_SHIFT) == -1, "");
static_assert(((long)KERNEL_ASPACE_BASE >> MMU_KERNEL_SIZE_SHIFT) == -1, "");
static_assert(MMU_KERNEL_SIZE_SHIFT <= 48, "");
static_assert(MMU_KERNEL_SIZE_SHIFT >= 25, "");
// The main translation table.
pte_t arm64_kernel_translation_table[MMU_KERNEL_PAGE_TABLE_ENTRIES_TOP] __ALIGNED(MMU_KERNEL_PAGE_TABLE_ENTRIES_TOP * 8);
pte_t* arm64_get_kernel_ptable() {
return arm64_kernel_translation_table;
}
namespace {
class AsidAllocator {
public:
AsidAllocator() { bitmap_.Reset(MMU_ARM64_MAX_USER_ASID + 1); }
~AsidAllocator() = default;
zx_status_t Alloc(uint16_t* asid);
zx_status_t Free(uint16_t asid);
private:
DISALLOW_COPY_ASSIGN_AND_MOVE(AsidAllocator);
fbl::Mutex lock_;
uint16_t last_ TA_GUARDED(lock_) = MMU_ARM64_FIRST_USER_ASID - 1;
bitmap::RawBitmapGeneric<bitmap::FixedStorage<MMU_ARM64_MAX_USER_ASID + 1>> bitmap_ TA_GUARDED(lock_);
static_assert(MMU_ARM64_ASID_BITS <= 16, "");
};
zx_status_t AsidAllocator::Alloc(uint16_t* asid) {
uint16_t new_asid;
// use the bitmap allocator to allocate ids in the range of
// [MMU_ARM64_FIRST_USER_ASID, MMU_ARM64_MAX_USER_ASID]
// start the search from the last found id + 1 and wrap when hitting the end of the range
{
fbl::AutoLock al(&lock_);
size_t val;
bool notfound = bitmap_.Get(last_ + 1, MMU_ARM64_MAX_USER_ASID + 1, &val);
if (unlikely(notfound)) {
// search again from the start
notfound = bitmap_.Get(MMU_ARM64_FIRST_USER_ASID, MMU_ARM64_MAX_USER_ASID + 1, &val);
if (unlikely(notfound)) {
TRACEF("ARM64: out of ASIDs\n");
return ZX_ERR_NO_MEMORY;
}
}
bitmap_.SetOne(val);
DEBUG_ASSERT(val <= UINT16_MAX);
new_asid = (uint16_t)val;
last_ = new_asid;
}
LTRACEF("new asid %#x\n", new_asid);
*asid = new_asid;
return ZX_OK;
}
zx_status_t AsidAllocator::Free(uint16_t asid) {
LTRACEF("free asid %#x\n", asid);
fbl::AutoLock al(&lock_);
bitmap_.ClearOne(asid);
return ZX_OK;
}
AsidAllocator asid;
} // namespace
// Convert user level mmu flags to flags that go in L1 descriptors.
static pte_t mmu_flags_to_s1_pte_attr(uint flags) {
pte_t attr = MMU_PTE_ATTR_AF;
switch (flags & ARCH_MMU_FLAG_CACHE_MASK) {
case ARCH_MMU_FLAG_CACHED:
attr |= MMU_PTE_ATTR_NORMAL_MEMORY | MMU_PTE_ATTR_SH_INNER_SHAREABLE;
break;
case ARCH_MMU_FLAG_WRITE_COMBINING:
case ARCH_MMU_FLAG_UNCACHED:
attr |= MMU_PTE_ATTR_STRONGLY_ORDERED;
break;
case ARCH_MMU_FLAG_UNCACHED_DEVICE:
attr |= MMU_PTE_ATTR_DEVICE;
break;
default:
// Invalid user-supplied flag.
DEBUG_ASSERT(false);
return ZX_ERR_INVALID_ARGS;
}
switch (flags & (ARCH_MMU_FLAG_PERM_USER | ARCH_MMU_FLAG_PERM_WRITE)) {
case 0:
attr |= MMU_PTE_ATTR_AP_P_RO_U_NA;
break;
case ARCH_MMU_FLAG_PERM_WRITE:
attr |= MMU_PTE_ATTR_AP_P_RW_U_NA;
break;
case ARCH_MMU_FLAG_PERM_USER:
attr |= MMU_PTE_ATTR_AP_P_RO_U_RO;
break;
case ARCH_MMU_FLAG_PERM_USER | ARCH_MMU_FLAG_PERM_WRITE:
attr |= MMU_PTE_ATTR_AP_P_RW_U_RW;
break;
}
if (!(flags & ARCH_MMU_FLAG_PERM_EXECUTE)) {
attr |= MMU_PTE_ATTR_UXN | MMU_PTE_ATTR_PXN;
}
if (flags & ARCH_MMU_FLAG_NS) {
attr |= MMU_PTE_ATTR_NON_SECURE;
}
return attr;
}
static pte_t mmu_flags_to_s2_pte_attr(uint flags) {
DEBUG_ASSERT((flags & ARCH_MMU_FLAG_CACHE_MASK) == ARCH_MMU_FLAG_CACHED);
// Only the inner-shareable, normal memory type is supported.
