| // Copyright 2017 The Fuchsia Authors |
| // |
| // Use of this source code is governed by a MIT-style |
| // license that can be found in the LICENSE file or at |
| // https://opensource.org/licenses/MIT |
| |
| #include "tests.h" |
| |
| #include <err.h> |
| #include <fbl/algorithm.h> |
| #include <fbl/atomic.h> |
| #include <inttypes.h> |
| #include <kernel/auto_lock.h> |
| #include <kernel/event.h> |
| #include <kernel/mp.h> |
| #include <kernel/spinlock.h> |
| #include <kernel/thread.h> |
| #include <kernel/timer.h> |
| #include <lib/unittest/unittest.h> |
| #include <malloc.h> |
| #include <platform.h> |
| #include <pow2.h> |
| #include <rand.h> |
| #include <stdio.h> |
| #include <zircon/time.h> |
| #include <zircon/types.h> |
| |
| static void timer_diag_cb(timer_t* timer, zx_time_t now, void* arg) { |
| event_t* event = (event_t*)arg; |
| event_signal(event, true); |
| } |
| |
| static int timer_do_one_thread(void* arg) { |
| event_t event; |
| timer_t timer; |
| |
| event_init(&event, false, 0); |
| timer_init(&timer); |
| |
| timer_set(&timer, current_time() + ZX_MSEC(10), TIMER_SLACK_CENTER, 0, timer_diag_cb, &event); |
| event_wait(&event); |
| |
| printf("got timer on cpu %u\n", arch_curr_cpu_num()); |
| |
| event_destroy(&event); |
| |
| return 0; |
| } |
| |
| static void timer_diag_all_cpus(void) { |
| thread_t* timer_threads[SMP_MAX_CPUS]; |
| uint max = arch_max_num_cpus(); |
| |
| uint i; |
| for (i = 0; i < max; i++) { |
| char name[16]; |
| snprintf(name, sizeof(name), "timer %u\n", i); |
| |
| timer_threads[i] = thread_create_etc( |
| NULL, name, timer_do_one_thread, NULL, DEFAULT_PRIORITY, NULL); |
| if (timer_threads[i] == NULL) { |
| printf("failed to create thread for cpu %u\n", i); |
| return; |
| } |
| thread_set_cpu_affinity(timer_threads[i], cpu_num_to_mask(i)); |
| thread_resume(timer_threads[i]); |
| } |
| uint joined = 0; |
| for (i = 0; i < max; i++) { |
| if (thread_join(timer_threads[i], NULL, ZX_SEC(1)) == 0) { |
| joined += 1; |
| } |
| } |
| printf("%u threads created, %u threads joined\n", max, joined); |
| } |
| |
| static void timer_diag_cb2(timer_t* timer, zx_time_t now, void* arg) { |
| auto timer_count = static_cast<fbl::atomic<size_t>*>(arg); |
| timer_count->fetch_add(1); |
| thread_preempt_set_pending(); |
| } |
| |
| static void timer_diag_coalescing(enum slack_mode mode, uint64_t slack, const zx_time_t* deadline, |
| const zx_duration_t* expected_adj, size_t count) { |
| printf("testing coalsecing mode %d\n", mode); |
| |
| fbl::atomic<size_t> timer_count(0); |
| |
| timer_t* timer = (timer_t*)malloc(sizeof(timer_t) * count); |
| |
| printf(" orig new adjustment\n"); |
| for (size_t ix = 0; ix != count; ++ix) { |
| timer_init(&timer[ix]); |
| zx_time_t dl = deadline[ix]; |
| timer_set(&timer[ix], dl, mode, slack, timer_diag_cb2, &timer_count); |
| printf("[%zu] %" PRIi64 " -> %" PRIi64 ", %" PRIi64 "\n", |
| ix, dl, timer[ix].scheduled_time, timer[ix].slack); |
| |
| if (timer[ix].slack != expected_adj[ix]) { |
| printf("\n!! unexpected adjustment! expected %" PRIi64 "\n", expected_adj[ix]); |
| } |
| } |
| |
| // Wait for the timers to fire. |
| while (timer_count.load() != count) { |
| thread_sleep(current_time() + ZX_MSEC(5)); |
| } |
| |
| free(timer); |
| } |
| |
| static void timer_diag_coalescing_center(void) { |
| zx_time_t when = current_time() + ZX_MSEC(1); |
| zx_duration_t off = ZX_USEC(10); |
| zx_duration_t slack = 2u * off; |
| |
| const zx_time_t deadline[] = { |
| when + (6u * off), // non-coalesced, adjustment = 0 |
| when, // non-coalesced, adjustment = 0 |
