| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* |
| * from: @(#)fdlibm.h 5.1 93/09/24 |
| * $FreeBSD$ |
| */ |
| |
| #ifndef _MATH_PRIVATE_H_ |
| #define _MATH_PRIVATE_H_ |
| |
| #include <sys/types.h> |
| #include <endian.h> |
| |
| /* |
| * The original fdlibm code used statements like: |
| * n0 = ((*(int*)&one)>>29)^1; * index of high word * |
| * ix0 = *(n0+(int*)&x); * high word of x * |
| * ix1 = *((1-n0)+(int*)&x); * low word of x * |
| * to dig two 32 bit words out of the 64 bit IEEE floating point |
| * value. That is non-ANSI, and, moreover, the gcc instruction |
| * scheduler gets it wrong. We instead use the following macros. |
| * Unlike the original code, we determine the endianness at compile |
| * time, not at run time; I don't see much benefit to selecting |
| * endianness at run time. |
| */ |
| |
| /* |
| * A union which permits us to convert between a double and two 32 bit |
| * ints. |
| */ |
| |
| #ifdef __arm__ |
| #if defined(__VFP_FP__) || defined(__ARM_EABI__) |
| #define IEEE_WORD_ORDER BYTE_ORDER |
| #else |
| #define IEEE_WORD_ORDER BIG_ENDIAN |
| #endif |
| #else /* __arm__ */ |
| #define IEEE_WORD_ORDER BYTE_ORDER |
| #endif |
| |
| #if IEEE_WORD_ORDER == BIG_ENDIAN |
| |
| typedef union { |
| double value; |
| struct { |
| u_int32_t msw; |
| u_int32_t lsw; |
| } parts; |
| struct { |
| u_int64_t w; |
| } xparts; |
| } ieee_double_shape_type; |
| |
| #endif |
| |
| #if IEEE_WORD_ORDER == LITTLE_ENDIAN |
| |
| typedef union { |
| double value; |
| struct { |
| u_int32_t lsw; |
| u_int32_t msw; |
| } parts; |
| struct { |
| u_int64_t w; |
| } xparts; |
| } ieee_double_shape_type; |
| |
| #endif |
| |
| /* Get two 32 bit ints from a double. */ |
| |
| #define EXTRACT_WORDS(ix0,ix1,d) \ |
| do { \ |
| ieee_double_shape_type ew_u; \ |
| ew_u.value = (d); \ |
| (ix0) = ew_u.parts.msw; \ |
| (ix1) = ew_u.parts.lsw; \ |
| } while (0) |
| |
| /* Get a 64-bit int from a double. */ |
| #define EXTRACT_WORD64(ix,d) \ |
| do { \ |
| ieee_double_shape_type ew_u; \ |
| ew_u.value = (d); \ |
| (ix) = ew_u.xparts.w; \ |
| } while (0) |
| |
| /* Get the more significant 32 bit int from a double. */ |
| |
| #define GET_HIGH_WORD(i,d) \ |
| do { \ |
| ieee_double_shape_type gh_u; \ |
| gh_u.value = (d); \ |
| (i) = gh_u.parts.msw; \ |
| } while (0) |
| |
| /* Get the less significant 32 bit int from a double. */ |
| |
| #define GET_LOW_WORD(i,d) \ |
| do { \ |
| ieee_double_shape_type gl_u; \ |
| gl_u.value = (d); \ |
| (i) = gl_u.parts.lsw; \ |
| } while (0) |
| |
| /* Set a double from two 32 bit ints. */ |
| |
| #define INSERT_WORDS(d,ix0,ix1) \ |
| do { \ |
| ieee_double_shape_type iw_u; \ |
| iw_u.parts.msw = (ix0); \ |
| iw_u.parts.lsw = (ix1); \ |
| (d) = iw_u.value; \ |
| } while (0) |
| |
| /* Set a double from a 64-bit int. */ |
| #define INSERT_WORD64(d,ix) \ |
| do { \ |
| ieee_double_shape_type iw_u; \ |
| iw_u.xparts.w = (ix); \ |
| (d) = iw_u.value; \ |
| } while (0) |
| |
| /* Set the more significant 32 bits of a double from an int. */ |
| |
| #define SET_HIGH_WORD(d,v) \ |
| do { \ |
| ieee_double_shape_type sh_u; \ |
| sh_u.value = (d); \ |
| sh_u.parts.msw = (v); \ |
| (d) = sh_u.value; \ |
| } while (0) |
| |
| /* Set the less significant 32 bits of a double from an int. */ |
| |
| #define SET_LOW_WORD(d,v) \ |
| do { \ |
| ieee_double_shape_type sl_u; \ |
| sl_u.value = (d); \ |
| sl_u.parts.lsw = (v); \ |
| (d) = sl_u.value; \ |
| } while (0) |
| |
| /* |
| * A union which permits us to convert between a float and a 32 bit |