pte_t attr = MMU_PTE_ATTR_AF | MMU_PTE_ATTR_SH_INNER_SHAREABLE | MMU_S2_PTE_ATTR_NORMAL_MEMORY;
if (flags & ARCH_MMU_FLAG_PERM_WRITE) {
attr |= MMU_S2_PTE_ATTR_S2AP_RW;
} else {
attr |= MMU_S2_PTE_ATTR_S2AP_RO;
}
if (!(flags & ARCH_MMU_FLAG_PERM_EXECUTE)) {
attr |= MMU_S2_PTE_ATTR_XN;
}
return attr;
}
zx_status_t ArmArchVmAspace::Query(vaddr_t vaddr, paddr_t* paddr, uint* mmu_flags) {
fbl::AutoLock a(&lock_);
return QueryLocked(vaddr, paddr, mmu_flags);
}
zx_status_t ArmArchVmAspace::QueryLocked(vaddr_t vaddr, paddr_t* paddr, uint* mmu_flags) {
ulong index;
uint index_shift;
uint page_size_shift;
pte_t pte;
pte_t pte_addr;
uint descriptor_type;
volatile pte_t* page_table;
vaddr_t vaddr_rem;
canary_.Assert();
LTRACEF("aspace %p, vaddr 0x%lx\n", this, vaddr);
DEBUG_ASSERT(tt_virt_);
DEBUG_ASSERT(IsValidVaddr(vaddr));
if (!IsValidVaddr(vaddr))
return ZX_ERR_OUT_OF_RANGE;
// Compute shift values based on if this address space is for kernel or user space.
if (flags_ & ARCH_ASPACE_FLAG_KERNEL) {
index_shift = MMU_KERNEL_TOP_SHIFT;
page_size_shift = MMU_KERNEL_PAGE_SIZE_SHIFT;
vaddr_t kernel_base = ~0UL << MMU_KERNEL_SIZE_SHIFT;
vaddr_rem = vaddr - kernel_base;
index = vaddr_rem >> index_shift;
ASSERT(index < MMU_KERNEL_PAGE_TABLE_ENTRIES_TOP);
} else if (flags_ & ARCH_ASPACE_FLAG_GUEST) {
index_shift = MMU_GUEST_TOP_SHIFT;
page_size_shift = MMU_GUEST_PAGE_SIZE_SHIFT;
vaddr_rem = vaddr;
index = vaddr_rem >> index_shift;
ASSERT(index < MMU_GUEST_PAGE_TABLE_ENTRIES_TOP);
} else {
index_shift = MMU_USER_TOP_SHIFT;
page_size_shift = MMU_USER_PAGE_SIZE_SHIFT;
vaddr_rem = vaddr;
index = vaddr_rem >> index_shift;
ASSERT(index < MMU_USER_PAGE_TABLE_ENTRIES_TOP);
}
page_table = tt_virt_;
while (true) {
index = vaddr_rem >> index_shift;
vaddr_rem -= (vaddr_t)index << index_shift;
pte = page_table[index];
descriptor_type = pte & MMU_PTE_DESCRIPTOR_MASK;
pte_addr = pte & MMU_PTE_OUTPUT_ADDR_MASK;
LTRACEF("va %#" PRIxPTR ", index %lu, index_shift %u, rem %#" PRIxPTR
", pte %#" PRIx64 "\n",
vaddr, index, index_shift, vaddr_rem, pte);
if (descriptor_type == MMU_PTE_DESCRIPTOR_INVALID)
return ZX_ERR_NOT_FOUND;
if (descriptor_type == ((index_shift > page_size_shift) ? MMU_PTE_L012_DESCRIPTOR_BLOCK : MMU_PTE_L3_DESCRIPTOR_PAGE)) {
break;
}
if (index_shift <= page_size_shift ||
descriptor_type != MMU_PTE_L012_DESCRIPTOR_TABLE) {
PANIC_UNIMPLEMENTED;
}
page_table = static_cast<volatile pte_t*>(paddr_to_physmap(pte_addr));
index_shift -= page_size_shift - 3;
}
if (paddr)
*paddr = pte_addr + vaddr_rem;
if (mmu_flags) {
*mmu_flags = 0;
if (pte & MMU_PTE_ATTR_NON_SECURE)
*mmu_flags |= ARCH_MMU_FLAG_NS;
switch (pte & MMU_PTE_ATTR_ATTR_INDEX_MASK) {
case MMU_PTE_ATTR_STRONGLY_ORDERED:
*mmu_flags |= ARCH_MMU_FLAG_UNCACHED;
break;
case MMU_PTE_ATTR_DEVICE:
*mmu_flags |= ARCH_MMU_FLAG_UNCACHED_DEVICE;
break;
case MMU_PTE_ATTR_NORMAL_MEMORY:
break;
default:
PANIC_UNIMPLEMENTED;
}
*mmu_flags |= ARCH_MMU_FLAG_PERM_READ;
switch (pte & MMU_PTE_ATTR_AP_MASK) {
case MMU_PTE_ATTR_AP_P_RW_U_NA:
*mmu_flags |= ARCH_MMU_FLAG_PERM_WRITE;
break;
case MMU_PTE_ATTR_AP_P_RW_U_RW:
*mmu_flags |= ARCH_MMU_FLAG_PERM_USER | ARCH_MMU_FLAG_PERM_WRITE;
break;
case MMU_PTE_ATTR_AP_P_RO_U_NA:
break;
case MMU_PTE_ATTR_AP_P_RO_U_RO:
*mmu_flags |= ARCH_MMU_FLAG_PERM_USER;
break;
}
if (!((pte & MMU_PTE_ATTR_UXN) && (pte & MMU_PTE_ATTR_PXN))) {
