blob: 6483cfe76029c0de498f597d85ac53066ab9794e [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <threads.h>
#include <ddk/binding.h>
#include <ddk/debug.h>
#include <ddk/device.h>
#include <ddk/driver.h>
#include <ddk/phys-iter.h>
#include <ddk/protocol/ethernet.h>
#include <ddk/protocol/usb/function.h>
#include <fbl/algorithm.h>
#include <inet6/inet6.h>
#include <usb/usb-request.h>
#include <zircon/listnode.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
#include <zircon/device/usb-peripheral.h>
#include <zircon/hw/usb-cdc.h>
namespace usb_cdc_function {
#define BULK_REQ_SIZE 2048
#define BULK_TX_COUNT 16
#define BULK_RX_COUNT 16
#define INTR_COUNT 8
#define BULK_MAX_PACKET 512 // FIXME(voydanoff) USB 3.0 support
#define INTR_MAX_PACKET sizeof(usb_cdc_speed_change_notification_t)
typedef struct {
zx_device_t* zxdev;
usb_function_protocol_t function;
list_node_t bulk_out_reqs; // list of usb_request_t
list_node_t bulk_in_reqs; // list of usb_request_t
list_node_t intr_reqs; // list of usb_request_t
list_node_t tx_pending_infos; // list of ethmac_netbuf_t
bool unbound; // set to true when device is going away. Guarded by tx_mutex
// Device attributes
uint8_t mac_addr[ETH_MAC_SIZE];
mtx_t ethmac_mutex;
ethmac_ifc_t ethmac_ifc;
bool online;
usb_speed_t speed;
mtx_t tx_mutex;
mtx_t rx_mutex;
mtx_t intr_mutex;
uint8_t bulk_out_addr;
uint8_t bulk_in_addr;
uint8_t intr_addr;
uint16_t bulk_max_packet;
size_t parent_req_size;
} usb_cdc_t;
typedef struct txn_info {
ethmac_netbuf_t netbuf;
list_node_t node;
} txn_info_t;
static struct {
usb_interface_descriptor_t comm_intf;
usb_cs_header_interface_descriptor_t cdc_header;
usb_cs_union_interface_descriptor_1_t cdc_union;
usb_cs_ethernet_interface_descriptor_t cdc_eth;
usb_endpoint_descriptor_t intr_ep;
usb_interface_descriptor_t cdc_intf_0;
usb_interface_descriptor_t cdc_intf_1;
usb_endpoint_descriptor_t bulk_out_ep;
usb_endpoint_descriptor_t bulk_in_ep;
} descriptors = {
.comm_intf = {
.bLength = sizeof(usb_interface_descriptor_t),
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0, // set later
.bAlternateSetting = 0,
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_COMM,
.bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET,
.bInterfaceProtocol = 0,
.iInterface = 0,
},
.cdc_header = {
.bLength = sizeof(usb_cs_header_interface_descriptor_t),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_DST_HEADER,
.bcdCDC = 0x120,
},
.cdc_union = {
.bLength = sizeof(usb_cs_union_interface_descriptor_1_t),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_DST_UNION,
.bControlInterface = 0, // set later
.bSubordinateInterface = 0, // set later
},
.cdc_eth = {
.bLength = sizeof(usb_cs_ethernet_interface_descriptor_t),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_DST_ETHERNET,
.iMACAddress = 0, // set later
.bmEthernetStatistics = 0,
.wMaxSegmentSize = ETH_MTU,
.wNumberMCFilters = 0,
.bNumberPowerFilters = 0,
},
.intr_ep = {
.bLength = sizeof(usb_endpoint_descriptor_t),
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0, // set later
.bmAttributes = USB_ENDPOINT_INTERRUPT,
