blob: 79fc86840b7a831cfb159950597788004e3e7ce1 [file] [log] [blame]
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <threads.h>
#include <bits/limits.h>
#include <ddk/binding.h>
#include <ddk/debug.h>
#include <ddk/device.h>
#include <ddk/protocol/platform-bus.h>
#include <ddk/protocol/platform-defs.h>
#include <ddk/protocol/platform-device.h>
#include <ddk/protocol/serial.h>
#include <hw/reg.h>
#include <soc/aml-common/aml-uart.h>
#include <zircon/assert.h>
#include <zircon/threads.h>
#include <zircon/types.h>
#include <string.h>
// crystal clock speed
#define CLK_XTAL 24000000
// default configuration for the case that serial_impl_config is not called
#define DEFAULT_BAUD_RATE 115200
#define DEFAULT_CONFIG (SERIAL_DATA_BITS_8 | SERIAL_STOP_BITS_1 | SERIAL_PARITY_NONE)
// generate interrupt if TX buffer drops below half full
#define XMIT_IRQ_COUNT 32
// generate interrupt as soon as we receive any data
#define RECV_IRQ_COUNT 1
#define INTERRUPT_THRESHOLDS ((XMIT_IRQ_COUNT << AML_UART_MISC_XMIT_IRQ_COUNT_SHIFT) | \
(RECV_IRQ_COUNT << AML_UART_MISC_RECV_IRQ_COUNT_SHIFT))
typedef struct {
platform_device_protocol_t pdev;
serial_impl_protocol_t serial;
zx_device_t* zxdev;
serial_port_info_t serial_port_info;
pdev_vmo_buffer_t mmio;
thrd_t irq_thread;
zx_handle_t irq_handle;
serial_notify_cb notify_cb;
void* notify_cb_cookie;
uint32_t state; // last state we sent to notify_cb
bool enabled;
mtx_t enable_lock; // protects enabling/disabling lifecycle
mtx_t status_lock; // protects status register and notify_cb
} aml_uart_t;
// reads the current state from the status register and calls notify_cb if it has changed
static uint32_t aml_uart_read_state(aml_uart_t* uart) {
void* mmio = uart->mmio.vaddr;
mtx_lock(&uart->status_lock);
uint32_t status = readl(mmio + AML_UART_STATUS);
uint32_t state = 0;
if (!(status & AML_UART_STATUS_RXEMPTY)) {
state |= SERIAL_STATE_READABLE;
}
if (!(status & AML_UART_STATUS_TXFULL)) {
state |= SERIAL_STATE_WRITABLE;
}
bool notify = (state != uart->state);
uart->state = state;
if (notify && uart->notify_cb) {
uart->notify_cb(state, uart->notify_cb_cookie);
}
mtx_unlock(&uart->status_lock);
return state;
}
static int aml_uart_irq_thread(void *arg) {
zxlogf(INFO, "aml_uart_irq_thread start\n");
aml_uart_t* uart = arg;
while (1) {
uint64_t slots;
zx_status_t result = zx_interrupt_wait(uart->irq_handle, &slots);
if (result != ZX_OK) {
zxlogf(ERROR, "aml_uart_irq_thread: zx_interrupt_wait got %d\n", result);
break;
}
if (slots & (1ul << ZX_INTERRUPT_SLOT_USER)) {
break;
}
// this will call the notify_cb if the serial state has changed
aml_uart_read_state(uart);
}
return 0;
}
static zx_status_t aml_serial_get_info(void* ctx, serial_port_info_t* info) {
aml_uart_t* uart = ctx;