*mmu_flags |= ARCH_MMU_FLAG_PERM_EXECUTE;
}
}
LTRACEF("va 0x%lx, paddr 0x%lx, flags 0x%x\n",
vaddr, paddr ? *paddr : ~0UL, mmu_flags ? *mmu_flags : ~0U);
return 0;
}
zx_status_t ArmArchVmAspace::AllocPageTable(paddr_t* paddrp, uint page_size_shift) {
size_t size = 1UL << page_size_shift;
DEBUG_ASSERT(page_size_shift <= MMU_MAX_PAGE_SIZE_SHIFT);
LTRACEF("page_size_shift %u\n", page_size_shift);
if (size > PAGE_SIZE) {
size_t count = size / PAGE_SIZE;
size_t ret = pmm_alloc_contiguous(count, PMM_ALLOC_FLAG_KMAP,
static_cast<uint8_t>(page_size_shift), paddrp, NULL);
if (ret != count)
return ZX_ERR_NO_MEMORY;
pt_pages_ += count;
} else if (size == PAGE_SIZE) {
void* vaddr = pmm_alloc_kpage(paddrp, NULL);
if (!vaddr)
return ZX_ERR_NO_MEMORY;
pt_pages_++;
} else {
void* vaddr = memalign(size, size);
if (!vaddr)
return ZX_ERR_NO_MEMORY;
*paddrp = vaddr_to_paddr(vaddr);
if (*paddrp == 0) {
free(vaddr);
return ZX_ERR_NO_MEMORY;
}
pt_pages_++;
}
LOCAL_KTRACE0("page table alloc");
LTRACEF("allocated 0x%lx\n", *paddrp);
return 0;
}
void ArmArchVmAspace::FreePageTable(void* vaddr, paddr_t paddr, uint page_size_shift) {
DEBUG_ASSERT(page_size_shift <= MMU_MAX_PAGE_SIZE_SHIFT);
LTRACEF("vaddr %p paddr 0x%lx page_size_shift %u\n", vaddr, paddr, page_size_shift);
size_t size = 1U << page_size_shift;
vm_page_t* page;
LOCAL_KTRACE0("page table free");
if (size == PAGE_SIZE) {
page = paddr_to_vm_page(paddr);
if (!page)
panic("bad page table paddr 0x%lx\n", paddr);
pmm_free_page(page);
} else if (size < PAGE_SIZE) {
free(vaddr);
} else {
PANIC_UNIMPLEMENTED;
}
pt_pages_--;
}
volatile pte_t* ArmArchVmAspace::GetPageTable(vaddr_t index, uint page_size_shift,
volatile pte_t* page_table) {
pte_t pte;
paddr_t paddr;
void* vaddr;
DEBUG_ASSERT(page_size_shift <= MMU_MAX_PAGE_SIZE_SHIFT);
pte = page_table[index];
switch (pte & MMU_PTE_DESCRIPTOR_MASK) {
case MMU_PTE_DESCRIPTOR_INVALID: {
zx_status_t ret = AllocPageTable(&paddr, page_size_shift);
if (ret) {
TRACEF("failed to allocate page table\n");
return NULL;
}
vaddr = paddr_to_physmap(paddr);
LTRACEF("allocated page table, vaddr %p, paddr 0x%lx\n", vaddr, paddr);
memset(vaddr, MMU_PTE_DESCRIPTOR_INVALID, 1U << page_size_shift);
// ensure that the zeroing is observable from hardware page table walkers
DMB_ISHST;
pte = paddr | MMU_PTE_L012_DESCRIPTOR_TABLE;
page_table[index] = pte;
LTRACEF("pte %p[%#" PRIxPTR "] = %#" PRIx64 "\n",
page_table, index, pte);
return static_cast<volatile pte_t*>(vaddr);
}
case MMU_PTE_L012_DESCRIPTOR_TABLE:
paddr = pte & MMU_PTE_OUTPUT_ADDR_MASK;
LTRACEF("found page table %#" PRIxPTR "\n", paddr);
return static_cast<volatile pte_t*>(paddr_to_physmap(paddr));
case MMU_PTE_L012_DESCRIPTOR_BLOCK:
return NULL;
default:
PANIC_UNIMPLEMENTED;
}
}
static bool page_table_is_clear(volatile pte_t* page_table, uint page_size_shift) {
int i;
int count = 1U << (page_size_shift - 3);
pte_t pte;
for (i = 0; i < count; i++) {
pte = page_table[i];
if (pte != MMU_PTE_DESCRIPTOR_INVALID) {
LTRACEF("page_table at %p still in use, index %d is %#" PRIx64 "\n",
page_table, i, pte);
return false;
}
}
LTRACEF("page table at %p is clear\n", page_table);
return true;
}
// use the appropriate TLB flush instruction to globally flush the modified entry
// terminal is set when flushing at the final level of the page table.
