blob: 098f214fbc85b9407343617379b0acdd933fe770 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <dirent.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifdef __Fuchsia__
#include <fs/mapped-vmo.h>
#include <fs-management/mount.h>
#include <fs-management/ramdisk.h>
#include <zircon/device/device.h>
#include <zx/vmo.h>
#endif
#include <block-client/client.h>
#include <fbl/array.h>
#include <fbl/auto_call.h>
#include <fbl/unique_fd.h>
#include <fbl/unique_ptr.h>
#include <fdio/debug.h>
#include <fdio/watcher.h>
#include <fs/mapped-vmo.h>
#include <gpt/cros.h>
#include <gpt/gpt.h>
#include <zircon/device/block.h>
#include <zircon/syscalls.h>
#include <zircon/types.h>
#include <zx/fifo.h>
#include <zx/vmo.h>
#include "fvm/fvm.h"
#include "fvm/fvm-sparse.h"
#define MXDEBUG 0
#define FVM_DRIVER_LIB "/boot/driver/fvm.so"
#define STRLEN(s) sizeof(s) / sizeof((s)[0])
namespace {
constexpr char kBlockDevPath[] = "/dev/class/block";
// Confirm that the file descriptor to the underlying partition exists within an
// FVM, not, for example, a GPT or MBR.
//
// |out| is true if |fd| is a VPartition, else false.
zx_status_t fvm_is_vpartition(const fbl::unique_fd& fd, bool* out) {
char path[PATH_MAX];
ssize_t r = ioctl_device_get_topo_path(fd.get(), path, sizeof(path));
if (r < 0) {
return ZX_ERR_IO;
}
if (strstr(path, "fvm") != nullptr) {
*out = true;
} else {
*out = false;
}
return ZX_OK;
}
// Describes the state of a partition actively being written
// out to disk.
struct partition_info {
fvm::partition_descriptor_t* pd;
fbl::unique_fd new_part;
fbl::unique_fd old_part; // Or '-1' if this is a new partition
};
inline fvm::extent_descriptor_t* get_extent(fvm::partition_descriptor_t* pd, size_t extent) {
return reinterpret_cast<fvm::extent_descriptor_t*>(
reinterpret_cast<uintptr_t>(pd) + sizeof(fvm::partition_descriptor_t) +
extent * sizeof(fvm::extent_descriptor_t));
}
zx_status_t register_fast_block_io(const fbl::unique_fd& fd, zx_handle_t vmo,
txnid_t* txnid_out, vmoid_t* vmoid_out,
fifo_client_t** client_out) {
zx::fifo fifo;
if (ioctl_block_get_fifos(fd.get(), fifo.reset_and_get_address()) < 0) {
fprintf(stderr, "[register_fast_block_io] Couldn't attach fifo to partition\n");
return ZX_ERR_IO;
}
if (ioctl_block_alloc_txn(fd.get(), txnid_out) < 0) {
fprintf(stderr, "[register_fast_block_io] Couldn't allocate transaction\n");
return ZX_ERR_IO;
}
zx::vmo dup;
if (zx_handle_duplicate(vmo, ZX_RIGHT_SAME_RIGHTS,
dup.reset_and_get_address()) != ZX_OK) {
fprintf(stderr, "[register_fast_block_io] Couldn't duplicate buffer vmo\n");
return ZX_ERR_IO;
}
zx_handle_t h = dup.release();
if (ioctl_block_attach_vmo(fd.get(), &h, vmoid_out) < 0) {
fprintf(stderr, "[register_fast_block_io] Couldn't attach VMO\n");
return ZX_ERR_IO;
}
if (block_fifo_create_client(fifo.release(), client_out) != ZX_OK) {
fprintf(stderr, "[register_fast_block_io] Couldn't create block client\n");
return ZX_ERR_IO;
}
return ZX_OK;
}
// Stream an FVM partition to disk.
zx_status_t stream_fvm_partition(partition_info* part, MappedVmo* mvmo,
fifo_client_t* client, size_t slice_size,
block_fifo_request_t* request, const fbl::unique_fd& src_fd) {
const size_t vmo_cap = mvmo->GetSize();
for (size_t e = 0; e < part->pd->extent_count; e++) {
printf("[stream_fvm_partition] Writing extent %zu... \n", e);
fvm::extent_descriptor_t* ext = get_extent(part->pd, e);
size_t offset = ext->slice_start * slice_size;
size_t bytes_left = ext->extent_length;
// Write real data
while (bytes_left > 0) {
ssize_t r;
size_t vmo_sz = 0;
while ((r = read(src_fd.get(), &reinterpret_cast<uint8_t*>(mvmo->GetData())[vmo_sz],
fbl::min(bytes_left, vmo_cap - vmo_sz))) > 0) {
vmo_sz += r;
bytes_left -= r;
if (bytes_left == 0) {
break;
}
}
if (vmo_sz == 0) {
fprintf(stderr, "[stream_fvm_partition] Read nothing from src_fd; %zu bytes left\n",
bytes_left);
return ZX_ERR_IO;
}
if (r < 0) {
fprintf(stderr, "[stream_fvm_partition] Error reading partition data\n");
return static_cast<zx_status_t>(r);
}
request->length = vmo_sz;
request->vmo_offset = 0;
request->dev_offset = offset;
if ((r = block_fifo_txn(client, request, 1)) != ZX_OK) {
fprintf(stderr, "[stream_fvm_partition] Error writing partition data\n");
return static_cast<zx_status_t>(r);
}
offset += request->length;
}
// Write trailing zeroes (which are implied, but were omitted from
// transfer).
