blob: 8c35d0d036f204e290ed9d2c3975281bb2ccbdae [file] [log] [blame]
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include <threads.h>
#include <zircon/assert.h>
#include <zircon/threads.h>
#include <hw/reg.h>
#include <ddk/binding.h>
#include <ddk/debug.h>
#include <ddk/debug.h>
#include <ddk/device.h>
#include <ddk/protocol/clk.h>
#include <ddk/protocol/gpio.h>
#include <ddk/protocol/platform-bus.h>
#include <ddk/protocol/platform-defs.h>
#include <ddk/protocol/platform-device.h>
#include "aml-pcie-clk.h"
#include "aml-pcie-regs.h"
// Extract a uint64_t into the High and Low 32 bits.
#define MASK32 (0xffffffff)
#define HI32(v) (((v) >> 32) & MASK32)
#define LO32(v) ((v) & MASK32)
// Assert this GPIO to reset the PCIe phy
#define GPIO_PRT_RESET 0
typedef enum dw_pcie_addr_window {
ELBI_WINDOW = 0,
PHY_WINDOW,
CFG_WINDOW,
RESET_WINDOW,
CONFIG_WINDOW,
// PLL Window is common for all devices, this should be factored into its
// own driver.
PLL_WINDOW,
ADDR_WINDOW_COUNT, // always last
} dw_pcie_addr_window_t;
typedef enum dw_pcie_clks {
CLK81 = 0,
CLK_PCIEA,
CLK_PORT,
} dw_pcie_clks_t;
typedef struct dw_pcie {
zx_device_t* zxdev;
io_buffer_t buffers[ADDR_WINDOW_COUNT];
// Protocols structs from the parent driver that we need to function.
platform_device_protocol_t pdev;
gpio_protocol_t gpio;
clk_protocol_t clk;
} dw_pcie_t;
static void dw_pcie_release(void* ctx) {
dw_pcie_t* pcie = (dw_pcie_t*)ctx;
for (dw_pcie_addr_window_t wnd = 0; wnd < ADDR_WINDOW_COUNT; ++wnd) {
io_buffer_release(&pcie->buffers[wnd]);
}
free(pcie);
}
static zx_protocol_device_t dw_pcie_device_proto = {
.version = DEVICE_OPS_VERSION,
.release = dw_pcie_release,
};
static inline void clear_reset(dw_pcie_t* pcie, uint32_t bits) {
volatile uint32_t* reg = io_buffer_virt(&pcie->buffers[RESET_WINDOW]);
uint32_t val = readl(reg);
val |= bits;
writel(val, reg);
}
static inline void assert_reset(dw_pcie_t* pcie, uint32_t bits) {
volatile uint32_t* reg = io_buffer_virt(&pcie->buffers[RESET_WINDOW]);
uint32_t val = readl(reg);
val &= ~bits;
writel(val, reg);
}
/*
* Program a region into the outbound ATU
* The ATU supports 16 regions that can be programmed independently.
* pcie, PCIe Device Struct
* index, Which iATU region are we programming?
* type, Type of PCIe txn being generated on the PCIe bus
* cpu_addr, Physical source address to translate in the CPU's address space
* pci_addr, Destination Address in the PCIe address space
* size Size of the aperature that we're translating.
*/
static zx_status_t dw_program_outbound_atu(dw_pcie_t* pcie,
const uint32_t index,
const uint32_t type,
const zx_paddr_t cpu_addr,
const uintptr_t pci_addr,
const size_t size) {
// The ATU supports a limited number of regions.