memcpy(info, &uart->serial_port_info, sizeof(*info));
return ZX_OK;
}
static zx_status_t aml_serial_config(void* ctx, uint32_t baud_rate, uint32_t flags) {
aml_uart_t* uart = ctx;
void* mmio = uart->mmio.vaddr;
// control register is determined completely by this logic, so start with a clean slate
uint32_t ctrl_bits = 0;
if ((flags & SERIAL_SET_BAUD_RATE_ONLY) == 0) {
switch (flags & SERIAL_DATA_BITS_MASK) {
case SERIAL_DATA_BITS_5:
ctrl_bits |= AML_UART_CONTROL_XMITLEN_5;
break;
case SERIAL_DATA_BITS_6:
ctrl_bits |= AML_UART_CONTROL_XMITLEN_6;
break;
case SERIAL_DATA_BITS_7:
ctrl_bits |= AML_UART_CONTROL_XMITLEN_7;
break;
case SERIAL_DATA_BITS_8:
ctrl_bits |= AML_UART_CONTROL_XMITLEN_8;
break;
default:
return ZX_ERR_INVALID_ARGS;
}
switch (flags & SERIAL_STOP_BITS_MASK) {
case SERIAL_STOP_BITS_1:
ctrl_bits |= AML_UART_CONTROL_STOPLEN_1;
break;
case SERIAL_STOP_BITS_2:
ctrl_bits |= AML_UART_CONTROL_STOPLEN_2;
break;
default:
return ZX_ERR_INVALID_ARGS;
}
switch (flags & SERIAL_PARITY_MASK) {
case SERIAL_PARITY_NONE:
ctrl_bits |= AML_UART_CONTROL_PAR_NONE;
break;
case SERIAL_PARITY_EVEN:
ctrl_bits |= AML_UART_CONTROL_PAR_EVEN;
break;
case SERIAL_PARITY_ODD:
ctrl_bits |= AML_UART_CONTROL_PAR_ODD;
break;
default:
return ZX_ERR_INVALID_ARGS;
}
switch (flags & SERIAL_FLOW_CTRL_MASK) {
case SERIAL_FLOW_CTRL_NONE:
ctrl_bits |= AML_UART_CONTROL_TWOWIRE;
break;
case SERIAL_FLOW_CTRL_CTS_RTS:
// CTS/RTS is on by default
break;
default:
return ZX_ERR_INVALID_ARGS;
}
}
// configure baud rate based on CLK_XTAL
// see meson_uart_change_speed() in drivers/amlogic/uart/uart/meson_uart.c
uint32_t baud_bits = (CLK_XTAL / 3) / baud_rate - 1;
if (baud_bits & ~AML_UART_REG5_NEW_BAUD_RATE_MASK) {
zxlogf(ERROR, "aml_serial_config: baud rate %u too large\n", baud_rate);
return ZX_ERR_OUT_OF_RANGE;
}
baud_bits |= AML_UART_REG5_USE_XTAL_CLK | AML_UART_REG5_USE_NEW_BAUD_RATE;
mtx_lock(&uart->enable_lock);
if ((flags & SERIAL_SET_BAUD_RATE_ONLY) == 0) {
// invert our RTS if we are we are not enabled and configured for flow control
if (!uart->enabled && (ctrl_bits & AML_UART_CONTROL_TWOWIRE) == 0) {
ctrl_bits |= AML_UART_CONTROL_INVRTS;
}
writel(ctrl_bits, mmio + AML_UART_CONTROL);
}
writel(baud_bits, mmio + AML_UART_REG5);
mtx_unlock(&uart->enable_lock);
return ZX_OK;
}
static void aml_serial_enable_locked(aml_uart_t* uart, bool enable) {
void* mmio = uart->mmio.vaddr;
volatile uint32_t* ctrl_reg = mmio + AML_UART_CONTROL;
volatile uint32_t* misc_reg = mmio + AML_UART_MISC;
uint32_t ctrl = readl(ctrl_reg);
if (enable) {
// reset the port
ctrl |= AML_UART_CONTROL_RSTRX | AML_UART_CONTROL_RSTTX | AML_UART_CONTROL_CLRERR;
writel(ctrl, ctrl_reg);
ctrl &= ~(AML_UART_CONTROL_RSTRX | AML_UART_CONTROL_RSTTX | AML_UART_CONTROL_CLRERR);