bytes_left = (ext->slice_count * slice_size) - ext->extent_length;
if (bytes_left > 0) {
printf("[stream_fvm_partition] %zu bytes written, %zu zeroes left\n",
ext->extent_length, bytes_left);
memset(mvmo->GetData(), 0, vmo_cap);
}
while(bytes_left > 0) {
request->length = fbl::min(bytes_left, vmo_cap);
request->vmo_offset = 0;
request->dev_offset = offset;
zx_status_t status;
if ((status = block_fifo_txn(client, request, 1)) != ZX_OK) {
fprintf(stderr, "[stream_fvm_partition] Error writing trailing zeroes\n");
return status;
}
offset += request->length;
bytes_left -= request->length;
}
}
return ZX_OK;
}
// Stream a raw (non-FVM) partition to disk.
zx_status_t stream_partition(MappedVmo* mvmo, fifo_client_t* client,
block_fifo_request_t* request, const fbl::unique_fd& src_fd) {
const size_t vmo_cap = mvmo->GetSize();
size_t offset = 0;
while (true) {
ssize_t r;
size_t vmo_sz = 0;
while ((r = read(src_fd.get(), &reinterpret_cast<uint8_t*>(mvmo->GetData())[vmo_sz],
vmo_cap - vmo_sz)) > 0) {
vmo_sz += r;
if (vmo_cap - vmo_sz == 0) {
// The buffer is full, let's write to disk.
break;
}
}
if (r < 0) {
fprintf(stderr, "[stream_partition] Error reading partition data\n");
return static_cast<zx_status_t>(r);
}
if (vmo_sz == 0 || r == 0) {
// Nothing left to write
return ZX_OK;
}
request->length = vmo_sz;
request->vmo_offset = 0;
request->dev_offset = offset;
if ((r = block_fifo_txn(client, request, 1)) != ZX_OK) {
fprintf(stderr, "[stream_partition] Error writing partition data\n");
return static_cast<zx_status_t>(r);
}
offset += request->length;
}
}
// Finds a partition with "FVM type GUID" within a GPT,
// and formats the FVM within the GPT if it is not already
// formatted.
//
// On success, returns a file descriptor to an FVM.
// On failure, returns -1
fbl::unique_fd fvm_find_or_format(size_t slice_size) {
const uint8_t type[GPT_GUID_LEN] = GUID_FVM_VALUE;
fbl::unique_fd fd(open_partition(nullptr, type, 0, nullptr));
if (!fd) {
fprintf(stderr, "[fvm_find_or_format] Couldn't find a GPT partition for FVM\n");
return fbl::unique_fd();
}
disk_format_t df = detect_disk_format(fd.get());
if (df != DISK_FORMAT_FVM) {
printf("[fvm_find_or_format] Initializing partition as FVM\n");
if (fvm_init(fd.get(), slice_size)) {
fprintf(stderr, "[fvm_find_or_format] Failed to initialize fvm\n");
return fbl::unique_fd();
}
}
char path[PATH_MAX];
ssize_t r = ioctl_device_get_topo_path(fd.get(), path, sizeof(path));
if (r < 0) {
fprintf(stderr, "[fvm_find_or_format] Failed to get topological path\n");
return fbl::unique_fd();
}
r = ioctl_device_bind(fd.get(), FVM_DRIVER_LIB, STRLEN(FVM_DRIVER_LIB));
if (r < 0) {
fprintf(stderr, "[fvm_find_or_format] Could not bind fvm driver\n");
return fbl::unique_fd();
}
if (wait_for_driver_bind(path, "fvm")) {
fprintf(stderr, "[fvm_find_or_format]: Error waiting for fvm driver to bind\n");
return fbl::unique_fd();
}
strcat(path, "/fvm");
return fbl::unique_fd(open(path, O_RDWR));
}
// Returns |ZX_OK| if |part_fd| is a child of |fvm_fd|.
zx_status_t fvm_partition_match(const fbl::unique_fd& fvm_fd, const fbl::unique_fd& part_fd) {
char fvm_path[PATH_MAX];
char part_path[PATH_MAX];
ssize_t r;
if ((r = ioctl_device_get_topo_path(fvm_fd.get(), fvm_path, sizeof(fvm_path))) < 0) {
fprintf(stderr, "[fvm_partition_match] Couldn't get topological path of FVM\n");
return static_cast<zx_status_t>(r);
} else if ((r = ioctl_device_get_topo_path(part_fd.get(), part_path, sizeof(part_path))) < 0) {
fprintf(stderr, "[fvm_partition_match] Couldn't get topological path of partition\n");
return static_cast<zx_status_t>(r);
}
if (strncmp(fvm_path, part_path, strlen(fvm_path))) {
fprintf(stderr, "[fvm_partition_match] Partition does not exist within FVM\n");
return ZX_ERR_BAD_STATE;
}
return ZX_OK;
}
// Given an fd representing a "sparse FVM format", fill the FVM with the
// provided partitions described by |src_fd|.
//
// Decides to overwrite or create new partitions based on the type
// GUID, not the instance GUID.
zx_status_t fvm_stream_partitions(fbl::unique_fd src_fd) {
fvm::sparse_image_t hdr;
if (read(src_fd.get(), &hdr, sizeof(hdr)) != sizeof(hdr)) {
fprintf(stderr, "[fvm_stream_partitions] Failed to read the sparse header\n");
return ZX_ERR_IO;
}
// Verify the header, then allocate and stream the remaining metadata
if (hdr.magic != fvm::kSparseFormatMagic) {
fprintf(stderr, "[fvm_stream_partitions] Bad magic\n");
return ZX_ERR_IO;
} else if (hdr.version != fvm::kSparseFormatVersion) {
fprintf(stderr, "[fvm_stream_partitions] Unexpected sparse file version\n");
return ZX_ERR_IO;
}
printf("[fvm_stream_partitions] Header Validated - OK\n");
// Acquire an fd to the fvm, either by finding one that already
// exists, or creating a new one.