ZX_DEBUG_ASSERT(index < ATU_REGION_COUNT);
// Each ATU region has its own bank of registers at this offset from the
// DBI base
const size_t bank_offset = (0x3 << 20) | (index << 9);
volatile uint8_t* atu_base =
(volatile uint8_t*)(io_buffer_virt(&pcie->buffers[ELBI_WINDOW]) + bank_offset);
volatile atu_ctrl_regs_t* regs = (volatile atu_ctrl_regs_t*)(atu_base);
// Memory transactions that are in the following range will get translated
// to PCI bus transactions:
//
// [cpu_addr, cpu_addr + size - 1]
regs->unroll_lower_base = LO32(cpu_addr);
regs->unroll_upper_base = HI32(cpu_addr);
regs->unroll_limit = LO32(cpu_addr + size - 1);
// Target of the transactions above.
regs->unroll_lower_target = LO32(pci_addr);
regs->unroll_upper_target = HI32(pci_addr);
// Region Ctrl 1 contains a number of fields. The Low 5 bits of the field
// indicate the type of transaction to dispatch onto the PCIe bus.
regs->region_ctrl1 = type;
// Each region can individually be marked as Enabled or Disabled.
regs->region_ctrl2 |= ATU_REGION_CTRL2_ENABLE;
regs->region_ctrl2 |= ATU_CFG_SHIFT_MODE;
// Wait for the enable to take effect.
for (unsigned int i = 0; i < ATU_PROGRAM_RETRIES; ++i) {
if (regs->region_ctrl2 & ATU_REGION_CTRL2_ENABLE) {
return ZX_OK;
}
// Wait a little bit before trying again.
zx_nanosleep(zx_deadline_after(ZX_USEC(ATU_WAIT_ENABLE_TIMEOUT_US)));
}
zxlogf(ERROR, "dw_pcie: timed out while awaiting atu enable\n");
return ZX_ERR_TIMED_OUT;
}
static void configure_root_bridge(volatile uint8_t* rb_ecam) {
// PCIe Type 1 header Bus Register (offset 0x18 into the Ecam)
volatile uint8_t* addr = rb_ecam + PCIE_HEADER_BUS_REG_OFF;
uint32_t bus_reg = readl(addr);
pci_bus_reg_t* reg = (pci_bus_reg_t*)(&bus_reg);
// The Upstream Bus for the root bridge is Bus 0
reg->primary_bus = 0x0;
// The Downstream bus for the root bridge is Bus 1
reg->secondary_bus = 0x1;
// This bridge will also claim all transactions for any other bus IDs on
// this bus.
reg->subordinate_bus = 0x1;
writel(bus_reg, addr);
// Zero out the BARs for the Root bridge because the DW root bridge doesn't
// need them.
writel(0, rb_ecam + PCI_TYPE1_BAR0);
writel(0, rb_ecam + PCI_TYPE1_BAR1);
}
static void aml_pcie_gpio_reset(dw_pcie_t* pcie) {
gpio_write(&pcie->gpio, GPIO_PRT_RESET, 0);
zx_nanosleep(zx_deadline_after(ZX_MSEC(10)));
gpio_write(&pcie->gpio, GPIO_PRT_RESET, 1);
}
static void aml_pcie_init(dw_pcie_t* pcie) {
uint32_t val;
volatile uint8_t* elb = (volatile uint8_t*)io_buffer_virt(&pcie->buffers[ELBI_WINDOW]);
volatile uint8_t* cfg = (volatile uint8_t*)io_buffer_virt(&pcie->buffers[CFG_WINDOW]);
val = readl(cfg);
val |= APP_LTSSM_ENABLE;
writel(val, cfg);
val = readl(elb + PORT_LINK_CTRL_OFF);
val |= PLC_FAST_LINK_MODE;
writel(val, elb + PORT_LINK_CTRL_OFF);
val = readl(elb + PORT_LINK_CTRL_OFF);
val &= ~PLC_LINK_CAPABLE_MASK;
writel(val, elb + PORT_LINK_CTRL_OFF);
val = readl(elb + PORT_LINK_CTRL_OFF);
val |= PLC_LINK_CAPABLE_X1;
writel(val, elb + PORT_LINK_CTRL_OFF);
val = readl(elb + GEN2_CTRL_OFF);
val &= ~G2_CTRL_NUM_OF_LANES_MASK;
writel(val, elb + GEN2_CTRL_OFF);
val = readl(elb + GEN2_CTRL_OFF);
val |= G2_CTRL_NO_OF_LANES(1);