.wMaxPacketSize = htole16(INTR_MAX_PACKET),
.bInterval = 8,
},
.cdc_intf_0 = {
.bLength = sizeof(usb_interface_descriptor_t),
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0, // set later
.bAlternateSetting = 0,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_CDC,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = 0,
},
.cdc_intf_1 = {
.bLength = sizeof(usb_interface_descriptor_t),
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0, // set later
.bAlternateSetting = 1,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_CDC,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = 0,
},
.bulk_out_ep = {
.bLength = sizeof(usb_endpoint_descriptor_t),
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0, // set later
.bmAttributes = USB_ENDPOINT_BULK,
.wMaxPacketSize = htole16(BULK_MAX_PACKET),
.bInterval = 0,
},
.bulk_in_ep = {
.bLength = sizeof(usb_endpoint_descriptor_t),
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0, // set later
.bmAttributes = USB_ENDPOINT_BULK,
.wMaxPacketSize = htole16(BULK_MAX_PACKET),
.bInterval = 0,
},
};
static void cdc_tx_complete(void* ctx, usb_request_t* req);
static zx_status_t cdc_generate_mac_address(usb_cdc_t* cdc) {
zx_cprng_draw(cdc->mac_addr, sizeof(cdc->mac_addr));
// set most significant byte so we are using a locally managed address
// TODO(voydanoff) add a way to configure a real MAC address here
cdc->mac_addr[0] = 0x02;
char buffer[sizeof(cdc->mac_addr) * 3];
snprintf(buffer, sizeof(buffer), "%02X%02X%02X%02X%02X%02X",
cdc->mac_addr[0], cdc->mac_addr[1], cdc->mac_addr[2],
cdc->mac_addr[3], cdc->mac_addr[4], cdc->mac_addr[5]);
return usb_function_alloc_string_desc(&cdc->function, buffer, &descriptors.cdc_eth.iMACAddress);
}
static zx_status_t cdc_ethmac_query(void* ctx, uint32_t options, ethmac_info_t* info) {
zxlogf(TRACE, "%s:\n", __func__);
auto* cdc = static_cast<usb_cdc_t*>(ctx);
// No options are supported
if (options) {
zxlogf(ERROR, "%s: unexpected options (0x%" PRIx32 ") to ethmac_query\n", __func__,
options);
return ZX_ERR_INVALID_ARGS;
}
memset(info, 0, sizeof(*info));
info->mtu = ETH_MTU;
memcpy(info->mac, cdc->mac_addr, sizeof(cdc->mac_addr));
info->netbuf_size = sizeof(txn_info_t);
return ZX_OK;
}
static void cdc_ethmac_stop(void* cookie) {
zxlogf(TRACE, "%s:\n", __func__);
auto* cdc = static_cast<usb_cdc_t*>(cookie);
mtx_lock(&cdc->ethmac_mutex);
cdc->ethmac_ifc.ops = NULL;
mtx_unlock(&cdc->ethmac_mutex);
}
static zx_status_t cdc_ethmac_start(void* ctx_cookie, const ethmac_ifc_t* ifc) {
zxlogf(TRACE, "%s:\n", __func__);
auto* cdc = static_cast<usb_cdc_t*>(ctx_cookie);
zx_status_t status = ZX_OK;
mtx_lock(&cdc->ethmac_mutex);
if (cdc->ethmac_ifc.ops) {
status = ZX_ERR_ALREADY_BOUND;
} else {
cdc->ethmac_ifc = *ifc;
ethmac_ifc_status(&cdc->ethmac_ifc, cdc->online ? ETHMAC_STATUS_ONLINE : 0);
}
mtx_unlock(&cdc->ethmac_mutex);
return status;
}
static zx_status_t cdc_send_locked(usb_cdc_t* cdc, ethmac_netbuf_t* netbuf) {
const auto* byte_data = static_cast<const uint8_t*>(netbuf->data_buffer);
size_t length = netbuf->data_size;