fbl::unique_fd fvm_fd(fvm_find_or_format(hdr.slice_size));
if (!fvm_fd) {
fprintf(stderr, "[fvm_stream_partitions] Couldn't find FVM partition\n");
return ZX_ERR_IO;
}
// TODO(smklein): In this case, we could actually unbind the FVM driver,
// create a new FVM with the updated slice size, and rebind.
fvm_info_t info;
if (ioctl_block_fvm_query(fvm_fd.get(), &info) < 0) {
fprintf(stderr, "[fvm_stream_partitions] Couldn't query underlying FVM\n");
return ZX_ERR_IO;
} else if (info.slice_size != hdr.slice_size) {
fprintf(stderr, "[fvm_stream_partitions] Unexpected slice size (%zu vs %zu)\n",
info.slice_size, hdr.slice_size);
return ZX_ERR_IO;
}
fbl::unique_ptr<uint8_t[]> metadata(new uint8_t[hdr.header_length]);
memcpy(metadata.get(), &hdr, sizeof(hdr));
size_t off = sizeof(hdr);
while (off < hdr.header_length) {
ssize_t r = read(src_fd.get(), &metadata[off], hdr.header_length - off);
if (r < 0) {
fprintf(stderr, "[fvm_stream_partitions] Failed to stream metadata\n");
return ZX_ERR_IO;
}
off += r;
}
fbl::Array<partition_info> parts(new partition_info[hdr.partition_count],
hdr.partition_count);
fvm::partition_descriptor_t* part =
reinterpret_cast<fvm::partition_descriptor_t*>(
reinterpret_cast<uintptr_t>(metadata.get()) +
sizeof(fvm::sparse_image_t));
for (size_t p = 0; p < hdr.partition_count; p++) {
parts[p].pd = part;
parts[p].old_part.reset(open_partition(nullptr, part->type, ZX_SEC(2), nullptr));
if (parts[p].pd->magic != fvm::kPartitionDescriptorMagic) {
fprintf(stderr, "[fvm_stream_partitions] Bad partition magic\n");
return ZX_ERR_IO;
}
if (parts[p].old_part) {
bool is_vpartition;
if (fvm_is_vpartition(parts[p].old_part, &is_vpartition)) {
fprintf(stderr, "[fvm_stream_partitions] Couldn't confirm old vpartition type\n");
return ZX_ERR_IO;
} else if (fvm_partition_match(fvm_fd, parts[p].old_part) != ZX_OK) {
fprintf(stderr, "Streaming a partition type which also exists outside FVM\n");
fprintf(stderr, "Please run 'install-disk-image wipe' to clear your partitions\n");
return ZX_ERR_BAD_STATE;
} else if (!is_vpartition) {
fprintf(stderr, "Streaming a partition type which also exists in a GPT\n");
fprintf(stderr, "Please run 'install-disk-image wipe' to clear your GPT.\n");
return ZX_ERR_BAD_STATE;
}
}
fvm::extent_descriptor_t* ext = get_extent(part, 0);
if (ext->magic != fvm::kExtentDescriptorMagic) {
fprintf(stderr, "[fvm_stream_partitions] Bad extent magic\n");
return ZX_ERR_IO;
} else if (ext->slice_start != 0) {
fprintf(stderr, "[fvm_stream_partitions] First slice must start at zero\n");
return ZX_ERR_IO;
} else if (ext->slice_count == 0) {
fprintf(stderr, "[fvm_stream_partitions] Extents must have > 0 slices\n");
return ZX_ERR_IO;
} else if (ext->extent_length > ext->slice_count * hdr.slice_size) {
fprintf(stderr, "[fvm_stream_partitions] Extent length must fit within allocated slice count\n");
return ZX_ERR_IO;
}
alloc_req_t alloc;
// Allocate this partition as inactive so it gets deleted on the next
// reboot if this stream fails.
alloc.flags = fvm::kVPartFlagInactive;
alloc.slice_count = ext->slice_count;
memcpy(&alloc.type, parts[p].pd->type, sizeof(alloc.type));
size_t sz;
if (zx_cprng_draw(alloc.guid, GPT_GUID_LEN, &sz) != ZX_OK ||
sz != GPT_GUID_LEN) {
fprintf(stderr, "[fvm_stream_partitions] Couldn't generate unique GUID\n");
return ZX_ERR_IO;
}
memcpy(&alloc.name, parts[p].pd->name, sizeof(alloc.name));
printf("[fvm_stream_partitions] allocating partition %s consisting of %zu slices\n",
alloc.name, alloc.slice_count);
parts[p].new_part.reset(fvm_allocate_partition(fvm_fd.get(), &alloc));
if (!parts[p].new_part) {
fprintf(stderr, "[fvm_stream_partitions] Couldn't allocate partition\n");
return ZX_ERR_BAD_STATE;
}
for (size_t e = 1; e < parts[p].pd->extent_count; e++) {
ext = get_extent(parts[p].pd, e);
if (ext->magic != fvm::kExtentDescriptorMagic) {
fprintf(stderr, "[fvm_stream_partitions] Bad extent magic\n");
return ZX_ERR_IO;
} else if (ext->slice_count == 0) {
fprintf(stderr, "[fvm_stream_partitions] Extents must have > 0 slices\n");
return ZX_ERR_IO;
} else if (ext->extent_length > ext->slice_count * hdr.slice_size) {
fprintf(stderr, "[fvm_stream_partitions] Extent must fit within allocated slice count\n");
return ZX_ERR_IO;
}
extend_request_t request;
request.offset = ext->slice_start;
request.length = ext->slice_count;
printf("[fvm_stream_partitions] Extending partition[%zu] at offset %zu by length %zu\n",
p, request.offset, request.length);
if (ioctl_block_fvm_extend(parts[p].new_part.get(), &request) < 0) {
fprintf(stderr, "[fvm_stream_partitions] Failed to extend partition\n");
return ZX_ERR_BAD_STATE;
}
}
part = reinterpret_cast<fvm::partition_descriptor*>(
reinterpret_cast<uintptr_t>(ext) + sizeof(fvm::extent_descriptor_t));
}
printf("[fvm_stream_partitions] Partition space pre-allocated\n");
const size_t vmo_sz = 1 << 20;
fbl::unique_ptr<MappedVmo> mvmo;
zx_status_t status = MappedVmo::Create(vmo_sz, "fvm-stream", &mvmo);
if (status != ZX_OK) {
fprintf(stderr, "[fvm_stream_partitions] Failed to create stream VMO\n");
return ZX_ERR_NO_MEMORY;
}
// Now that all partitions are preallocated, begin streaming data to them.