writel(val, elb + GEN2_CTRL_OFF);
val = readl(elb + GEN2_CTRL_OFF);
val |= G2_CTRL_DIRECT_SPEED_CHANGE;
writel(val, elb + GEN2_CTRL_OFF);
}
static void pcie_rmw_ctrl_sts(volatile uint8_t* ecam, const uint32_t size,
const uint32_t shift, const uint32_t mask) {
volatile uint8_t* reg = (ecam + PCIE_CTRL_STS_OFF);
uint32_t val = readl(reg);
uint32_t regval;
switch (size) {
case 128:
regval = 0;
break;
case 256:
regval = 1;
break;
case 512:
regval = 2;
break;
case 1024:
regval = 3;
break;
case 2048:
regval = 4;
break;
case 4096:
regval = 5;
break;
default:
regval = 1;
}
val &= ~(mask << shift);
writel(val, reg);
val = readl(reg);
val |= (regval << shift);
writel(val, reg);
}
static void pcie_set_max_payload(volatile uint8_t* ecam, const uint32_t size) {
const uint32_t max_payload_shift = 5;
const uint32_t max_payload_mask = 0x7;
pcie_rmw_ctrl_sts(ecam, size, max_payload_shift, max_payload_mask);
}
static void pcie_set_max_read_reqeust_size(volatile uint8_t* ecam,
const uint32_t size) {
const uint32_t max_rr_size_shift = 5;
const uint32_t max_rr_size_mask = 0x7;
pcie_rmw_ctrl_sts(ecam, size, max_rr_size_shift, max_rr_size_mask);
}
static void aml_enable_memory_space(volatile uint8_t* ecam) {
// Cause the root port to handle transactions.
volatile uint8_t* reg = (volatile uint8_t*)(ecam + PCIE_TYPE1_STS_CMD_OFF);
uint32_t val = readl(reg);
val |= (PCIE_TYPE1_STS_CMD_IO_ENABLE |
PCIE_TYPE1_STS_CMD_MEM_SPACE_ENABLE |
PCIE_TYPE1_STS_CMD_BUS_MASTER_ENABLE);
writel(val, reg);
}
static void aml_link_speed_change(volatile uint8_t* elbi) {
volatile uint8_t* reg = (volatile uint8_t*)(elbi + GEN2_CTRL_OFF);
uint32_t val = readl(reg);
val |= G2_CTRL_DIRECT_SPEED_CHANGE;
writel(val, reg);
}
bool is_link_up(volatile uint8_t* cfg) {
volatile uint8_t* reg = cfg + PCIE_CFG_STATUS12;
uint32_t val = readl(reg);
return (val & PCIE_CFG12_SMLH_UP) &&
(val & PCIE_CFG12_RDLH_UP) &&
((val & PCIE_CFG12_LTSSM_MASK) == PCIE_CFG12_LTSSM_UP);
}
static zx_status_t await_link_up(volatile uint8_t* cfg) {
for (unsigned int i = 0; i < 500000; i++) {
if (is_link_up(cfg)) {
zxlogf(SPEW, "aml dw pcie link up ok");
return ZX_OK;
}
zx_nanosleep(zx_deadline_after(ZX_USEC(10)));
}
return ZX_ERR_TIMED_OUT;
}
static zx_status_t aml_pcie_establish_link(dw_pcie_t* pcie) {
volatile uint8_t* elbi = io_buffer_virt(&pcie->buffers[ELBI_WINDOW]);
volatile uint8_t* cfg = io_buffer_virt(&pcie->buffers[CFG_WINDOW]);
aml_pcie_gpio_reset(pcie);
aml_pcie_init(pcie);
pcie_set_max_payload(elbi, 256);
pcie_set_max_read_reqeust_size(elbi, 256);
aml_enable_memory_space(elbi);
aml_link_speed_change(elbi);
zx_status_t st = await_link_up(cfg);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie: failed awaiting link up\n");
return st;
}
configure_root_bridge(elbi);
return ZX_OK;
}
static zx_status_t init_kernel_pci_driver(dw_pcie_t* pcie) {
zx_status_t st;
const size_t pci_sz = io_buffer_size(&pcie->buffers[CONFIG_WINDOW], 0);
const zx_paddr_t pci_base = 0xf9c00000;
const size_t ecam_sz = 1 * 1024 * 1024;
const zx_paddr_t mmio_base = pci_base + ecam_sz;
const size_t mmio_sz = pci_sz - ecam_sz;
// Carve out one ECAM for our downstream device.