| * int. |
| */ |
| |
| typedef union { |
| float value; |
| /* FIXME: Assumes 32 bit int. */ |
| unsigned int word; |
| } ieee_float_shape_type; |
| |
| /* Get a 32 bit int from a float. */ |
| |
| #define GET_FLOAT_WORD(i,d) \ |
| do { \ |
| ieee_float_shape_type gf_u; \ |
| gf_u.value = (d); \ |
| (i) = gf_u.word; \ |
| } while (0) |
| |
| /* Set a float from a 32 bit int. */ |
| |
| #define SET_FLOAT_WORD(d,i) \ |
| do { \ |
| ieee_float_shape_type sf_u; \ |
| sf_u.word = (i); \ |
| (d) = sf_u.value; \ |
| } while (0) |
| |
| /* |
| * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long |
| * double. |
| */ |
| |
| #define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \ |
| do { \ |
| union IEEEl2bits ew_u; \ |
| ew_u.e = (d); \ |
| (ix0) = ew_u.xbits.expsign; \ |
| (ix1) = ew_u.xbits.man; \ |
| } while (0) |
| |
| /* |
| * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit |
| * long double. |
| */ |
| |
| #define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \ |
| do { \ |
| union IEEEl2bits ew_u; \ |
| ew_u.e = (d); \ |
| (ix0) = ew_u.xbits.expsign; \ |
| (ix1) = ew_u.xbits.manh; \ |
| (ix2) = ew_u.xbits.manl; \ |
| } while (0) |
| |
| /* Get expsign as a 16 bit int from a long double. */ |
| |
| #define GET_LDBL_EXPSIGN(i,d) \ |
| do { \ |
| union IEEEl2bits ge_u; \ |
| ge_u.e = (d); \ |
| (i) = ge_u.xbits.expsign; \ |
| } while (0) |
| |
| /* |
| * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int |
| * mantissa. |
| */ |
| |
| #define INSERT_LDBL80_WORDS(d,ix0,ix1) \ |
| do { \ |
| union IEEEl2bits iw_u; \ |
| iw_u.xbits.expsign = (ix0); \ |
| iw_u.xbits.man = (ix1); \ |
| (d) = iw_u.e; \ |
| } while (0) |
| |
| /* |
| * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints |
| * comprising the mantissa. |
| */ |
| |
| #define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \ |
| do { \ |
| union IEEEl2bits iw_u; \ |
| iw_u.xbits.expsign = (ix0); \ |
| iw_u.xbits.manh = (ix1); \ |
| iw_u.xbits.manl = (ix2); \ |
| (d) = iw_u.e; \ |
| } while (0) |
| |
| /* Set expsign of a long double from a 16 bit int. */ |
| |
| #define SET_LDBL_EXPSIGN(d,v) \ |
| do { \ |
| union IEEEl2bits se_u; \ |
| se_u.e = (d); \ |
| se_u.xbits.expsign = (v); \ |
| (d) = se_u.e; \ |
| } while (0) |
| |
| #ifdef __i386__ |
| /* Long double constants are broken on i386. */ |
| #define LD80C(m, ex, v) { \ |
| .xbits.man = __CONCAT(m, ULL), \ |
| .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \ |
| } |
| #else |
| /* The above works on non-i386 too, but we use this to check v. */ |
| #define LD80C(m, ex, v) { .e = (v), } |
| #endif |
| |
| #ifdef FLT_EVAL_METHOD |
| /* |
| * Attempt to get strict C99 semantics for assignment with non-C99 compilers. |
| */ |
| #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0 |
| #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) |
| #else |
| #define STRICT_ASSIGN(type, lval, rval) do { \ |
| volatile type __lval; \ |
| \ |
| if (sizeof(type) >= sizeof(long double)) \ |
| (lval) = (rval); \ |
| else { \ |
| __lval = (rval); \ |
| (lval) = __lval; \ |
| } \ |
| } while (0) |
| #endif |
| #endif /* FLT_EVAL_METHOD */ |
| |
| /* Support switching the mode to FP_PE if necessary. */ |
| #if defined(__i386__) && !defined(NO_FPSETPREC) |
| #define ENTERI() \ |
| long double __retval; \ |
| fp_prec_t __oprec; \ |
| \ |
| if ((__oprec = fpgetprec()) != FP_PE) \ |
| fpsetprec(FP_PE) |
| #define RETURNI(x) do { \ |
| __retval = (x); \ |