void ArmArchVmAspace::FlushTLBEntry(vaddr_t vaddr, bool terminal) {
if (flags_ & ARCH_ASPACE_FLAG_GUEST) {
paddr_t vttbr = arm64_vttbr(asid_, tt_phys_);
__UNUSED zx_status_t status = arm64_el2_tlbi_ipa(vttbr, vaddr >> 12, terminal);
DEBUG_ASSERT(status == ZX_OK);
} else if (asid_ == MMU_ARM64_GLOBAL_ASID) {
// flush this address on all ASIDs
LTRACEF("kernel flush, vaddr %#" PRIxPTR "\n", vaddr);
if (terminal) {
ARM64_TLBI(vaale1is, vaddr >> 12);
} else {
ARM64_TLBI(vaae1is, vaddr >> 12);
}
} else {
// flush this address for the specific asid
LTRACEF("asid flush, asid %#hx, vaddr %#" PRIxPTR "\n", asid_, vaddr);
if (terminal) {
ARM64_TLBI(vale1is, vaddr >> 12 | (vaddr_t)asid_ << 48);
} else {
ARM64_TLBI(vae1is, vaddr >> 12 | (vaddr_t)asid_ << 48);
}
}
}
// NOTE: caller must DSB afterwards to ensure TLB entries are flushed
ssize_t ArmArchVmAspace::UnmapPageTable(vaddr_t vaddr, vaddr_t vaddr_rel,
size_t size, uint index_shift,
uint page_size_shift,
volatile pte_t* page_table) {
volatile pte_t* next_page_table;
vaddr_t index;
size_t chunk_size;
vaddr_t vaddr_rem;
vaddr_t block_size;
vaddr_t block_mask;
pte_t pte;
paddr_t page_table_paddr;
size_t unmap_size;
LTRACEF("vaddr 0x%lx, vaddr_rel 0x%lx, size 0x%lx, index shift %u, page_size_shift %u, page_table %p\n",
vaddr, vaddr_rel, size, index_shift, page_size_shift, page_table);
unmap_size = 0;
while (size) {
block_size = 1UL << index_shift;
block_mask = block_size - 1;
vaddr_rem = vaddr_rel & block_mask;
chunk_size = MIN(size, block_size - vaddr_rem);
index = vaddr_rel >> index_shift;
pte = page_table[index];
if (index_shift > page_size_shift &&
(pte & MMU_PTE_DESCRIPTOR_MASK) == MMU_PTE_L012_DESCRIPTOR_TABLE) {
page_table_paddr = pte & MMU_PTE_OUTPUT_ADDR_MASK;
next_page_table = static_cast<volatile pte_t*>(paddr_to_physmap(page_table_paddr));
UnmapPageTable(vaddr, vaddr_rem, chunk_size,
index_shift - (page_size_shift - 3),
page_size_shift, next_page_table);
if (chunk_size == block_size ||
page_table_is_clear(next_page_table, page_size_shift)) {
TRACEF("pte %p[0x%lx] = 0 (was page table)\n", page_table, index);
page_table[index] = MMU_PTE_DESCRIPTOR_INVALID;
// ensure that the update is observable from hardware page table walkers
DMB_ISHST;
// flush the non terminal TLB entry
FlushTLBEntry(vaddr, false);
FreePageTable(const_cast<pte_t*>(next_page_table), page_table_paddr,
page_size_shift);
}
} else if (pte) {
LTRACEF("pte %p[0x%lx] = 0\n", page_table, index);
page_table[index] = MMU_PTE_DESCRIPTOR_INVALID;
// ensure that the update is observable from hardware page table walkers
DMB_ISHST;
// flush the terminal TLB entry
FlushTLBEntry(vaddr, true);
} else {
LTRACEF("pte %p[0x%lx] already clear\n", page_table, index);
}
vaddr += chunk_size;
vaddr_rel += chunk_size;
size -= chunk_size;
unmap_size += chunk_size;
}
return unmap_size;
}
// NOTE: caller must DSB afterwards to ensure TLB entries are flushed
ssize_t ArmArchVmAspace::MapPageTable(vaddr_t vaddr_in, vaddr_t vaddr_rel_in,
paddr_t paddr_in, size_t size_in,
pte_t attrs, uint index_shift,
uint page_size_shift,
volatile pte_t* page_table) {
ssize_t ret;
volatile pte_t* next_page_table;
vaddr_t index;
vaddr_t vaddr = vaddr_in;
vaddr_t vaddr_rel = vaddr_rel_in;
paddr_t paddr = paddr_in;
size_t size = size_in;
size_t chunk_size;
vaddr_t vaddr_rem;
vaddr_t block_size;
vaddr_t block_mask;
pte_t pte;
size_t mapped_size;
LTRACEF("vaddr %#" PRIxPTR ", vaddr_rel %#" PRIxPTR ", paddr %#" PRIxPTR
", size %#zx, attrs %#" PRIx64
", index shift %u, page_size_shift %u, page_table %p\n",
vaddr, vaddr_rel, paddr, size, attrs,
index_shift, page_size_shift, page_table);
if ((vaddr_rel | paddr | size) & ((1UL << page_size_shift) - 1)) {
TRACEF("not page aligned\n");
return ZX_ERR_INVALID_ARGS;
}
mapped_size = 0;
while (size) {
block_size = 1UL << index_shift;
block_mask = block_size - 1;
vaddr_rem = vaddr_rel & block_mask;
chunk_size = MIN(size, block_size - vaddr_rem);
index = vaddr_rel >> index_shift;
if (((vaddr_rel | paddr) & block_mask) ||
(chunk_size != block_size) ||
(index_shift > MMU_PTE_DESCRIPTOR_BLOCK_MAX_SHIFT)) {
next_page_table = GetPageTable(index, page_size_shift, page_table);