writel(ctrl, ctrl_reg);
// enable rx and tx
ctrl |= AML_UART_CONTROL_TXEN | AML_UART_CONTROL_RXEN;
ctrl |= AML_UART_CONTROL_TXINTEN | AML_UART_CONTROL_RXINTEN;
// clear our RTS
ctrl &= ~AML_UART_CONTROL_INVRTS;
writel(ctrl, ctrl_reg);
// Set interrupt thresholds
static_assert((INTERRUPT_THRESHOLDS & ~(AML_UART_MISC_XMIT_IRQ_COUNT_MASK |
AML_UART_MISC_RECV_IRQ_COUNT_MASK)) == 0, "");
writel(INTERRUPT_THRESHOLDS, misc_reg);
} else {
ctrl &= ~(AML_UART_CONTROL_TXEN | AML_UART_CONTROL_RXEN);
// invert our RTS if we are configured for flow control
if ((ctrl & AML_UART_CONTROL_TWOWIRE) == 0) {
ctrl |= AML_UART_CONTROL_INVRTS;
}
writel(ctrl, ctrl_reg);
}
}
static zx_status_t aml_serial_enable(void* ctx, bool enable) {
aml_uart_t* uart = ctx;
mtx_lock(&uart->enable_lock);
if (enable && !uart->enabled) {
zx_status_t status = pdev_map_interrupt(&uart->pdev, 0, &uart->irq_handle);
if (status != ZX_OK) {
zxlogf(ERROR, "aml_serial_enable: pdev_map_interrupt failed %d\n", status);
mtx_unlock(&uart->enable_lock);
return status;
}
aml_serial_enable_locked(uart, true);
int rc = thrd_create_with_name(&uart->irq_thread, aml_uart_irq_thread, uart,
"aml_uart_irq_thread");
if (rc != thrd_success) {
aml_serial_enable_locked(uart, false);
zx_handle_close(uart->irq_handle);
uart->irq_handle = ZX_HANDLE_INVALID;
mtx_unlock(&uart->enable_lock);
return thrd_status_to_zx_status(rc);
}
} else if (!enable && uart->enabled) {
zx_interrupt_signal(uart->irq_handle, ZX_INTERRUPT_SLOT_USER, 0);
thrd_join(uart->irq_thread, NULL);
aml_serial_enable_locked(uart, false);
zx_handle_close(uart->irq_handle);
uart->irq_handle = ZX_HANDLE_INVALID;
}
uart->enabled = enable;
mtx_unlock(&uart->enable_lock);
return ZX_OK;
}
static zx_status_t aml_serial_read(void* ctx, void* buf, size_t length,
size_t* out_actual) {
aml_uart_t* uart = ctx;
void* mmio = uart->mmio.vaddr;
volatile uint32_t* rfifo_reg = mmio + AML_UART_RFIFO;
uint8_t* bufptr = buf;
uint8_t* end = bufptr + length;
while (bufptr < end && (aml_uart_read_state(uart) & SERIAL_STATE_READABLE)) {
uint32_t val = readl(rfifo_reg);
*bufptr++ = val;
}
size_t read = (void *)bufptr - buf;
*out_actual = read;
if (read == 0) {
return ZX_ERR_SHOULD_WAIT;
}
return ZX_OK;
}
static zx_status_t aml_serial_write(void* ctx, const void* buf, size_t length,
size_t* out_actual) {
aml_uart_t* uart = ctx;
void* mmio = uart->mmio.vaddr;
volatile uint32_t* wfifo_reg = mmio + AML_UART_WFIFO;
const uint8_t* bufptr = buf;
const uint8_t* end = bufptr + length;
while (bufptr < end && (aml_uart_read_state(uart) & SERIAL_STATE_WRITABLE)) {
writel(*bufptr++, wfifo_reg);
}
size_t written = (void *)bufptr - buf;
*out_actual = written;
if (written == 0) {
return ZX_ERR_SHOULD_WAIT;
}
return ZX_OK;
}