| if (__oprec != FP_PE) \ |
| fpsetprec(__oprec); \ |
| RETURNF(__retval); \ |
| } while (0) |
| #else |
| #define ENTERI(x) |
| #define RETURNI(x) RETURNF(x) |
| #endif |
| |
| /* Default return statement if hack*_t() is not used. */ |
| #define RETURNF(v) return (v) |
| |
| /* |
| * 2sum gives the same result as 2sumF without requiring |a| >= |b| or |
| * a == 0, but is slower. |
| */ |
| #define _2sum(a, b) do { \ |
| __typeof(a) __s, __w; \ |
| \ |
| __w = (a) + (b); \ |
| __s = __w - (a); \ |
| (b) = ((a) - (__w - __s)) + ((b) - __s); \ |
| (a) = __w; \ |
| } while (0) |
| |
| /* |
| * 2sumF algorithm. |
| * |
| * "Normalize" the terms in the infinite-precision expression a + b for |
| * the sum of 2 floating point values so that b is as small as possible |
| * relative to 'a'. (The resulting 'a' is the value of the expression in |
| * the same precision as 'a' and the resulting b is the rounding error.) |
| * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and |
| * exponent overflow or underflow must not occur. This uses a Theorem of |
| * Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum" |
| * is apparently due to Skewchuk (1997). |
| * |
| * For this to always work, assignment of a + b to 'a' must not retain any |
| * extra precision in a + b. This is required by C standards but broken |
| * in many compilers. The brokenness cannot be worked around using |
| * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this |
| * algorithm would be destroyed by non-null strict assignments. (The |
| * compilers are correct to be broken -- the efficiency of all floating |
| * point code calculations would be destroyed similarly if they forced the |
| * conversions.) |
| * |
| * Fortunately, a case that works well can usually be arranged by building |
| * any extra precision into the type of 'a' -- 'a' should have type float_t, |
| * double_t or long double. b's type should be no larger than 'a's type. |
| * Callers should use these types with scopes as large as possible, to |
| * reduce their own extra-precision and efficiciency problems. In |
| * particular, they shouldn't convert back and forth just to call here. |
| */ |
| #ifdef DEBUG |
| #define _2sumF(a, b) do { \ |
| __typeof(a) __w; \ |
| volatile __typeof(a) __ia, __ib, __r, __vw; \ |
| \ |
| __ia = (a); \ |
| __ib = (b); \ |
| assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \ |
| \ |
| __w = (a) + (b); \ |
| (b) = ((a) - __w) + (b); \ |
| (a) = __w; \ |
| \ |
| /* The next 2 assertions are weak if (a) is already long double. */ \ |
| assert((long double)__ia + __ib == (long double)(a) + (b)); \ |
| __vw = __ia + __ib; \ |
| __r = __ia - __vw; \ |
| __r += __ib; \ |
| assert(__vw == (a) && __r == (b)); \ |
| } while (0) |
| #else /* !DEBUG */ |
| #define _2sumF(a, b) do { \ |
| __typeof(a) __w; \ |
| \ |
| __w = (a) + (b); \ |
| (b) = ((a) - __w) + (b); \ |
| (a) = __w; \ |
| } while (0) |
| #endif /* DEBUG */ |
| |
| /* |
| * Set x += c, where x is represented in extra precision as a + b. |
| * x must be sufficiently normalized and sufficiently larger than c, |
| * and the result is then sufficiently normalized. |
| * |
| * The details of ordering are that |a| must be >= |c| (so that (a, c) |
| * can be normalized without extra work to swap 'a' with c). The details of |
| * the normalization are that b must be small relative to the normalized 'a'. |
| * Normalization of (a, c) makes the normalized c tiny relative to the |
| * normalized a, so b remains small relative to 'a' in the result. However, |