for (size_t p = 0; p < hdr.partition_count; p++) {
txnid_t txnid;
vmoid_t vmoid;
fifo_client_t* client;
zx_status_t status = register_fast_block_io(parts[p].new_part,
mvmo->GetVmo(), &txnid,
&vmoid, &client);
if (status != ZX_OK) {
fprintf(stderr, "[fvm_stream_partitions] Failed to register fast block IO\n");
return status;
}
block_fifo_request_t request;
request.txnid = txnid;
request.vmoid = vmoid;
request.opcode = BLOCKIO_WRITE;
printf("[fvm_stream_partitions] streaming partition %zu\n", p);
status = stream_fvm_partition(&parts[p], mvmo.get(), client,
hdr.slice_size, &request, src_fd);
printf("[fvm_stream_partitions] done streaming partition %zu\n", p);
block_fifo_release_client(client);
if (status != ZX_OK) {
fprintf(stderr, "[fvm_stream_partitions] Failed to stream partition\n");
return status;
}
}
for (size_t p = 0; p < hdr.partition_count; p++) {
// Upgrade the old partition (currently active) to the new partition (currently
// inactive), so when the new partition becomes active, the old
// partition is destroyed.
upgrade_req_t upgrade;
memset(&upgrade, 0, sizeof(upgrade));
if (parts[p].old_part) {
if (ioctl_block_get_partition_guid(parts[p].old_part.get(),
&upgrade.old_guid, GUID_LEN) < 0) {
fprintf(stderr, "[fvm_stream_partitions] Failed to get unique GUID of old partition\n");
return ZX_ERR_BAD_STATE;
}
}
if (ioctl_block_get_partition_guid(parts[p].new_part.get(), &upgrade.new_guid, GUID_LEN) < 0) {
fprintf(stderr, "[fvm_stream_partitions] Failed to get unique GUID of new partition\n");
return ZX_ERR_BAD_STATE;
}
if (ioctl_block_fvm_upgrade(fvm_fd.get(), &upgrade) < 0) {
fprintf(stderr, "[fvm_stream_partitions] Failed to upgrade partition\n");
return ZX_ERR_IO;
}
if (parts[p].old_part) {
// This would fail if the old part was on GPT, not FVM. However,
// we checked earlier and verified that parts[p].old_part, if it exists,
// is a vpartition.
ssize_t r;
if ((r = ioctl_block_fvm_destroy(parts[p].old_part.get())) < 0) {
fprintf(stderr, "[fvm_stream_partitions] Couldn't destroy partition: %ld\n", r);
return static_cast<zx_status_t>(r);
}
}
}
return ZX_OK;
}
// Find and return the topological path of the GPT which we will pave.
// |out_path| must be at least |PATH_MAX| bytes long.
zx_status_t find_target_gpt(char* out_path) {
DIR* d = opendir(kBlockDevPath);
if (d == nullptr) {
fprintf(stderr, "[find_target_gpt] Cannot inspect block devices\n");
return ZX_ERR_BAD_STATE;
}
struct dirent* de;
while ((de = readdir(d)) != nullptr) {
fbl::unique_fd fd(openat(dirfd(d), de->d_name, O_RDWR));
if (!fd) {
continue;
}
ssize_t r = ioctl_device_get_topo_path(fd.get(), out_path, PATH_MAX);
if (r < 0) {
continue;
}
// TODO(ZX-1344): This is a hack, but practically, will work for our
// usage. The GPT which will contain an FVM should be a block device
// that is a SATA device, but not a partition itself.
if (strstr(out_path, "sata") != nullptr && strstr(out_path, "part") == nullptr) {
closedir(d);
return ZX_OK;
}
}
closedir(d);
fprintf(stderr, "[find_target_gpt] No candidate GPT found\n");
return ZX_ERR_NOT_FOUND;
}
// Initialize a GPT object with the gpt_device_t wrapper from ulib/gpt.