// Make sure that we can get all of the tx buffers we need to use
usb_request_t* tx_req = usb_req_list_remove_head(&cdc->bulk_in_reqs, cdc->parent_req_size);
if (tx_req == NULL) {
return ZX_ERR_SHOULD_WAIT;
}
// Send data
tx_req->header.length = length;
ssize_t bytes_copied = usb_request_copy_to(tx_req, byte_data,
tx_req->header.length, 0);
if (bytes_copied < 0) {
zxlogf(LERROR, "%s: failed to copy data into send req (error %zd)\n", __func__,
bytes_copied);
zx_status_t status = usb_req_list_add_tail(&cdc->bulk_in_reqs, tx_req,
cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
return ZX_ERR_INTERNAL;
}
usb_request_complete_t complete = {
.callback = cdc_tx_complete,
.ctx = cdc,
};
usb_function_request_queue(&cdc->function, tx_req, &complete);
return ZX_OK;
}
static zx_status_t cdc_ethmac_queue_tx(void* cookie, uint32_t options, ethmac_netbuf_t* netbuf) {
auto* cdc = static_cast<usb_cdc_t*>(cookie);
size_t length = netbuf->data_size;
zx_status_t status;
if (!cdc->online || length > ETH_MTU || length == 0) {
return ZX_ERR_INVALID_ARGS;
}
zxlogf(LTRACE, "%s: sending %zu bytes\n", __func__, length);
mtx_lock(&cdc->tx_mutex);
if (cdc->unbound) {
status = ZX_ERR_IO_NOT_PRESENT;
} else {
status = cdc_send_locked(cdc, netbuf);
if (status == ZX_ERR_SHOULD_WAIT) {
// No buffers available, queue it up
txn_info_t* txn = containerof(netbuf, txn_info_t, netbuf);
list_add_tail(&cdc->tx_pending_infos, &txn->node);
}
}
mtx_unlock(&cdc->tx_mutex);
return status;
}
static zx_status_t cdc_ethmac_set_param(void *cookie, uint32_t param, int32_t value,
const void* data, size_t data_size) {
return ZX_ERR_NOT_SUPPORTED;
}
static ethmac_protocol_ops_t ethmac_ops = [](){
ethmac_protocol_ops_t ops = {};
ops.query = cdc_ethmac_query;
ops.stop = cdc_ethmac_stop;
ops.start = cdc_ethmac_start;
ops.queue_tx = cdc_ethmac_queue_tx;
ops.set_param = cdc_ethmac_set_param;
return ops;
}();
static void cdc_intr_complete(void* ctx, usb_request_t* req) {
auto* cdc = static_cast<usb_cdc_t*>(ctx);
zxlogf(LTRACE, "%s %d %ld\n", __func__, req->response.status, req->response.actual);
mtx_lock(&cdc->intr_mutex);
zx_status_t status = usb_req_list_add_tail(&cdc->intr_reqs, req, cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
mtx_unlock(&cdc->intr_mutex);
}
static void cdc_send_notifications(usb_cdc_t* cdc) {
usb_request_t* req;
usb_cdc_notification_t network_notification = {
.bmRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
.bNotification = USB_CDC_NC_NETWORK_CONNECTION,
.wValue = cdc->online,
.wIndex = descriptors.cdc_intf_0.bInterfaceNumber,
.wLength = 0,
};
usb_cdc_speed_change_notification_t speed_notification = {
.notification = {
.bmRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
.bNotification = USB_CDC_NC_CONNECTION_SPEED_CHANGE,
.wValue = 0,
.wIndex = descriptors.cdc_intf_0.bInterfaceNumber,
.wLength = 2 * sizeof(uint32_t),
},
.downlink_br = 0,
.uplink_br = 0,
};
if (cdc->online) {
if (cdc->speed == USB_SPEED_SUPER) {
// Claim to be gigabit speed.
speed_notification.downlink_br = speed_notification.uplink_br = 1000 * 1000 * 1000;
} else {
// Claim to be 100 megabit speed.