if (!next_page_table)
goto err;
ret = MapPageTable(vaddr, vaddr_rem, paddr, chunk_size, attrs,
index_shift - (page_size_shift - 3),
page_size_shift, next_page_table);
if (ret < 0)
goto err;
} else {
pte = page_table[index];
if (pte) {
TRACEF("page table entry already in use, index %#" PRIxPTR ", %#" PRIx64 "\n",
index, pte);
goto err;
}
pte = paddr | attrs;
if (index_shift > page_size_shift)
pte |= MMU_PTE_L012_DESCRIPTOR_BLOCK;
else
pte |= MMU_PTE_L3_DESCRIPTOR_PAGE;
if (!(flags_ & ARCH_ASPACE_FLAG_GUEST))
pte |= MMU_PTE_ATTR_NON_GLOBAL;
LTRACEF("pte %p[%#" PRIxPTR "] = %#" PRIx64 "\n",
page_table, index, pte);
page_table[index] = pte;
}
vaddr += chunk_size;
vaddr_rel += chunk_size;
paddr += chunk_size;
size -= chunk_size;
mapped_size += chunk_size;
}
return mapped_size;
err:
UnmapPageTable(vaddr_in, vaddr_rel_in, size_in - size, index_shift,
page_size_shift, page_table);
return ZX_ERR_INTERNAL;
}
// NOTE: caller must DSB afterwards to ensure TLB entries are flushed
int ArmArchVmAspace::ProtectPageTable(vaddr_t vaddr_in, vaddr_t vaddr_rel_in,
size_t size_in, pte_t attrs,
uint index_shift, uint page_size_shift,
volatile pte_t* page_table) {
int ret;
volatile pte_t* next_page_table;
vaddr_t index;
vaddr_t vaddr = vaddr_in;
vaddr_t vaddr_rel = vaddr_rel_in;
size_t size = size_in;
size_t chunk_size;
vaddr_t vaddr_rem;
vaddr_t block_size;
vaddr_t block_mask;
paddr_t page_table_paddr;
pte_t pte;
LTRACEF("vaddr %#" PRIxPTR ", vaddr_rel %#" PRIxPTR ", size %#" PRIxPTR
", attrs %#" PRIx64
", index shift %u, page_size_shift %u, page_table %p\n",
vaddr, vaddr_rel, size, attrs,
index_shift, page_size_shift, page_table);
if ((vaddr_rel | size) & ((1UL << page_size_shift) - 1)) {
TRACEF("not page aligned\n");
return ZX_ERR_INVALID_ARGS;
}
while (size) {
block_size = 1UL << index_shift;
block_mask = block_size - 1;
vaddr_rem = vaddr_rel & block_mask;
chunk_size = MIN(size, block_size - vaddr_rem);
index = vaddr_rel >> index_shift;
pte = page_table[index];
if (index_shift > page_size_shift &&
(pte & MMU_PTE_DESCRIPTOR_MASK) == MMU_PTE_L012_DESCRIPTOR_TABLE) {
page_table_paddr = pte & MMU_PTE_OUTPUT_ADDR_MASK;
next_page_table = static_cast<volatile pte_t*>(paddr_to_physmap(page_table_paddr));
ret = ProtectPageTable(vaddr, vaddr_rem, chunk_size, attrs,
index_shift - (page_size_shift - 3),
page_size_shift, next_page_table);
if (ret != 0) {
goto err;
}
} else if (pte) {
pte = (pte & ~MMU_PTE_PERMISSION_MASK) | attrs;
LTRACEF("pte %p[%#" PRIxPTR "] = %#" PRIx64 "\n",
page_table, index, pte);
page_table[index] = pte;
// ensure that the update is observable from hardware page table walkers
DMB_ISHST;
// flush the terminal TLB entry
FlushTLBEntry(vaddr, true);
} else {
LTRACEF("page table entry does not exist, index %#" PRIxPTR
", %#" PRIx64 "\n",
index, pte);
}
vaddr += chunk_size;
vaddr_rel += chunk_size;
size -= chunk_size;
}
return 0;
err:
// TODO: Unroll any changes we've made, though in practice if we've reached
// here there's a programming bug since the higher level region abstraction
// should guard against us trying to change permissions on an umapped page
return ZX_ERR_INTERNAL;
}
// internal routine to map a run of pages
ssize_t ArmArchVmAspace::MapPages(vaddr_t vaddr, paddr_t paddr, size_t size,
pte_t attrs, vaddr_t vaddr_base, uint top_size_shift,
uint top_index_shift, uint page_size_shift) {
vaddr_t vaddr_rel = vaddr - vaddr_base;
vaddr_t vaddr_rel_max = 1UL << top_size_shift;
LTRACEF("vaddr %#" PRIxPTR ", paddr %#" PRIxPTR ", size %#" PRIxPTR
", attrs %#" PRIx64 ", asid %#x\n",
vaddr, paddr, size, attrs, asid_);
if (vaddr_rel > vaddr_rel_max - size || size > vaddr_rel_max) {
TRACEF("vaddr %#" PRIxPTR ", size %#" PRIxPTR " out of range vaddr %#" PRIxPTR ", size %#" PRIxPTR "\n",
vaddr, size, vaddr_base, vaddr_rel_max);
return ZX_ERR_INVALID_ARGS;
}
LOCAL_KTRACE64("mmu map", (vaddr & ~PAGE_MASK) | ((size >> PAGE_SIZE_SHIFT) & PAGE_MASK));
ssize_t ret = MapPageTable(vaddr, vaddr_rel, paddr, size, attrs,
top_index_shift, page_size_shift, tt_virt_);
DSB;
return ret;
}
ssize_t ArmArchVmAspace::UnmapPages(vaddr_t vaddr, size_t size,