zx_status_t initialize_gpt(const char* gpt_path, fbl::unique_fd* out_fd, gpt_device_t** out_gpt) {
fbl::unique_fd fd(open(gpt_path, O_RDWR));
if (!fd) {
fprintf(stderr, "[initialize_gpt] Failed to open GPT\n");
return ZX_ERR_IO;
}
block_info_t info;
ssize_t rc = ioctl_block_get_info(fd.get(), &info);
if (rc < 0) {
fprintf(stderr, "[initialize_gpt] Couldn't get GPT block info\n");
return ZX_ERR_IO;
}
if (gpt_device_init(fd.get(), info.block_size, info.block_count, out_gpt)) {
fprintf(stderr, "[initialize_gpt] Failed to get GPT info\n");
return ZX_ERR_IO;
} else if (!(*out_gpt)->valid) {
fprintf(stderr, "[initialize_gpt] Located GPT is invalid; Attempting to initialize\n");
if (gpt_partition_remove_all(*out_gpt)) {
fprintf(stderr, "[initialize_gpt] Failed to create empty GPT\n");
gpt_device_release(*out_gpt);
return ZX_ERR_IO;
} else if (gpt_device_sync(*out_gpt)) {
fprintf(stderr, "[initialize_gpt] Failed to sync empty GPT\n");
gpt_device_release(*out_gpt);
return ZX_ERR_IO;
} else if ((rc = ioctl_block_rr_part(fd.get())) != ZX_OK) {
fprintf(stderr, "[initialize_gpt] Failed to re-read GPT\n");
gpt_device_release(*out_gpt);
return static_cast<zx_status_t>(rc);
}
}
*out_fd = fbl::move(fd);
return ZX_OK;
}
struct Partition {
size_t start; // Block, inclusive
size_t length; // In Blocks
};
constexpr size_t kReservedEntryBlocks = (16 * 1024);
constexpr size_t kReservedHeaderBlocks(size_t blk_size) {
return (kReservedEntryBlocks + 2 * blk_size) / blk_size;
};
// Find the first spot that has at least |bytes_requested| of space.
// Does not update the GPT.
//
// Returns the |start_out| block and |length_out| blocks, indicating
// how much space was found, on success. This may be larger than
// the number of bytes requested.
zx_status_t find_first_fit(const gpt_device_t* gpt, const fbl::unique_fd& gpt_fd,
size_t bytes_requested, size_t* start_out, size_t* length_out) {
printf("[find_first_fit]\n");
// Gather GPT-related information.
block_info_t info;
ssize_t rc = ioctl_block_get_info(gpt_fd.get(), &info);
if (rc < 0) {
fprintf(stderr, "[find_first_fit] Cannot acquire GPT info\n");
return static_cast<zx_status_t>(rc);
}
size_t blocks_requested = (bytes_requested + info.block_size - 1) / info.block_size;
// Sort all partitions by starting block.
// For simplicity, include the 'start' and 'end' reserved spots as
// partitions.
size_t partc = 0;
Partition partitions[PARTITIONS_COUNT + 2];
const size_t kReservedBlocks = kReservedHeaderBlocks(info.block_size);
partitions[partc].start = 0;
partitions[partc++].length = kReservedBlocks;
partitions[partc].start = info.block_count - kReservedBlocks;
partitions[partc++].length = kReservedBlocks;
for (size_t i = 0; i < PARTITIONS_COUNT; i++) {
gpt_partition_t* p = gpt->partitions[i];
if (!p) {
continue;
}
partitions[partc].start = p->first;
partitions[partc].length = p->last - p->first + 1;
printf("[find_first_fit] Partition seen with start %zu, end %zu (length %zu)\n",
p->first, p->last, partitions[partc].length);
partc++;
}
printf("[find_first_fit] Sorting\n");
qsort(partitions, partc, sizeof(Partition), [](const void* p1, const void* p2) {
ssize_t s1 = static_cast<ssize_t>(static_cast<const Partition*>(p1)->start);
ssize_t s2 = static_cast<ssize_t>(static_cast<const Partition*>(p2)->start);
return static_cast<int>(s1 - s2);
});
// Look for space between the partitions. Since the reserved spots of the
// GPT were included in |partitions|, all available space will be located
// "between" partitions.
for (size_t i = 0; i < partc - 1; i++) {
size_t next = partitions[i].start + partitions[i].length;
printf("[find_first_fit] Partition[%zu] From Block [%zu, %zu) ..."
"(next partition starts at block %zu)\n",
i, partitions[i].start, next, partitions[i + 1].start);
if (next > partitions[i + 1].start) {
fprintf(stderr, "[find_first_fit] Corrupted GPT\n");
return ZX_ERR_IO;
}
size_t free_blocks = partitions[i + 1].start - next;
printf("[find_first_fit] There are %zu free blocks (%zu requested)\n", free_blocks,
blocks_requested);
if (free_blocks >= blocks_requested) {
*start_out = next;
*length_out = free_blocks;
return ZX_OK;
}
}
fprintf(stderr, "[find_first_fit] No GPT space found\n");
return ZX_ERR_NO_RESOURCES;
}
// Returns "true" if the corresponding partition should
// be used for paving.
using PartitionFilterCb = bool (*)(size_t gpt_index, const uint8_t type[GPT_GUID_LEN],
const uint8_t name[GPT_NAME_LEN]);
// Optional callback.
// Returns "true" if a new partition should be created.
// Only called if one doesn't already exist.
//
// Additionally, sets the minimum requested size of the partition to allocate.
using PartitionCreateCb = bool (*)(uint8_t* type_out, uint64_t* size_bytes_out,
const char** name_out);
// Optional callback.
// Returns "true" if the partition has been updated.
//
// Allows the partition updater to modify attributes of the
// partition (like flags) after writing it to disk.
using PartitionFinalizeCb = bool (*)(gpt_partition_t* partition);
// Returns a file descriptor to a partition which can be paved,
// if one exists.
template <PartitionFilterCb filterCb>
zx_status_t partition_find(gpt_device_t* gpt, gpt_partition_t** out, fbl::unique_fd* out_fd) {
for (size_t i = 0; i < PARTITIONS_COUNT; i++) {
gpt_partition_t* p = gpt->partitions[i];
if (!p) {
continue;
}
static_assert(filterCb != nullptr, "Filter callback required to find partition");
if (filterCb(i, p->type, p->name)) {
printf("[partition_find] Found partition in GPT, partition %zu\n", i);
if (out) {
*out = p;
}
if (out_fd) {
out_fd->reset(open_partition(p->guid, p->type, ZX_SEC(5), nullptr));
if (!*out_fd) {
fprintf(stderr, "[partition_find] Couldn't open partition\n");
return ZX_ERR_IO;
}
}
return ZX_OK;
}
}
return ZX_ERR_NOT_FOUND;
}
// Returns a file descriptor to a partition which can be paved,
// creating it.