if (pci_sz < ecam_sz) {
zxlogf(ERROR, "dw_pcie: Could not allocate memory aperture for pcie\n");
return ZX_ERR_NO_RESOURCES;
}
st = dw_program_outbound_atu(pcie, 0, PCIE_TLP_TYPE_CFG0,
(zx_paddr_t)pci_base, 0,
ATU_MIN_REGION_SIZE);
if (st != ZX_OK) {
zxlogf(ERROR, "dw_pcie: failed to program outbound atu, st = %d\n", st);
return st;
}
// The rest of the space belongs to the PCIe bars and the bus driver is free
// to allocate it however it pleases.
st = dw_program_outbound_atu(pcie, 1 << 1, PCIE_TLP_TYPE_MEM_RW,
mmio_base, mmio_base, mmio_sz);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie: failed to program outbound atu for ECAM "
"st = %d\n", st);
return st;
}
// Fire up the kernel PCI driver!
zx_pci_init_arg_t* arg;
const size_t arg_size = sizeof(*arg) + sizeof(arg->addr_windows[0]);
arg = calloc(1, arg_size);
if (!arg) {
zxlogf(ERROR, "aml_pcie: failed to allocate pci init arg\n");
return ZX_ERR_NO_MEMORY;
}
st = zx_pci_add_subtract_io_range(get_root_resource(), true, mmio_base,
mmio_sz, true);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie: failed to add pcie mmio range, st = %d\n", st);
goto free_and_fail;
}
arg->num_irqs = 0;
arg->addr_window_count = 1;
arg->addr_windows[0].is_mmio = true;
arg->addr_windows[0].has_ecam = true;
arg->addr_windows[0].base = pci_base;
arg->addr_windows[0].size = ecam_sz;
arg->addr_windows[0].bus_start = 0;
arg->addr_windows[0].bus_end = 0xff;
st = zx_pci_init(get_root_resource(), arg, arg_size);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie: failed to init pci bus driver, st = %d\n", st);
goto free_and_fail;
}
free_and_fail:
free(arg);
return st;
}
static int dw_pcie_init_thrd(void* arg) {
zx_status_t st;
dw_pcie_t* pcie = (dw_pcie_t*)arg;
assert_reset(pcie, RST_PCIE_A | RST_PCIE_B | RST_PCIE_APB | RST_PCIE_PHY);
// Enable the PLL and configure it to run at 100MHz
pcie_pll_set_rate((zx_vaddr_t)io_buffer_virt(&pcie->buffers[PLL_WINDOW]));
clear_reset(pcie, RST_PCIE_APB | RST_PCIE_PHY);
st = clk_enable(&pcie->clk, CLK81);
if (st != ZX_OK) {
zxlogf(ERROR, "dw_pcie_init_thrd: failed to start clk81, st = %d", st);
goto fail;
}
st = clk_enable(&pcie->clk, CLK_PCIEA);
if (st != ZX_OK) {
zxlogf(ERROR, "dw_pcie_init_thrd: failed to start clk pciea, st = %d",
st);
goto fail;
}
clear_reset(pcie, RST_PCIE_A);
st = clk_enable(&pcie->clk, CLK_PORT);
if (st != ZX_OK) {
zxlogf(ERROR, "dw_pcie_init_thrd: failed to enable port clock, st = %d",
st);
goto fail;
}
st = aml_pcie_establish_link(pcie);
if (st != ZX_OK) {
zxlogf(ERROR, "dw_pcie_init_thrd: failed waiting for link up, st = %d",
st);
goto fail;
}
init_kernel_pci_driver(pcie);
// Device added successfully, make it visible.