| when - off, // coalesced with [1], adjustment = 10u |
| when - (3u * off), // non-coalesced, adjustment = 0 |
| when + off, // coalesced with [1], adjustment = -10u |
| when + (3u * off), // non-coalesced, adjustment = 0 |
| when + (5u * off), // coalesced with [0], adjustment = 10u |
| when - (3u * off), // non-coalesced, same as [3], adjustment = 0 |
| }; |
| |
| const zx_duration_t expected_adj[fbl::count_of(deadline)] = { |
| 0, 0, ZX_USEC(10), 0, -ZX_USEC(10), 0, ZX_USEC(10), 0}; |
| |
| timer_diag_coalescing( |
| TIMER_SLACK_CENTER, slack, deadline, expected_adj, fbl::count_of(deadline)); |
| } |
| |
| static void timer_diag_coalescing_late(void) { |
| zx_time_t when = current_time() + ZX_MSEC(1); |
| zx_duration_t off = ZX_USEC(10); |
| zx_duration_t slack = 3u * off; |
| |
| const zx_time_t deadline[] = { |
| when + off, // non-coalesced, adjustment = 0 |
| when + (2u * off), // non-coalesced, adjustment = 0 |
| when - off, // coalesced with [0], adjustment = 20u |
| when - (3u * off), // non-coalesced, adjustment = 0 |
| when + (3u * off), // non-coalesced, adjustment = 0 |
| when + (2u * off), // non-coalesced, same as [1] |
| when - (4u * off), // coalesced with [3], adjustment = 10u |
| }; |
| |
| const zx_duration_t expected_adj[fbl::count_of(deadline)] = { |
| 0, 0, ZX_USEC(20), 0, 0, 0, ZX_USEC(10)}; |
| |
| timer_diag_coalescing( |
| TIMER_SLACK_LATE, slack, deadline, expected_adj, fbl::count_of(deadline)); |
| } |
| |
| static void timer_diag_coalescing_early(void) { |
| zx_time_t when = current_time() + ZX_MSEC(1); |
| zx_duration_t off = ZX_USEC(10); |
| zx_duration_t slack = 3u * off; |
| |
| const zx_time_t deadline[] = { |
| when, // non-coalesced, adjustment = 0 |
| when + (2u * off), // coalesced with [0], adjustment = -20u |
| when - off, // non-coalesced, adjustment = 0 |
| when - (3u * off), // non-coalesced, adjustment = 0 |
| when + (4u * off), // non-coalesced, adjustment = 0 |
| when + (5u * off), // coalesced with [4], adjustment = -10u |
| when - (2u * off), // coalesced with [3], adjustment = -10u |
| }; |
| |
| const zx_duration_t expected_adj[fbl::count_of(deadline)] = { |
| 0, -ZX_USEC(20), 0, 0, 0, -ZX_USEC(10), -ZX_USEC(10)}; |
| |
| timer_diag_coalescing( |
| TIMER_SLACK_EARLY, slack, deadline, expected_adj, fbl::count_of(deadline)); |
| } |
| |
| static void timer_far_deadline(void) { |
| event_t event; |
| timer_t timer; |
| |
| event_init(&event, false, 0); |
| timer_init(&timer); |
| |
| timer_set(&timer, ZX_TIME_INFINITE - 5, TIMER_SLACK_CENTER, 0, timer_diag_cb, &event); |
| zx_status_t st = event_wait_deadline(&event, current_time() + ZX_MSEC(100), false); |
| if (st != ZX_ERR_TIMED_OUT) { |
| printf("error: unexpected timer fired!\n"); |
| } else { |
| timer_cancel(&timer); |
| } |
| |
| event_destroy(&event); |
| } |
| |
| // Print timer diagnostics for manual review. |
| int timer_diag(int, const cmd_args*, uint32_t) { |
| timer_diag_coalescing_center(); |
| timer_diag_coalescing_late(); |
| timer_diag_coalescing_early(); |
| timer_diag_all_cpus(); |
| timer_far_deadline(); |
| return 0; |
| } |
| |
| struct timer_stress_args { |
| volatile int timer_stress_done; |
| volatile uint64_t num_set; |
| volatile uint64_t num_fired; |
| }; |
| |
| static void timer_stress_cb(struct timer* t, zx_time_t now, void* void_arg) { |
| timer_stress_args* args = reinterpret_cast<timer_stress_args*>(void_arg); |
| atomic_add_u64(&args->num_fired, 1); |
| } |
| |
| // Returns a random duration between 0 and max (inclusive). |
| static zx_duration_t rand_duration(zx_duration_t max) { |