| * b need not ever be tiny relative to 'a'. For example, b might be about |
| * 2**20 times smaller than 'a' to give about 20 extra bits of precision. |
| * That is usually enough, and adding c (which by normalization is about |
| * 2**53 times smaller than a) cannot change b significantly. However, |
| * cancellation of 'a' with c in normalization of (a, c) may reduce 'a' |
| * significantly relative to b. The caller must ensure that significant |
| * cancellation doesn't occur, either by having c of the same sign as 'a', |
| * or by having |c| a few percent smaller than |a|. Pre-normalization of |
| * (a, b) may help. |
| * |
| * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2 |
| * exercise 19). We gain considerable efficiency by requiring the terms to |
| * be sufficiently normalized and sufficiently increasing. |
| */ |
| #define _3sumF(a, b, c) do { \ |
| __typeof(a) __tmp; \ |
| \ |
| __tmp = (c); \ |
| _2sumF(__tmp, (a)); \ |
| (b) += (a); \ |
| (a) = __tmp; \ |
| } while (0) |
| |
| /* |
| * Common routine to process the arguments to nan(), nanf(), and nanl(). |
| */ |
| void _scan_nan(uint32_t *__words, int __num_words, const char *__s); |
| |
| #ifdef _COMPLEX_H |
| |
| /* |
| * C99 specifies that complex numbers have the same representation as |
| * an array of two elements, where the first element is the real part |
| * and the second element is the imaginary part. |
| */ |
| typedef union { |
| float complex f; |
| float a[2]; |
| } float_complex; |
| typedef union { |
| double complex f; |
| double a[2]; |
| } double_complex; |
| typedef union { |
| long double complex f; |
| long double a[2]; |
| } long_double_complex; |
| #define REALPART(z) ((z).a[0]) |
| #define IMAGPART(z) ((z).a[1]) |
| |
| /* |
| * Inline functions that can be used to construct complex values. |
| * |
| * The C99 standard intends x+I*y to be used for this, but x+I*y is |
| * currently unusable in general since gcc introduces many overflow, |
| * underflow, sign and efficiency bugs by rewriting I*y as |
| * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product. |
| * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted |
| * to -0.0+I*0.0. |
| */ |
| static __inline float complex |
| cpackf(float x, float y) |
| { |
| float_complex z; |
| |
| REALPART(z) = x; |
| IMAGPART(z) = y; |
| return (z.f); |
| } |
| |
| static __inline double complex |
| cpack(double x, double y) |
| { |
| double_complex z; |
| |
| REALPART(z) = x; |
| IMAGPART(z) = y; |
| return (z.f); |
| } |
| |
| static __inline long double complex |
| cpackl(long double x, long double y) |
| { |
| long_double_complex z; |
| |
| REALPART(z) = x; |
| IMAGPART(z) = y; |
| return (z.f); |
| } |
| #endif /* _COMPLEX_H */ |
| |
| #ifdef __GNUCLIKE_ASM |
| |
| /* Asm versions of some functions. */ |
| |
| #ifdef __amd64__ |
| static __inline int |
| irint(double x) |
| { |
| int n; |
| |
| asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x)); |
| return (n); |
| } |
| #define HAVE_EFFICIENT_IRINT |
| #endif |
| |
| #ifdef __i386__ |
| static __inline int |
| irint(double x) |
| { |
| int n; |
| |
| asm("fistl %0" : "=m" (n) : "t" (x)); |
| return (n); |
| } |
| #define HAVE_EFFICIENT_IRINT |
| #endif |
| |
| #if defined(__amd64__) || defined(__i386__) |
| static __inline int |
| irintl(long double x) |
| { |
| int n; |
| |
| asm("fistl %0" : "=m" (n) : "t" (x)); |
| return (n); |
| } |
| #define HAVE_EFFICIENT_IRINTL |
| #endif |
| |