device_make_visible(pcie->zxdev);
return 0;
fail:
st = device_remove(pcie->zxdev);
if (st != ZX_OK) {
zxlogf(ERROR, "dw_pcie_init_thrd: failed to cleanup on failure, st"
" = %d", st);
}
return -1;
}
static zx_status_t aml_pcie_bind(void* ctx, zx_device_t* parent) {
zx_status_t st;
dw_pcie_t* pcie = malloc(sizeof(*pcie));
if (!pcie) {
zxlogf(ERROR, "aml_pcie_bind: failed to allocate pcie struct");
return ZX_ERR_NO_MEMORY;
}
st = device_get_protocol(parent, ZX_PROTOCOL_PLATFORM_DEV, &pcie->pdev);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie_bind: failed to get platform device protocol "
"st = %d", st);
goto fail;
}
st = device_get_protocol(parent, ZX_PROTOCOL_GPIO, &pcie->gpio);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie_bind: failed to get platform gpio protocol "
"st = %d", st);
goto fail;
}
st = device_get_protocol(parent, ZX_PROTOCOL_CLK, &pcie->clk);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie_bind: failed to get platform clk protocol "
"st = %d", st);
goto fail;
}
// Configure the reset gpio
gpio_config(&pcie->gpio, GPIO_PRT_RESET, GPIO_DIR_OUT);
// Map all the MMIO windows that we're interested in.
for (dw_pcie_addr_window_t wnd = 0; wnd < ADDR_WINDOW_COUNT; ++wnd) {
st = pdev_map_mmio_buffer(&pcie->pdev,
wnd, /* Index of addr window */
ZX_CACHE_POLICY_UNCACHED_DEVICE,
&pcie->buffers[wnd]);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie_bind: failed to map mmio window #%u, "
"rc = %d", wnd, st);
goto fail;
}
}
zx_device_prop_t props[] = {
{ BIND_PLATFORM_DEV_VID, 0, PDEV_VID_GENERIC },
{ BIND_PLATFORM_DEV_PID, 0, PDEV_PID_GENERIC },
{ BIND_PLATFORM_DEV_DID, 0, PDEV_DID_KPCI },
};
device_add_args_t args = {
.version = DEVICE_ADD_ARGS_VERSION,
.name = "aml-dw-pcie",
.ctx = pcie,
.ops = &dw_pcie_device_proto,
.flags = DEVICE_ADD_INVISIBLE, // Made visible by init thread.
.props = props,
.prop_count = countof(props),
};
args.proto_id = ZX_PROTOCOL_PLATFORM_DEV;
args.proto_ops = &pcie->pdev;
st = device_add(parent, &args, &pcie->zxdev);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie_bind: failed to add device, st = %d", st);
goto fail;
}
thrd_t init_thrd;
st = thrd_status_to_zx_status(
thrd_create_with_name(&init_thrd, dw_pcie_init_thrd, pcie,
"aml-dw-pcie-init")
);
if (st != ZX_OK) {
zxlogf(ERROR, "aml_pcie_bind: failed to start init thread, st = %d",
st);
goto fail;
}
thrd_detach(init_thrd);
return ZX_OK;
fail:
// Clean up any resources that we've allocated.
dw_pcie_release(pcie);
// Sanity check: make sure we never return ZX_OK from the fail path since
// this will tell devmgr that the bind was successful.
ZX_DEBUG_ASSERT(st != ZX_OK);
return st;
}
static zx_driver_ops_t aml_pcie_driver_ops = {
.version = DRIVER_OPS_VERSION,
.bind = aml_pcie_bind,
};
// Bind to ANY Amlogic SoC with a DWC PCIe controller.
ZIRCON_DRIVER_BEGIN(aml_pcie, aml_pcie_driver_ops, "zircon", "0.1", 4)
BI_ABORT_IF(NE, BIND_PROTOCOL, ZX_PROTOCOL_PLATFORM_DEV),
BI_ABORT_IF(NE, BIND_PLATFORM_DEV_VID, PDEV_VID_AMLOGIC),
BI_ABORT_IF(NE, BIND_PLATFORM_DEV_PID, PDEV_PID_GENERIC),
BI_MATCH_IF(EQ, BIND_PLATFORM_DEV_DID, PDEV_DID_DW_PCIE),
ZIRCON_DRIVER_END(aml_pcie)