| return (zx_duration_mul_int64(max, rand())) / RAND_MAX; |
| } |
| |
| static int timer_stress_worker(void* void_arg) { |
| timer_stress_args* args = reinterpret_cast<timer_stress_args*>(void_arg); |
| while (!atomic_load(&args->timer_stress_done)) { |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| zx_duration_t timer_duration = rand_duration(ZX_MSEC(5)); |
| |
| // Set a timer, then switch to a different CPU to ensure we race with it. |
| |
| arch_disable_ints(); |
| uint timer_cpu = arch_curr_cpu_num(); |
| timer_set(&t, current_time() + timer_duration, TIMER_SLACK_CENTER, 0, timer_stress_cb, |
| void_arg); |
| thread_set_cpu_affinity(get_current_thread(), ~cpu_num_to_mask(timer_cpu)); |
| DEBUG_ASSERT(arch_curr_cpu_num() != timer_cpu); |
| arch_enable_ints(); |
| |
| // We're now running on something other than timer_cpu. |
| |
| atomic_add_u64(&args->num_set, 1); |
| |
| // Sleep for the timer duration so that this thread's timer_cancel races with the timer |
| // callback. We want to race to ensure there are no synchronization or memory visibility |
| // issues. |
| thread_sleep_relative(timer_duration); |
| timer_cancel(&t); |
| } |
| return 0; |
| } |
| |
| static unsigned get_num_cpus_online() { |
| unsigned count = 0; |
| cpu_mask_t online = mp_get_online_mask(); |
| while (online) { |
| online >>= 1; |
| ++count; |
| } |
| return count; |
| } |
| |
| // timer_stress is a simple stress test intended to flush out bugs in kernel timers. |
| int timer_stress(int argc, const cmd_args* argv, uint32_t) { |
| if (argc < 2) { |
| printf("not enough args\n"); |
| printf("usage: %s <num seconds>\n", argv[0].str); |
| return ZX_ERR_INTERNAL; |
| } |
| |
| // We need 2 or more CPUs for this test. |
| if (get_num_cpus_online() < 2) { |
| printf("not enough online cpus\n"); |
| return ZX_ERR_INTERNAL; |
| } |
| |
| timer_stress_args args{}; |
| |
| thread_t* threads[256]; |
| for (auto& thread : threads) { |
| thread = |
| thread_create("timer-stress-worker", &timer_stress_worker, &args, DEFAULT_PRIORITY); |
| } |
| |
| printf("running for %zu seconds\n", argv[1].u); |
| for (const auto& thread : threads) { |
| thread_resume(thread); |
| } |
| |
| thread_sleep_relative(ZX_SEC(argv[1].u)); |
| atomic_store(&args.timer_stress_done, 1); |
| |
| for (const auto& thread : threads) { |
| thread_join(thread, nullptr, ZX_TIME_INFINITE); |
| } |
| |
| printf("timer stress done; timer set %zu, timer fired %zu\n", args.num_set, args.num_fired); |
| return 0; |
| } |
| |
| struct timer_args { |
| volatile int result; |
| volatile int timer_fired; |
| volatile int remaining; |
| volatile int wait; |
| spin_lock_t* lock; |
| }; |
| |
| static void timer_cb(struct timer*, zx_time_t now, void* void_arg) { |
| timer_args* arg = reinterpret_cast<timer_args*>(void_arg); |
| atomic_store(&arg->timer_fired, 1); |
| } |
| |
| // Set a timer and cancel it before the deadline has elapsed. |
| static bool cancel_before_deadline() { |
| BEGIN_TEST; |
| timer_args arg{}; |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| timer_set(&t, current_time() + ZX_HOUR(5), TIMER_SLACK_CENTER, 0, timer_cb, &arg); |
| ASSERT_TRUE(timer_cancel(&t), ""); |
| ASSERT_FALSE(atomic_load(&arg.timer_fired), ""); |
| END_TEST; |
| } |
| |
| // Set a timer and cancel it after it has fired. |
| static bool cancel_after_fired() { |
| BEGIN_TEST; |
| timer_args arg{}; |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| timer_set(&t, current_time(), TIMER_SLACK_CENTER, 0, timer_cb, &arg); |
| while (!atomic_load(&arg.timer_fired)) { |
| } |