| #endif /* __GNUCLIKE_ASM */ |
| |
| #ifdef DEBUG |
| #if defined(__amd64__) || defined(__i386__) |
| #define breakpoint() asm("int $3") |
| #else |
| #include <signal.h> |
| |
| #define breakpoint() raise(SIGTRAP) |
| #endif |
| #endif |
| |
| /* Write a pari script to test things externally. */ |
| #ifdef DOPRINT |
| #include <stdio.h> |
| |
| #ifndef DOPRINT_SWIZZLE |
| #define DOPRINT_SWIZZLE 0 |
| #endif |
| |
| #ifdef DOPRINT_LD80 |
| |
| #define DOPRINT_START(xp) do { \ |
| uint64_t __lx; \ |
| uint16_t __hx; \ |
| \ |
| /* Hack to give more-problematic args. */ \ |
| EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \ |
| __lx ^= DOPRINT_SWIZZLE; \ |
| INSERT_LDBL80_WORDS(*xp, __hx, __lx); \ |
| printf("x = %.21Lg; ", (long double)*xp); \ |
| } while (0) |
| #define DOPRINT_END1(v) \ |
| printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v)) |
| #define DOPRINT_END2(hi, lo) \ |
| printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \ |
| (long double)(hi), (long double)(lo)) |
| |
| #elif defined(DOPRINT_D64) |
| |
| #define DOPRINT_START(xp) do { \ |
| uint32_t __hx, __lx; \ |
| \ |
| EXTRACT_WORDS(__hx, __lx, *xp); \ |
| __lx ^= DOPRINT_SWIZZLE; \ |
| INSERT_WORDS(*xp, __hx, __lx); \ |
| printf("x = %.21Lg; ", (long double)*xp); \ |
| } while (0) |
| #define DOPRINT_END1(v) \ |
| printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v)) |
| #define DOPRINT_END2(hi, lo) \ |
| printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \ |
| (long double)(hi), (long double)(lo)) |
| |
| #elif defined(DOPRINT_F32) |
| |
| #define DOPRINT_START(xp) do { \ |
| uint32_t __hx; \ |
| \ |
| GET_FLOAT_WORD(__hx, *xp); \ |
| __hx ^= DOPRINT_SWIZZLE; \ |
| SET_FLOAT_WORD(*xp, __hx); \ |
| printf("x = %.21Lg; ", (long double)*xp); \ |
| } while (0) |
| #define DOPRINT_END1(v) \ |
| printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v)) |
| #define DOPRINT_END2(hi, lo) \ |
| printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \ |
| (long double)(hi), (long double)(lo)) |
| |
| #else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */ |
| |
| #ifndef DOPRINT_SWIZZLE_HIGH |
| #define DOPRINT_SWIZZLE_HIGH 0 |
| #endif |
| |
| #define DOPRINT_START(xp) do { \ |
| uint64_t __lx, __llx; \ |
| uint16_t __hx; \ |
| \ |
| EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \ |
| __llx ^= DOPRINT_SWIZZLE; \ |
| __lx ^= DOPRINT_SWIZZLE_HIGH; \ |
| INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \ |
| printf("x = %.36Lg; ", (long double)*xp); \ |
| } while (0) |
| #define DOPRINT_END1(v) \ |
| printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v)) |
| #define DOPRINT_END2(hi, lo) \ |
| printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \ |
| (long double)(hi), (long double)(lo)) |
| |
| #endif /* DOPRINT_LD80 */ |
| |
| #else /* !DOPRINT */ |
| #define DOPRINT_START(xp) |
| #define DOPRINT_END1(v) |
| #define DOPRINT_END2(hi, lo) |
| #endif /* DOPRINT */ |
| |
| #define RETURNP(x) do { \ |
| DOPRINT_END1(x); \ |
| RETURNF(x); \ |
| } while (0) |
| #define RETURNPI(x) do { \ |
| DOPRINT_END1(x); \ |
| RETURNI(x); \ |
| } while (0) |
| #define RETURN2P(x, y) do { \ |
| DOPRINT_END2((x), (y)); \ |
| RETURNF((x) + (y)); \ |
| } while (0) |
| #define RETURN2PI(x, y) do { \ |
| DOPRINT_END2((x), (y)); \ |
| RETURNI((x) + (y)); \ |
| } while (0) |
| #ifdef STRUCT_RETURN |
| #define RETURNSP(rp) do { \ |
| if (!(rp)->lo_set) \ |
| RETURNP((rp)->hi); \ |
| RETURN2P((rp)->hi, (rp)->lo); \ |
| } while (0) |