vaddr_t vaddr_base,
uint top_size_shift,
uint top_index_shift,
uint page_size_shift) {
vaddr_t vaddr_rel = vaddr - vaddr_base;
vaddr_t vaddr_rel_max = 1UL << top_size_shift;
LTRACEF("vaddr 0x%lx, size 0x%lx, asid 0x%x\n", vaddr, size, asid_);
if (vaddr_rel > vaddr_rel_max - size || size > vaddr_rel_max) {
TRACEF("vaddr 0x%lx, size 0x%lx out of range vaddr 0x%lx, size 0x%lx\n",
vaddr, size, vaddr_base, vaddr_rel_max);
return ZX_ERR_INVALID_ARGS;
}
LOCAL_KTRACE64("mmu unmap", (vaddr & ~PAGE_MASK) | ((size >> PAGE_SIZE_SHIFT) & PAGE_MASK));
ssize_t ret = UnmapPageTable(vaddr, vaddr_rel, size, top_index_shift,
page_size_shift, tt_virt_);
DSB;
return ret;
}
zx_status_t ArmArchVmAspace::ProtectPages(vaddr_t vaddr, size_t size, pte_t attrs,
vaddr_t vaddr_base, uint top_size_shift,
uint top_index_shift, uint page_size_shift) {
vaddr_t vaddr_rel = vaddr - vaddr_base;
vaddr_t vaddr_rel_max = 1UL << top_size_shift;
LTRACEF("vaddr %#" PRIxPTR ", size %#" PRIxPTR ", attrs %#" PRIx64
", asid %#x\n",
vaddr, size, attrs, asid_);
if (vaddr_rel > vaddr_rel_max - size || size > vaddr_rel_max) {
TRACEF("vaddr %#" PRIxPTR ", size %#" PRIxPTR " out of range vaddr %#" PRIxPTR ", size %#" PRIxPTR "\n",
vaddr, size, vaddr_base, vaddr_rel_max);
return ZX_ERR_INVALID_ARGS;
}
LOCAL_KTRACE64("mmu protect", (vaddr & ~PAGE_MASK) | ((size >> PAGE_SIZE_SHIFT) & PAGE_MASK));
zx_status_t ret = ProtectPageTable(vaddr, vaddr_rel, size, attrs,
top_index_shift, page_size_shift,
tt_virt_);
DSB;
return ret;
}
void ArmArchVmAspace::MmuParamsFromFlags(uint mmu_flags,
pte_t* attrs, vaddr_t* vaddr_base,
uint* top_size_shift, uint* top_index_shift,
uint* page_size_shift) {
if (flags_ & ARCH_ASPACE_FLAG_KERNEL) {
if (attrs) {
*attrs = mmu_flags_to_s1_pte_attr(mmu_flags);
}
*vaddr_base = ~0UL << MMU_KERNEL_SIZE_SHIFT;
*top_size_shift = MMU_KERNEL_SIZE_SHIFT;
*top_index_shift = MMU_KERNEL_TOP_SHIFT;
*page_size_shift = MMU_KERNEL_PAGE_SIZE_SHIFT;
} else if (flags_ & ARCH_ASPACE_FLAG_GUEST) {
if (attrs) {
*attrs = mmu_flags_to_s2_pte_attr(mmu_flags);
}
*vaddr_base = 0;
*top_size_shift = MMU_GUEST_SIZE_SHIFT;
*top_index_shift = MMU_GUEST_TOP_SHIFT;
*page_size_shift = MMU_GUEST_PAGE_SIZE_SHIFT;
} else {
if (attrs) {
*attrs = mmu_flags_to_s1_pte_attr(mmu_flags);
}
*vaddr_base = 0;
*top_size_shift = MMU_USER_SIZE_SHIFT;
*top_index_shift = MMU_USER_TOP_SHIFT;
*page_size_shift = MMU_USER_PAGE_SIZE_SHIFT;
}
}
zx_status_t ArmArchVmAspace::MapContiguous(vaddr_t vaddr, paddr_t paddr, size_t count,
uint mmu_flags, size_t* mapped) {
canary_.Assert();
LTRACEF("vaddr %#" PRIxPTR " paddr %#" PRIxPTR " count %zu flags %#x\n",
vaddr, paddr, count, mmu_flags);
DEBUG_ASSERT(tt_virt_);
DEBUG_ASSERT(IsValidVaddr(vaddr));
if (!IsValidVaddr(vaddr))
return ZX_ERR_OUT_OF_RANGE;
if (!(mmu_flags & ARCH_MMU_FLAG_PERM_READ))
return ZX_ERR_INVALID_ARGS;
// paddr and vaddr must be aligned.
DEBUG_ASSERT(IS_PAGE_ALIGNED(vaddr));
DEBUG_ASSERT(IS_PAGE_ALIGNED(paddr));
if (!IS_PAGE_ALIGNED(vaddr) || !IS_PAGE_ALIGNED(paddr))
return ZX_ERR_INVALID_ARGS;
if (count == 0)
return ZX_OK;
ssize_t ret;
{
fbl::AutoLock a(&lock_);
pte_t attrs;
vaddr_t vaddr_base;
uint top_size_shift, top_index_shift, page_size_shift;
MmuParamsFromFlags(mmu_flags, &attrs, &vaddr_base, &top_size_shift, &top_index_shift,
&page_size_shift);
ret = MapPages(vaddr, paddr, count * PAGE_SIZE,
attrs, vaddr_base, top_size_shift,
top_index_shift, page_size_shift);
}
if (mapped) {
*mapped = (ret > 0) ? (ret / PAGE_SIZE) : 0u;
DEBUG_ASSERT(*mapped <= count);
}
return (ret < 0) ? (zx_status_t)ret : ZX_OK;
}
zx_status_t ArmArchVmAspace::Map(vaddr_t vaddr, paddr_t* phys, size_t count, uint mmu_flags,
size_t* mapped) {
canary_.Assert();
TRACEF("vaddr %#" PRIxPTR " count %zu flags %#x\n",
vaddr, count, mmu_flags);
DEBUG_ASSERT(tt_virt_);
DEBUG_ASSERT(IsValidVaddr(vaddr));
if (!IsValidVaddr(vaddr))
return ZX_ERR_OUT_OF_RANGE;
for (size_t i = 0; i < count; ++i) {
DEBUG_ASSERT(IS_PAGE_ALIGNED(phys[i]));
if (!IS_PAGE_ALIGNED(phys[i]))
return ZX_ERR_INVALID_ARGS;
}
if (!(mmu_flags & ARCH_MMU_FLAG_PERM_READ))
return ZX_ERR_INVALID_ARGS;
// vaddr must be aligned.