// Assumes that the partition does not already exist.
template <PartitionCreateCb createCb>
zx_status_t partition_add(gpt_device_t* gpt, fbl::unique_fd gpt_fd, fbl::unique_fd *out_fd) {
const char* name;
uint8_t type[GPT_GUID_LEN];
size_t minimumSizeBytes = 0;
static_assert(createCb != nullptr, "Create callback required to add partition");
if (!createCb(type, &minimumSizeBytes, &name)) {
return ZX_ERR_NOT_FOUND;
}
uint64_t start, length;
zx_status_t r;
if ((r = find_first_fit(gpt, gpt_fd, minimumSizeBytes, &start, &length)) != ZX_OK) {
fprintf(stderr, "[partition_add] Couldn't find fit\n");
return r;
}
block_info_t info;
ssize_t rc = ioctl_block_get_info(gpt_fd.get(), &info);
if (rc < 0) {
fprintf(stderr, "[partition_add] Cannot acquire GPT info\n");
return static_cast<zx_status_t>(rc);
}
length = (minimumSizeBytes + info.block_size - 1) / info.block_size;
size_t sz;
uint8_t guid[GPT_GUID_LEN];
if ((r = zx_cprng_draw(guid, GPT_GUID_LEN, &sz)) != ZX_OK) {
fprintf(stderr, "[partition_add] Failed to get random GUID\n");
return r;
} else if ((r = gpt_partition_add(gpt, name, type, guid, start, length, 0))) {
fprintf(stderr, "[partition_add] Failed to add partition\n");
return r;
} else if ((r = gpt_device_sync(gpt))) {
fprintf(stderr, "[partition_add] Failed to sync GPT\n");
return r;
} else if ((r = (int) ioctl_block_rr_part(gpt_fd.get())) < 0) {
fprintf(stderr, "[partition_add] Failed to rebind GPT\n");
return r;
}
out_fd->reset(open_partition(guid, type, ZX_SEC(5), nullptr));
if (!*out_fd) {
return ZX_ERR_IO;
}
return ZX_OK;
}
// Assuming the path to the GPT does not already contain an
// FVM, find space for an FVM partition, and add it to the GPT.
zx_status_t fvm_add_to_gpt(const char* gpt_path) {
fbl::unique_fd gpt_fd;
gpt_device_t* gpt;
zx_status_t status;
if ((status = initialize_gpt(gpt_path, &gpt_fd, &gpt)) != ZX_OK) {
return status;
}
block_info_t info;
ssize_t rc = ioctl_block_get_info(gpt_fd.get(), &info);
if (rc < 0) {
fprintf(stderr, "[fvm_add_to_gpt] Cannot acquire GPT info\n");
return static_cast<zx_status_t>(rc);
}
int r = 0;
const size_t kMinimumFVMSizeBytes = 8LU * (1 << 30);
const size_t kOptionalReserveBytes = 4LU * (1 << 30);
const size_t kOptionalReserveBlocks = kOptionalReserveBytes / info.block_size;
size_t start = 0;
size_t length = 0;
uint8_t type[GPT_GUID_LEN] = GUID_FVM_VALUE;
uint8_t guid[GPT_GUID_LEN];
size_t sz;
fbl::unique_fd partition_fd;
for (size_t i = 0; i < PARTITIONS_COUNT; i++) {
gpt_partition_t* p = gpt->partitions[i];
if (!p) {
continue;
}
// If the FVM already exists within the GPT, return early.
if (memcmp(p->type, type, GPT_GUID_LEN) == 0) {
printf("[fvm_add_to_gpt] FVM partition already exists within GPT\n");
memcpy(guid, p->guid, GPT_GUID_LEN);
goto done;
}
}
if ((r = find_first_fit(gpt, gpt_fd, kMinimumFVMSizeBytes, &start, &length)) != ZX_OK) {
fprintf(stderr, "[fvm_add_to_gpt] Couldn't find space in GPT: %d\n", r);
goto done;
}
printf("[fvm_add_to_gpt] Found space in GPT - OK %zu @ %zu\n", length, start);
// If can fulfill the requested size, and we still have space for the
// optional reserve section, then we should shorten the amount of blocks
// we're asking for.
//
// This isn't necessary, but it allows growing the GPT later, if necessary.
if (length - kOptionalReserveBlocks > (kMinimumFVMSizeBytes / info.block_size)) {
printf("[fvm_add_to_gpt] Space for reserve - OK\n");
length -= kOptionalReserveBlocks;
}
printf("[fvm_add_to_gpt] Final space in GPT - OK %zu @ %zu\n", length, start);
if ((r = zx_cprng_draw(guid, GPT_GUID_LEN, &sz)) != ZX_OK) {
fprintf(stderr, "[fvm_add_to_gpt] Failed to get random GUID\n");
goto done;
} else if ((r = gpt_partition_add(gpt, "fvm", type, guid, start, length, 0))) {
fprintf(stderr, "[fvm_add_to_gpt] Failed to add FVM partition\n");
goto done;
} else if ((r = gpt_device_sync(gpt))) {
fprintf(stderr, "[fvm_add_to_gpt] Failed to sync GPT\n");
goto done;
} else if ((r = (int) ioctl_block_rr_part(gpt_fd.get())) < 0) {
fprintf(stderr, "[fvm_add_to_gpt] Failed to rebind GPT\n");
goto done;
}
printf("[fvm_add_to_gpt] Added partition, waiting for bind\n");
done:
if (r == 0) {
// Before we return, claiming that the FVM partition is ready, we should
// check the GPT partition has actually appeared in devfs.