| #define RETURNSPI(rp) do { \ |
| if (!(rp)->lo_set) \ |
| RETURNPI((rp)->hi); \ |
| RETURN2PI((rp)->hi, (rp)->lo); \ |
| } while (0) |
| #endif |
| #define SUM2P(x, y) ({ \ |
| const __typeof (x) __x = (x); \ |
| const __typeof (y) __y = (y); \ |
| \ |
| DOPRINT_END2(__x, __y); \ |
| __x + __y; \ |
| }) |
| |
| /* |
| * ieee style elementary functions |
| * |
| * We rename functions here to improve other sources' diffability |
| * against fdlibm. |
| */ |
| #define __ieee754_sqrt sqrt |
| #define __ieee754_acos acos |
| #define __ieee754_acosh acosh |
| #define __ieee754_log log |
| #define __ieee754_log2 log2 |
| #define __ieee754_atanh atanh |
| #define __ieee754_asin asin |
| #define __ieee754_atan2 atan2 |
| #define __ieee754_exp exp |
| #define __ieee754_cosh cosh |
| #define __ieee754_fmod fmod |
| #define __ieee754_pow pow |
| #define __ieee754_lgamma lgamma |
| #define __ieee754_gamma gamma |
| #define __ieee754_lgamma_r lgamma_r |
| #define __ieee754_gamma_r gamma_r |
| #define __ieee754_log10 log10 |
| #define __ieee754_sinh sinh |
| #define __ieee754_hypot hypot |
| #define __ieee754_j0 j0 |
| #define __ieee754_j1 j1 |
| #define __ieee754_y0 y0 |
| #define __ieee754_y1 y1 |
| #define __ieee754_jn jn |
| #define __ieee754_yn yn |
| #define __ieee754_remainder remainder |
| #define __ieee754_scalb scalb |
| #define __ieee754_sqrtf sqrtf |
| #define __ieee754_acosf acosf |
| #define __ieee754_acoshf acoshf |
| #define __ieee754_logf logf |
| #define __ieee754_atanhf atanhf |
| #define __ieee754_asinf asinf |
| #define __ieee754_atan2f atan2f |
| #define __ieee754_expf expf |
| #define __ieee754_coshf coshf |
| #define __ieee754_fmodf fmodf |
| #define __ieee754_powf powf |
| #define __ieee754_lgammaf lgammaf |
| #define __ieee754_gammaf gammaf |
| #define __ieee754_lgammaf_r lgammaf_r |
| #define __ieee754_gammaf_r gammaf_r |
| #define __ieee754_log10f log10f |
| #define __ieee754_log2f log2f |
| #define __ieee754_sinhf sinhf |
| #define __ieee754_hypotf hypotf |
| #define __ieee754_j0f j0f |
| #define __ieee754_j1f j1f |
| #define __ieee754_y0f y0f |
| #define __ieee754_y1f y1f |
| #define __ieee754_jnf jnf |
| #define __ieee754_ynf ynf |
| #define __ieee754_remainderf remainderf |
| #define __ieee754_scalbf scalbf |
| |
| /* fdlibm kernel function */ |
| int __kernel_rem_pio2(double*,double*,int,int,int); |
| |
| /* double precision kernel functions */ |
| #ifndef INLINE_REM_PIO2 |
| int __ieee754_rem_pio2(double,double*); |
| #endif |
| double __kernel_sin(double,double,int); |
| double __kernel_cos(double,double); |
| double __kernel_tan(double,double,int); |
| double __ldexp_exp(double,int); |
| #ifdef _COMPLEX_H |
| double complex __ldexp_cexp(double complex,int); |
| #endif |
| |
| /* float precision kernel functions */ |
| #ifndef INLINE_REM_PIO2F |
| int __ieee754_rem_pio2f(float,double*); |
| #endif |
| #ifndef INLINE_KERNEL_SINDF |
| float __kernel_sindf(double); |
| #endif |
| #ifndef INLINE_KERNEL_COSDF |
| float __kernel_cosdf(double); |
| #endif |
| #ifndef INLINE_KERNEL_TANDF |
| float __kernel_tandf(double,int); |
| #endif |
| float __ldexp_expf(float,int); |
| #ifdef _COMPLEX_H |
| float complex __ldexp_cexpf(float complex,int); |
| #endif |
| |
| /* long double precision kernel functions */ |
| long double __kernel_sinl(long double, long double, int); |
| long double __kernel_cosl(long double, long double); |
| long double __kernel_tanl(long double, long double, int); |
| |
| #endif /* !_MATH_PRIVATE_H_ */ |