DEBUG_ASSERT(IS_PAGE_ALIGNED(vaddr));
if (!IS_PAGE_ALIGNED(vaddr))
return ZX_ERR_INVALID_ARGS;
if (count == 0)
return ZX_OK;
size_t total_mapped = 0;
{
fbl::AutoLock a(&lock_);
pte_t attrs;
vaddr_t vaddr_base;
uint top_size_shift, top_index_shift, page_size_shift;
MmuParamsFromFlags(mmu_flags, &attrs, &vaddr_base, &top_size_shift, &top_index_shift,
&page_size_shift);
ssize_t ret;
size_t idx = 0;
auto undo = fbl::MakeAutoCall([&]() TA_NO_THREAD_SAFETY_ANALYSIS {
if (idx > 0) {
UnmapPages(vaddr, idx * PAGE_SIZE, vaddr_base, top_size_shift,
top_index_shift, page_size_shift);
}
});
vaddr_t v = vaddr;
for (; idx < count; ++idx) {
paddr_t paddr = phys[idx];
DEBUG_ASSERT(IS_PAGE_ALIGNED(paddr));
// TODO: optimize by not DSBing inside each of these calls
ret = MapPages(v, paddr, PAGE_SIZE,
attrs, vaddr_base, top_size_shift,
top_index_shift, page_size_shift);
if (ret < 0) {
return static_cast<zx_status_t>(ret);
}
v += PAGE_SIZE;
total_mapped += ret / PAGE_SIZE;
}
undo.cancel();
}
DEBUG_ASSERT(total_mapped <= count);
if (mapped) {
*mapped = total_mapped;
}
return ZX_OK;
}
zx_status_t ArmArchVmAspace::Unmap(vaddr_t vaddr, size_t count, size_t* unmapped) {
canary_.Assert();
TRACEF("vaddr %#" PRIxPTR " count %zu\n", vaddr, count);
DEBUG_ASSERT(tt_virt_);
DEBUG_ASSERT(IsValidVaddr(vaddr));
if (!IsValidVaddr(vaddr))
return ZX_ERR_OUT_OF_RANGE;
DEBUG_ASSERT(IS_PAGE_ALIGNED(vaddr));
if (!IS_PAGE_ALIGNED(vaddr))
return ZX_ERR_INVALID_ARGS;
fbl::AutoLock a(&lock_);
ssize_t ret;
{
vaddr_t vaddr_base;
uint top_size_shift, top_index_shift, page_size_shift;
MmuParamsFromFlags(0, nullptr, &vaddr_base, &top_size_shift, &top_index_shift,
&page_size_shift);
ret = UnmapPages(vaddr, count * PAGE_SIZE,
vaddr_base, top_size_shift,
top_index_shift, page_size_shift);
}
if (unmapped) {
*unmapped = (ret > 0) ? (ret / PAGE_SIZE) : 0u;
DEBUG_ASSERT(*unmapped <= count);
}
return (ret < 0) ? (zx_status_t)ret : 0;
}
zx_status_t ArmArchVmAspace::Protect(vaddr_t vaddr, size_t count, uint mmu_flags) {
canary_.Assert();
if (!IsValidVaddr(vaddr))
return ZX_ERR_INVALID_ARGS;
if (!IS_PAGE_ALIGNED(vaddr))
return ZX_ERR_INVALID_ARGS;
if (!(mmu_flags & ARCH_MMU_FLAG_PERM_READ))
return ZX_ERR_INVALID_ARGS;
fbl::AutoLock a(&lock_);
int ret;
{
pte_t attrs;
vaddr_t vaddr_base;
uint top_size_shift, top_index_shift, page_size_shift;
MmuParamsFromFlags(mmu_flags, &attrs, &vaddr_base, &top_size_shift, &top_index_shift,
&page_size_shift);
ret = ProtectPages(vaddr, count * PAGE_SIZE,
attrs, vaddr_base,
top_size_shift, top_index_shift, page_size_shift);
}
return ret;
}
zx_status_t ArmArchVmAspace::Init(vaddr_t base, size_t size, uint flags) {
canary_.Assert();
LTRACEF("aspace %p, base %#" PRIxPTR ", size 0x%zx, flags 0x%x\n",
this, base, size, flags);
fbl::AutoLock a(&lock_);
// Validate that the base + size is sane and doesn't wrap.
DEBUG_ASSERT(size > PAGE_SIZE);
DEBUG_ASSERT(base + size - 1 > base);
flags_ = flags;
if (flags & ARCH_ASPACE_FLAG_KERNEL) {
// At the moment we can only deal with address spaces as globally defined.