partition_fd.reset(open_partition(guid, type, ZX_SEC(5), nullptr));
if (!partition_fd) {
fprintf(stderr, "[fvm_add_to_gpt] Added partition, waiting for bind - NOT FOUND\n");
r = -1;
} else {
printf("[fvm_add_to_gpt] Added partition, waiting for bind - OK\n");
r = 0;
}
}
gpt_device_release(gpt);
return (r < 0 ? ZX_ERR_BAD_STATE : ZX_OK);
}
bool efi_filter_cb(size_t gpt_index, const uint8_t type[GPT_GUID_LEN],
const uint8_t name[GPT_NAME_LEN]) {
uint8_t efi_type[GPT_GUID_LEN] = GUID_EFI_VALUE;
// Skip the first partition in the GPT; if it is EFI, we don't
// want to overwrite it.
return gpt_index != 0 && memcmp(type, efi_type, GPT_GUID_LEN) == 0;
}
bool efi_create_cb(uint8_t* type_out, uint64_t* size_bytes_out, const char** name_out) {
uint8_t efi_type[GPT_GUID_LEN] = GUID_EFI_VALUE;
memcpy(type_out, efi_type, GPT_GUID_LEN);
*size_bytes_out = 1LU * (1 << 30);
*name_out = "EFI Gigaboot";
return true;
}
const char* kerncName = "KERN-C";
bool kernc_filter_cb(size_t gpt_index, const uint8_t type[GPT_GUID_LEN],
const uint8_t name[GPT_NAME_LEN]) {
uint8_t kernc_type[GPT_GUID_LEN] = GUID_CROS_KERNEL_VALUE;
char cstring_name[GPT_NAME_LEN];
utf16_to_cstring(cstring_name, (uint16_t*) name, GPT_NAME_LEN);
return memcmp(type, kernc_type, GPT_GUID_LEN) == 0 &&
strncmp(cstring_name, kerncName, strlen(kerncName)) == 0;
}
bool kernc_create_cb(uint8_t* type_out, uint64_t* size_bytes_out, const char** name_out) {
uint8_t kernc_type[GPT_GUID_LEN] = GUID_CROS_KERNEL_VALUE;
memcpy(type_out, kernc_type, GPT_GUID_LEN);
*size_bytes_out = 64LU * (1 << 20);
*name_out = kerncName;
return true;
}
bool kernc_finalize_cb(gpt_partition_t* partition) {
// Priority set to '3', making Kern C higher priority than
// the typical '1' and '2' reserved for Kern A and Kern B.
gpt_cros_attr_set_priority(&partition->flags, 3);
// Successful set to 'true' to encourage the bootloader to
// use this partition.
gpt_cros_attr_set_successful(&partition->flags, true);
// Maximize the number of attempts to boot this partition before
// we fall back to a different kernel.
gpt_cros_attr_set_tries(&partition->flags, 15);
return true;
}
} // namespace
// Paves a sparse_file to the underlying disk, on top
// of a GPT.
int fvm_pave(fbl::unique_fd fd) {
printf("[fvm_pave]\n");
char gpt_path[PATH_MAX];
if (find_target_gpt(gpt_path)) {
fprintf(stderr, "[fvm_pave] Couldn't find target GPT\n");
return -1;
}
printf("[fvm_pave] Found Target GPT %s - OK\n", gpt_path);
if (fvm_add_to_gpt(gpt_path)) {
fprintf(stderr, "[fvm_pave] Couldn't format FVM partition\n");
return -1;
}
printf("[fvm_pave] Added to GPT - OK\n");
printf("[fvm_pave] Streaming partitions...\n");
zx_status_t status = fvm_stream_partitions(fbl::move(fd));
if (status != ZX_OK) {
fprintf(stderr, "[fvm_pave] Failed to stream partitions: %d\n", status);
return -1;
}
printf("[fvm_pave] DONE\n");
return 0;
}
// Paves an image onto the disk, within the GPT.