speed_notification.downlink_br = speed_notification.uplink_br = 100 * 1000 * 1000;
}
} else {
speed_notification.downlink_br = speed_notification.uplink_br = 0;
}
mtx_lock(&cdc->intr_mutex);
req = usb_req_list_remove_head(&cdc->intr_reqs, cdc->parent_req_size);
mtx_unlock(&cdc->intr_mutex);
if (!req) {
zxlogf(ERROR, "%s: no interrupt request available\n", __func__);
return;
}
usb_request_copy_to(req, &network_notification, sizeof(network_notification), 0);
req->header.length = sizeof(network_notification);
usb_request_complete_t complete = {
.callback = cdc_intr_complete,
.ctx = cdc,
};
usb_function_request_queue(&cdc->function, req, &complete);
mtx_lock(&cdc->intr_mutex);
req = usb_req_list_remove_head(&cdc->intr_reqs, cdc->parent_req_size);
mtx_unlock(&cdc->intr_mutex);
if (!req) {
zxlogf(ERROR, "%s: no interrupt request available\n", __func__);
return;
}
usb_request_copy_to(req, &speed_notification, sizeof(speed_notification), 0);
req->header.length = sizeof(speed_notification);
usb_function_request_queue(&cdc->function, req, &complete);
}
static void cdc_rx_complete(void* ctx, usb_request_t* req) {
auto* cdc = static_cast<usb_cdc_t*>(ctx);
zxlogf(LTRACE, "%s %d %ld\n", __func__, req->response.status, req->response.actual);
if (req->response.status == ZX_ERR_IO_NOT_PRESENT) {
mtx_lock(&cdc->rx_mutex);
zx_status_t status = usb_req_list_add_head(&cdc->bulk_out_reqs, req, cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
mtx_unlock(&cdc->rx_mutex);
return;
}
if (req->response.status != ZX_OK) {
zxlogf(ERROR, "%s: usb_read_complete called with status %d\n",
__func__, req->response.status);
}
if (req->response.status == ZX_OK) {
mtx_lock(&cdc->ethmac_mutex);
if (cdc->ethmac_ifc.ops) {
void* data = NULL;
usb_request_mmap(req, &data);
ethmac_ifc_recv(&cdc->ethmac_ifc, data, req->response.actual, 0);
}
mtx_unlock(&cdc->ethmac_mutex);
}
usb_request_complete_t complete = {
.callback = cdc_rx_complete,
.ctx = cdc,
};
usb_function_request_queue(&cdc->function, req, &complete);
}
static void cdc_tx_complete(void* ctx, usb_request_t* req) {
auto* cdc = static_cast<usb_cdc_t*>(ctx);
zxlogf(LTRACE, "%s %d %ld\n", __func__, req->response.status, req->response.actual);
mtx_lock(&cdc->tx_mutex);
zx_status_t status = usb_req_list_add_tail(&cdc->bulk_in_reqs, req, cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
bool additional_tx_queued = false;
txn_info_t* txn;
zx_status_t send_status = ZX_OK;
if ((txn = list_peek_head_type(&cdc->tx_pending_infos, txn_info_t, node))) {
if ((send_status = cdc_send_locked(cdc, &txn->netbuf)) != ZX_ERR_SHOULD_WAIT) {
list_remove_head(&cdc->tx_pending_infos);
additional_tx_queued = true;
}
}
mtx_unlock(&cdc->tx_mutex);
if (additional_tx_queued) {
mtx_lock(&cdc->ethmac_mutex);
if (cdc->ethmac_ifc.ops) {
ethmac_ifc_complete_tx(&cdc->ethmac_ifc, &txn->netbuf, send_status);
}
mtx_unlock(&cdc->ethmac_mutex);
}
}
static size_t cdc_get_descriptors_size(void* ctx) {
return sizeof(descriptors);
}
static void cdc_get_descriptors(void* ctx, void* buffer, size_t buffer_size, size_t* out_actual) {