DEBUG_ASSERT(base == ~0UL << MMU_KERNEL_SIZE_SHIFT);
DEBUG_ASSERT(size == 1UL << MMU_KERNEL_SIZE_SHIFT);
base_ = base;
size_ = size;
tt_virt_ = arm64_kernel_translation_table;
tt_phys_ = vaddr_to_paddr(const_cast<pte_t*>(tt_virt_));
asid_ = (uint16_t)MMU_ARM64_GLOBAL_ASID;
} else {
if (flags & ARCH_ASPACE_FLAG_GUEST) {
DEBUG_ASSERT(base + size <= 1UL << MMU_GUEST_SIZE_SHIFT);
} else {
DEBUG_ASSERT(base + size <= 1UL << MMU_USER_SIZE_SHIFT);
if (asid.Alloc(&asid_) != ZX_OK)
return ZX_ERR_NO_MEMORY;
}
base_ = base;
size_ = size;
paddr_t pa;
volatile pte_t* va = static_cast<volatile pte_t*>(pmm_alloc_kpage(&pa, NULL));
if (!va)
return ZX_ERR_NO_MEMORY;
tt_virt_ = va;
tt_phys_ = pa;
// zero the top level translation table.
// XXX remove when PMM starts returning pre-zeroed pages.
arch_zero_page(const_cast<pte_t*>(tt_virt_));
}
pt_pages_ = 1;
LTRACEF("tt_phys %#" PRIxPTR " tt_virt %p\n", tt_phys_, tt_virt_);
return ZX_OK;
}
zx_status_t ArmArchVmAspace::Destroy() {
canary_.Assert();
LTRACEF("aspace %p\n", this);
fbl::AutoLock a(&lock_);
DEBUG_ASSERT((flags_ & ARCH_ASPACE_FLAG_KERNEL) == 0);
// XXX make sure it's not mapped
vm_page_t* page = paddr_to_vm_page(tt_phys_);
DEBUG_ASSERT(page);
pmm_free_page(page);
if (flags_ & ARCH_ASPACE_FLAG_GUEST) {
paddr_t vttbr = arm64_vttbr(asid_, tt_phys_);
__UNUSED zx_status_t status = arm64_el2_tlbi_vmid(vttbr);
DEBUG_ASSERT(status == ZX_OK);
} else {
ARM64_TLBI(ASIDE1IS, asid_);
asid.Free(asid_);
asid_ = MMU_ARM64_UNUSED_ASID;
}
return ZX_OK;
}
void ArmArchVmAspace::ContextSwitch(ArmArchVmAspace* old_aspace, ArmArchVmAspace* aspace) {
if (TRACE_CONTEXT_SWITCH)
TRACEF("aspace %p\n", aspace);
uint64_t tcr;
uint64_t ttbr;
if (aspace) {
aspace->canary_.Assert();
DEBUG_ASSERT((aspace->flags_ & (ARCH_ASPACE_FLAG_KERNEL | ARCH_ASPACE_FLAG_GUEST)) == 0);
tcr = MMU_TCR_FLAGS_USER;
ttbr = ((uint64_t)aspace->asid_ << 48) | aspace->tt_phys_;
ARM64_WRITE_SYSREG(ttbr0_el1, ttbr);
if (TRACE_CONTEXT_SWITCH)
TRACEF("ttbr %#" PRIx64 ", tcr %#" PRIx64 "\n", ttbr, tcr);
} else {
tcr = MMU_TCR_FLAGS_KERNEL;
if (TRACE_CONTEXT_SWITCH)
TRACEF("tcr %#" PRIx64 "\n", tcr);
}
ARM64_WRITE_SYSREG(tcr_el1, tcr);
}
void arch_zero_page(void* _ptr) {
uintptr_t ptr = (uintptr_t)_ptr;
uint32_t zva_size = arm64_zva_size;
uintptr_t end_ptr = ptr + PAGE_SIZE;
do {
__asm volatile("dc zva, %0" ::"r"(ptr));
ptr += zva_size;
} while (ptr != end_ptr);
}
zx_status_t arm64_mmu_translate(vaddr_t va, paddr_t* pa, bool user, bool write) {
// disable interrupts around this operation to make the at/par instruction combination atomic
spin_lock_saved_state_t state;
arch_interrupt_save(&state, ARCH_DEFAULT_SPIN_LOCK_FLAG_INTERRUPTS);
if (user) {
if (write) {
__asm__ volatile("at s1e0w, %0" ::"r"(va)
: "memory");
} else {
__asm__ volatile("at s1e0r, %0" ::"r"(va)
: "memory");
}
} else {
if (write) {
__asm__ volatile("at s1e1w, %0" ::"r"(va)
: "memory");
} else {
__asm__ volatile("at s1e1r, %0" ::"r"(va)
: "memory");
}
}
uint64_t par;
par = ARM64_READ_SYSREG(par_el1);
arch_interrupt_restore(state, ARCH_DEFAULT_SPIN_LOCK_FLAG_INTERRUPTS);
// if bit 0 is clear, the translation succeeded
if (BIT(par, 0))
return ZX_ERR_NO_MEMORY;
// physical address is stored in bits [51..12], naturally aligned
*pa = BITS(par, 51, 12) | (va & (PAGE_SIZE - 1));
return ZX_OK;
}
ArmArchVmAspace::ArmArchVmAspace() {}
ArmArchVmAspace::~ArmArchVmAspace() {
// TODO: check that we've destroyed the aspace
}
vaddr_t ArmArchVmAspace::PickSpot(vaddr_t base, uint prev_region_mmu_flags,
vaddr_t end, uint next_region_mmu_flags,
vaddr_t align, size_t size, uint mmu_flags) {
canary_.Assert();
return PAGE_ALIGN(base);
}