template <PartitionFilterCb filterCb, PartitionCreateCb createCb, PartitionFinalizeCb finalizeCb>
zx_status_t partition_pave(fbl::unique_fd fd) {
printf("[partition_pave]\n");
char gpt_path[PATH_MAX];
if (find_target_gpt(gpt_path)) {
return ZX_ERR_IO;
}
fbl::unique_fd gpt_fd;
gpt_device_t* gpt;
zx_status_t status;
if ((status = initialize_gpt(gpt_path, &gpt_fd, &gpt)) != ZX_OK) {
return status;
}
fbl::unique_fd part_fd;
if ((status = partition_find<filterCb>(gpt, nullptr, &part_fd)) != ZX_OK) {
if (status != ZX_ERR_NOT_FOUND || (void*) createCb == nullptr) {
fprintf(stderr, "[partition_pave] Failure looking for partition: %d\n", status);
gpt_device_release(gpt);
return status;
}
if ((status = partition_add<createCb>(gpt, fbl::move(gpt_fd), &part_fd)) != ZX_OK) {
fprintf(stderr, "[partition_pave] Failure creating partition: %d\n", status);
gpt_device_release(gpt);
return status;
}
}
gpt_device_release(gpt);
block_info_t info;
if ((status = static_cast<zx_status_t>(ioctl_block_get_info(part_fd.get(), &info))) < 0) {
fprintf(stderr, "[partition_pave] Couldn't get GPT block info\n");
return status;
}
const size_t vmo_sz = 1 << 20;
fbl::unique_ptr<MappedVmo> mvmo;
if ((status = MappedVmo::Create(vmo_sz, "partition-pave", &mvmo)) != ZX_OK) {
fprintf(stderr, "[partition_pave] Failed to create stream VMO\n");
return status;
}
txnid_t txnid;
vmoid_t vmoid;
fifo_client_t* client;
status = register_fast_block_io(part_fd, mvmo->GetVmo(), &txnid,
&vmoid, &client);
if (status != ZX_OK) {
fprintf(stderr, "[partition_pave] Cannot register fast block I/O\n");
return status;
}
block_fifo_request_t request;
request.txnid = txnid;
request.vmoid = vmoid;
request.opcode = BLOCKIO_WRITE;
status = stream_partition(mvmo.get(), client, &request, fd);
block_fifo_release_client(client);
if (status != ZX_OK) {
fprintf(stderr, "[partition_pave] Failed to stream partition\n");
return status;
}
if ((void*) finalizeCb != nullptr) {
if ((status = initialize_gpt(gpt_path, &gpt_fd, &gpt)) != ZX_OK) {
fprintf(stderr, "[partition_pave] Cannot re-initialize GPT\n");
return status;
}
gpt_partition_t* partition;
if ((status = partition_find<filterCb>(gpt, &partition, nullptr)) != ZX_OK) {
fprintf(stderr, "[partition_pave] Cannot re-find partition\n");
return status;
}
if (finalizeCb(partition)) {
gpt_device_sync(gpt);
}
gpt_device_release(gpt);
}
printf("[partition_pave] Completed successfully\n");
return ZX_OK;
}
// Wipes the following partitions:
// - System
// - Data
// - Blobstore
// - FVM
//
// From the target GPT, leaving it (hopefully) in a state
// ready for a sparse FVM image to be installed.
int fvm_clean() {
char gpt_path[PATH_MAX];
if (find_target_gpt(gpt_path)) {
return -1;
}
fbl::unique_fd fd;
gpt_device_t* gpt;
if (initialize_gpt(gpt_path, &fd, &gpt)) {
return -1;
}
bool modify = false;
for (size_t i = 0; i < PARTITIONS_COUNT; i++) {
if (!gpt->partitions[i]) {
continue;
}
const uint8_t system_type[GPT_GUID_LEN] = GUID_SYSTEM_VALUE;
const uint8_t data_type[GPT_GUID_LEN] = GUID_DATA_VALUE;
const uint8_t blobfs_type[GPT_GUID_LEN] = GUID_BLOBFS_VALUE;
const uint8_t fvm_type[GPT_GUID_LEN] = GUID_FVM_VALUE;
if (!memcmp(gpt->partitions[i]->type, system_type, GPT_GUID_LEN)) {
printf("Removing system partition\n");
} else if (!memcmp(gpt->partitions[i]->type, data_type, GPT_GUID_LEN)) {
printf("Removing data partition\n");
} else if (!memcmp(gpt->partitions[i]->type, blobfs_type, GPT_GUID_LEN)) {
printf("Removing blobstore partition\n");
} else if (!memcmp(gpt->partitions[i]->type, fvm_type, GPT_GUID_LEN)) {
printf("Removing fvm partition\n");
} else {
continue;
}
modify = true;
// Overwrite the first 4k to (hackily) ensure the destroyed partition
// doesn't "reappear" in place.
char buf[4192];
memset(buf, 0, sizeof(buf));
fbl::unique_fd pfd(open_partition(gpt->partitions[i]->guid,
gpt->partitions[i]->type, ZX_SEC(2),
nullptr));
write(pfd.get(), buf, sizeof(buf));
gpt_partition_remove(gpt, gpt->partitions[i]->guid);
}
if (modify) {
gpt_device_sync(gpt);
printf("GPT updated, reboot strongly recommended immediately\n");
}
gpt_device_release(gpt);
ioctl_block_rr_part(fd.get());
return 0;
}
int usage() {
fprintf(stderr, "install-disk-image [command] <options*>\n");
fprintf(stderr, "Commands:\n");
fprintf(stderr, " install-fvm : Install a sparse FVM to the device\n");
fprintf(stderr, " install-efi : Install an EFI partition to the device\n");
fprintf(stderr, " install-kernc : Install a KERN-C CrOS partition to the device\n");
fprintf(stderr, " wipe : Clean up the install disk\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " --file <file>: Read from FILE instead of stdin\n");
return -1;
}
int main(int argc, char** argv) {
if (argc < 2) {
fprintf(stderr, "install-disk-image needs a command\n");
return usage();
}
argc--;
argv++;
char* cmd = argv[0];
argc--;
argv++;
fbl::unique_fd fd(STDIN_FILENO);
while (argc > 0) {
if (!strcmp(argv[0], "--file")) {
argc--;
argv++;
if (argc < 1) {
fprintf(stderr, "'--file' argument requires a file\n");
return -1;
}
fd.reset(open(argv[0], O_RDONLY));
if (!fd) {
fprintf(stderr, "Couldn't open supplied file\n");
return -1;
}
argc--;
argv++;
} else {
return usage();
}
}
zx_status_t status;
if (!strcmp(cmd, "install-efi")) {
status = partition_pave<efi_filter_cb, efi_create_cb, nullptr>(fbl::move(fd));
return status == ZX_OK ? 0 : -1;
} else if (!strcmp(cmd, "install-kernc")) {
status = partition_pave<kernc_filter_cb, kernc_create_cb, kernc_finalize_cb>(fbl::move(fd));
return status == ZX_OK ? 0 : -1;
} else if (!strcmp(cmd, "install-fvm")) {
return fvm_pave(fbl::move(fd));
} else if (!strcmp(cmd, "wipe")) {
return fvm_clean();
}
return usage();
}