const size_t length = fbl::min(sizeof(descriptors), buffer_size);
memcpy(buffer, &descriptors, length);
*out_actual = length;
}
static zx_status_t cdc_control(void* ctx, const usb_setup_t* setup, const void* write_buffer,
size_t write_size, void* out_read_buffer, size_t read_size,
size_t* out_read_actual) {
*out_read_actual = 0;
zxlogf(TRACE, "%s\n", __func__);
// USB_CDC_SET_ETHERNET_PACKET_FILTER is the only control request required by the spec
if (setup->bmRequestType == (USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) &&
setup->bRequest == USB_CDC_SET_ETHERNET_PACKET_FILTER) {
zxlogf(TRACE, "%s: USB_CDC_SET_ETHERNET_PACKET_FILTER\n", __func__);
// TODO(voydanoff) implement the requested packet filtering
return ZX_OK;
}
return ZX_ERR_NOT_SUPPORTED;
}
static zx_status_t cdc_set_configured(void* ctx, bool configured, usb_speed_t speed) {
zxlogf(TRACE, "%s: %d %d\n", __func__, configured, speed);
auto* cdc = static_cast<usb_cdc_t*>(ctx);
zx_status_t status;
mtx_lock(&cdc->ethmac_mutex);
cdc->online = false;
if (cdc->ethmac_ifc.ops) {
ethmac_ifc_status(&cdc->ethmac_ifc, 0);
}
mtx_unlock(&cdc->ethmac_mutex);
if (configured) {
if ((status = usb_function_config_ep(&cdc->function, &descriptors.intr_ep, NULL)) != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_config_ep failed\n", __func__);
return status;
}
cdc->speed = speed;
} else {
usb_function_disable_ep(&cdc->function, cdc->bulk_out_addr);
usb_function_disable_ep(&cdc->function, cdc->bulk_in_addr);
usb_function_disable_ep(&cdc->function, cdc->intr_addr);
cdc->speed = USB_SPEED_UNDEFINED;
}
cdc_send_notifications(cdc);
return ZX_OK;
}
static zx_status_t cdc_set_interface(void* ctx, uint8_t interface, uint8_t alt_setting) {
zxlogf(TRACE, "%s: %d %d\n", __func__, interface, alt_setting);
auto* cdc = static_cast<usb_cdc_t*>(ctx);
zx_status_t status;
if (interface != descriptors.cdc_intf_0.bInterfaceNumber || alt_setting > 1) {
return ZX_ERR_INVALID_ARGS;
}
// TODO(voydanoff) fullspeed and superspeed support
if (alt_setting) {
if ((status = usb_function_config_ep(&cdc->function, &descriptors.bulk_out_ep, NULL))
!= ZX_OK ||
(status = usb_function_config_ep(&cdc->function, &descriptors.bulk_in_ep, NULL))
!= ZX_OK) {
zxlogf(ERROR, "%s: usb_function_config_ep failed\n", __func__);
}
} else {
if ((status = usb_function_disable_ep(&cdc->function, cdc->bulk_out_addr)) != ZX_OK ||
(status = usb_function_disable_ep(&cdc->function, cdc->bulk_in_addr)) != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_disable_ep failed\n", __func__);
}
}
bool online = false;
if (alt_setting && status == ZX_OK) {
online = true;
// queue our OUT reqs
mtx_lock(&cdc->rx_mutex);
usb_request_t* req;
while ((req = usb_req_list_remove_head(&cdc->bulk_out_reqs,
cdc->parent_req_size)) != NULL) {
usb_request_complete_t complete = {
.callback = cdc_rx_complete,
.ctx = cdc,
};
usb_function_request_queue(&cdc->function, req, &complete);
}
mtx_unlock(&cdc->rx_mutex);
}
mtx_lock(&cdc->ethmac_mutex);
cdc->online = online;
if (cdc->ethmac_ifc.ops) {
ethmac_ifc_status(&cdc->ethmac_ifc, online ? ETHMAC_STATUS_ONLINE : 0);