static zx_status_t aml_serial_set_notify_callback(void* ctx, serial_notify_cb cb, void* cookie) {
aml_uart_t* uart = ctx;
mtx_lock(&uart->enable_lock);
if (uart->enabled) {
zxlogf(ERROR, "aml_serial_set_notify_callback called when driver is enabled\n");
mtx_unlock(&uart->enable_lock);
return ZX_ERR_BAD_STATE;
}
uart->notify_cb = cb;
uart->notify_cb_cookie = cookie;
mtx_unlock(&uart->enable_lock);
// this will trigger notifying current state
aml_uart_read_state(uart);
return ZX_OK;
}
static serial_impl_ops_t aml_serial_ops = {
.get_info = aml_serial_get_info,
.config = aml_serial_config,
.enable = aml_serial_enable,
.read = aml_serial_read,
.write = aml_serial_write,
.set_notify_callback = aml_serial_set_notify_callback,
};
static void aml_uart_release(void* ctx) {
aml_uart_t* uart = ctx;
aml_serial_enable(uart, false);
pdev_vmo_buffer_release(&uart->mmio);
zx_handle_close(uart->irq_handle);
free(uart);
}
static zx_protocol_device_t uart_device_proto = {
.version = DEVICE_OPS_VERSION,
.release = aml_uart_release,
};
static zx_status_t aml_uart_bind(void* ctx, zx_device_t* parent) {
zx_status_t status;
aml_uart_t* uart = calloc(1, sizeof(aml_uart_t));
if (!uart) {
return ZX_ERR_NO_MEMORY;
}
if ((status = device_get_protocol(parent, ZX_PROTOCOL_PLATFORM_DEV, &uart->pdev)) != ZX_OK) {
zxlogf(ERROR, "aml_uart_bind: ZX_PROTOCOL_PLATFORM_DEV not available\n");
goto fail;
}
pdev_device_info_t info;
status = pdev_get_device_info(&uart->pdev, &info);
if (status != ZX_OK) {
zxlogf(ERROR, "aml_uart_bind: pdev_get_device_info failed\n");
goto fail;
}
memcpy(&uart->serial_port_info, &info.serial_port_info, sizeof(uart->serial_port_info));
mtx_init(&uart->enable_lock, mtx_plain);
mtx_init(&uart->status_lock, mtx_plain);
status = pdev_map_mmio_buffer(&uart->pdev, 0, ZX_CACHE_POLICY_UNCACHED_DEVICE, &uart->mmio);
if (status != ZX_OK) {
zxlogf(ERROR, "aml_uart_bind: pdev_map_mmio_buffer failed %d\n", status);
goto fail;
}
aml_serial_config(uart, DEFAULT_BAUD_RATE, DEFAULT_CONFIG);
device_add_args_t args = {
.version = DEVICE_ADD_ARGS_VERSION,
.name = "aml-uart",
.ctx = uart,
.ops = &uart_device_proto,
.proto_id = ZX_PROTOCOL_SERIAL_IMPL,
.proto_ops = &aml_serial_ops,
};
status = device_add(parent, &args, &uart->zxdev);
if (status != ZX_OK) {
zxlogf(ERROR, "aml_uart_bind: device_add failed\n");
goto fail;
}
return ZX_OK;
fail:
aml_uart_release(uart);
return status;
}
static zx_driver_ops_t aml_uart_driver_ops = {
.version = DRIVER_OPS_VERSION,
.bind = aml_uart_bind,
};
ZIRCON_DRIVER_BEGIN(aml_uart, aml_uart_driver_ops, "zircon", "0.1", 3)
BI_ABORT_IF(NE, BIND_PROTOCOL, ZX_PROTOCOL_PLATFORM_DEV),
BI_ABORT_IF(NE, BIND_PLATFORM_DEV_VID, PDEV_VID_AMLOGIC),
BI_MATCH_IF(EQ, BIND_PLATFORM_DEV_DID, PDEV_DID_AMLOGIC_UART),
ZIRCON_DRIVER_END(aml_uart)