}
mtx_unlock(&cdc->ethmac_mutex);
// send status notifications on interrupt endpoint
cdc_send_notifications(cdc);
return status;
}
usb_function_interface_ops_t device_ops = {
.get_descriptors_size = cdc_get_descriptors_size,
.get_descriptors = cdc_get_descriptors,
.control = cdc_control,
.set_configured = cdc_set_configured,
.set_interface = cdc_set_interface,
};
static void usb_cdc_unbind(void* ctx) {
zxlogf(TRACE, "%s\n", __func__);
auto* cdc = static_cast<usb_cdc_t*>(ctx);
mtx_lock(&cdc->tx_mutex);
cdc->unbound = true;
if (cdc->ethmac_ifc.ops) {
txn_info_t* txn;
while ((txn = list_remove_head_type(&cdc->tx_pending_infos, txn_info_t, node)) !=
NULL) {
ethmac_ifc_complete_tx(&cdc->ethmac_ifc, &txn->netbuf, ZX_ERR_PEER_CLOSED);
}
}
mtx_unlock(&cdc->tx_mutex);
device_remove(cdc->zxdev);
}
static void usb_cdc_release(void* ctx) {
zxlogf(TRACE, "%s\n", __func__);
auto* cdc = static_cast<usb_cdc_t*>(ctx);
usb_request_t* req;
while ((req = usb_req_list_remove_head(&cdc->bulk_out_reqs, cdc->parent_req_size)) != NULL) {
usb_request_release(req);
}
while ((req = usb_req_list_remove_head(&cdc->bulk_in_reqs, cdc->parent_req_size)) != NULL) {
usb_request_release(req);
}
while ((req = usb_req_list_remove_head(&cdc->intr_reqs, cdc->parent_req_size)) != NULL) {
usb_request_release(req);
}
mtx_destroy(&cdc->ethmac_mutex);
mtx_destroy(&cdc->tx_mutex);
mtx_destroy(&cdc->rx_mutex);
mtx_destroy(&cdc->intr_mutex);
free(cdc);
}
static zx_protocol_device_t usb_cdc_proto = [](){
zx_protocol_device_t dev = {};
dev.version = DEVICE_OPS_VERSION;
dev.unbind = usb_cdc_unbind;
dev.release = usb_cdc_release;
return dev;
}();
zx_status_t usb_cdc_bind(void* ctx, zx_device_t* parent) {
zxlogf(INFO, "%s\n", __func__);
device_add_args_t args = {};
auto* cdc = static_cast<usb_cdc_t*>(calloc(1, sizeof(usb_cdc_t)));
if (!cdc) {
return ZX_ERR_NO_MEMORY;
}
zx_status_t status = device_get_protocol(parent, ZX_PROTOCOL_USB_FUNCTION, &cdc->function);
if (status != ZX_OK) {
free(cdc);
return status;
}
list_initialize(&cdc->bulk_out_reqs);
list_initialize(&cdc->bulk_in_reqs);
list_initialize(&cdc->intr_reqs);
list_initialize(&cdc->tx_pending_infos);
mtx_init(&cdc->ethmac_mutex, mtx_plain);
mtx_init(&cdc->tx_mutex, mtx_plain);
mtx_init(&cdc->rx_mutex, mtx_plain);
mtx_init(&cdc->intr_mutex, mtx_plain);
usb_function_interface_t intf = {};
intf.ops = &device_ops;
intf.ctx = cdc;
cdc->bulk_max_packet = BULK_MAX_PACKET; // FIXME(voydanoff) USB 3.0 support
cdc->parent_req_size = usb_function_get_request_size(&cdc->function);
uint64_t req_size = cdc->parent_req_size + sizeof(usb_req_internal_t);
status = usb_function_alloc_interface(&cdc->function, &descriptors.comm_intf.bInterfaceNumber);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_alloc_interface failed\n", __func__);
goto fail;
}
status = usb_function_alloc_interface(&cdc->function, &descriptors.cdc_intf_0.bInterfaceNumber);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_alloc_interface failed\n", __func__);
goto fail;
}
descriptors.cdc_intf_1.bInterfaceNumber = descriptors.cdc_intf_0.bInterfaceNumber;
descriptors.cdc_union.bControlInterface = descriptors.comm_intf.bInterfaceNumber;
descriptors.cdc_union.bSubordinateInterface = descriptors.cdc_intf_0.bInterfaceNumber;
status = usb_function_alloc_ep(&cdc->function, USB_DIR_OUT, &cdc->bulk_out_addr);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_alloc_ep failed\n", __func__);
goto fail;
}
status = usb_function_alloc_ep(&cdc->function, USB_DIR_IN, &cdc->bulk_in_addr);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_alloc_ep failed\n", __func__);
goto fail;
}
status = usb_function_alloc_ep(&cdc->function, USB_DIR_IN, &cdc->intr_addr);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: usb_function_alloc_ep failed\n", __func__);
goto fail;
}
descriptors.bulk_out_ep.bEndpointAddress = cdc->bulk_out_addr;
descriptors.bulk_in_ep.bEndpointAddress = cdc->bulk_in_addr;
descriptors.intr_ep.bEndpointAddress = cdc->intr_addr;
status = cdc_generate_mac_address(cdc);
if (status != ZX_OK) {
goto fail;
}
// allocate bulk out usb requests
usb_request_t* req;
for (int i = 0; i < BULK_TX_COUNT; i++) {
status = usb_request_alloc(&req, BULK_REQ_SIZE, cdc->bulk_out_addr, req_size);
if (status != ZX_OK) {
goto fail;
}
status = usb_req_list_add_head(&cdc->bulk_out_reqs, req, cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
}
// allocate bulk in usb requests
for (int i = 0; i < BULK_RX_COUNT; i++) {
status = usb_request_alloc(&req, BULK_REQ_SIZE, cdc->bulk_in_addr, req_size);
if (status != ZX_OK) {
goto fail;
}
// As per the CDC-ECM spec, we need to send a zero-length packet to signify the end of
// transmission when the endpoint max packet size is a factor of the total transmission size
req->header.send_zlp = true;
status = usb_req_list_add_head(&cdc->bulk_in_reqs, req, cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
}
// allocate interrupt requests
for (int i = 0; i < INTR_COUNT; i++) {
status = usb_request_alloc(&req, INTR_MAX_PACKET, cdc->intr_addr, req_size);
if (status != ZX_OK) {
goto fail;
}
status = usb_req_list_add_head(&cdc->intr_reqs, req, cdc->parent_req_size);
ZX_DEBUG_ASSERT(status == ZX_OK);
}
args.version = DEVICE_ADD_ARGS_VERSION;
args.name = "cdc-eth-function";
args.ctx = cdc;
args.ops = &usb_cdc_proto;
args.proto_id = ZX_PROTOCOL_ETHMAC;
args.proto_ops = &ethmac_ops;
status = device_add(parent, &args, &cdc->zxdev);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: add_device failed %d\n", __func__, status);
goto fail;
}
usb_function_set_interface(&cdc->function, &intf);
return ZX_OK;
fail:
usb_cdc_release(cdc);
return status;
}
static zx_driver_ops_t driver_ops = [](){
zx_driver_ops_t ops = {};
ops.version = DRIVER_OPS_VERSION;
ops.bind = usb_cdc_bind;
return ops;
}();
} // namespace usb_cdc_function
// clang-format off
ZIRCON_DRIVER_BEGIN(usb_cdc, usb_cdc_function::driver_ops, "zircon", "0.1", 4)
BI_ABORT_IF(NE, BIND_PROTOCOL, ZX_PROTOCOL_USB_FUNCTION),
BI_ABORT_IF(NE, BIND_USB_CLASS, USB_CLASS_COMM),
BI_ABORT_IF(NE, BIND_USB_SUBCLASS, USB_CDC_SUBCLASS_ETHERNET),
BI_MATCH_IF(EQ, BIND_USB_PROTOCOL, 0),
ZIRCON_DRIVER_END(usb_cdc)