| ASSERT_FALSE(timer_cancel(&t), ""); |
| END_TEST; |
| } |
| |
| static void timer_cancel_cb(struct timer* t, zx_time_t now, void* void_arg) { |
| timer_args* arg = reinterpret_cast<timer_args*>(void_arg); |
| atomic_store(&arg->result, timer_cancel(t)); |
| atomic_store(&arg->timer_fired, 1); |
| } |
| |
| // Set a timer and cancel it from its own callback. |
| static bool cancel_from_callback() { |
| BEGIN_TEST; |
| timer_args arg{}; |
| arg.result = 1; |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| timer_set(&t, current_time(), TIMER_SLACK_CENTER, 0, timer_cancel_cb, &arg); |
| while (!atomic_load(&arg.timer_fired)) { |
| } |
| ASSERT_FALSE(arg.result, ""); |
| ASSERT_FALSE(timer_cancel(&t), ""); |
| END_TEST; |
| } |
| |
| static void timer_set_cb(struct timer* t, zx_time_t now, void* void_arg) { |
| timer_args* arg = reinterpret_cast<timer_args*>(void_arg); |
| if (atomic_add(&arg->remaining, -1) >= 1) { |
| timer_set(t, current_time() + ZX_USEC(10), TIMER_SLACK_CENTER, 0, timer_set_cb, void_arg); |
| } |
| } |
| |
| // Set a timer that re-sets itself from its own callback. |
| static bool set_from_callback() { |
| BEGIN_TEST; |
| timer_args arg{}; |
| arg.remaining = 5; |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| timer_set(&t, current_time(), TIMER_SLACK_CENTER, 0, timer_set_cb, &arg); |
| while (atomic_load(&arg.remaining) > 0) { |
| } |
| |
| // We cannot assert the return value below because we don't know if the last timer has fired. |
| timer_cancel(&t); |
| |
| END_TEST; |
| } |
| |
| static void timer_trylock_cb(struct timer* t, zx_time_t now, void* void_arg) { |
| timer_args* arg = reinterpret_cast<timer_args*>(void_arg); |
| atomic_store(&arg->timer_fired, 1); |
| while (atomic_load(&arg->wait)) { |
| } |
| |
| int result = timer_trylock_or_cancel(t, arg->lock); |
| if (!result) { |
| spin_unlock(arg->lock); |
| } |
| |
| atomic_store(&arg->result, result); |
| } |
| |
| // See that timer_trylock_or_cancel spins until the timer is canceled. |
| static bool trylock_or_cancel_canceled() { |
| BEGIN_TEST; |
| |
| // We need 2 or more CPUs for this test. |
| if (get_num_cpus_online() < 2) { |
| printf("skipping test trylock_or_cancel_canceled, not enough online cpus\n"); |
| return true; |
| } |
| |
| timer_args arg{}; |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| |
| SpinLock lock; |
| arg.lock = lock.GetInternal(); |
| arg.wait = 1; |
| |
| arch_disable_ints(); |
| |
| uint timer_cpu = arch_curr_cpu_num(); |
| timer_set(&t, current_time() + ZX_USEC(100), TIMER_SLACK_CENTER, 0, timer_trylock_cb, &arg); |
| |
| // The timer is set to run on timer_cpu, switch to a different CPU, acquire the spinlock then |
| // signal the callback to proceed. |
| thread_set_cpu_affinity(get_current_thread(), ~cpu_num_to_mask(timer_cpu)); |
| DEBUG_ASSERT(arch_curr_cpu_num() != timer_cpu); |
| |
| arch_enable_ints(); |
| |
| { |
| AutoSpinLock guard(&lock); |
| |
| while (!atomic_load(&arg.timer_fired)) { |
| } |
| |
| // Callback should now be running. Tell it to stop waiting and start trylocking. |
| atomic_store(&arg.wait, 0); |
| |
| // See that timer_cancel returns false indicating that the timer ran. |
| ASSERT_FALSE(timer_cancel(&t), ""); |
| } |
| |
| // See that the timer failed to acquire the lock. |
| ASSERT_TRUE(arg.result, ""); |
| END_TEST; |
| } |
| |
| // See that timer_trylock_or_cancel acquires the lock when the holder releases it. |
| static bool trylock_or_cancel_get_lock() { |
| BEGIN_TEST; |
| |
| // We need 2 or more CPUs for this test. |
| if (get_num_cpus_online() < 2) { |
| printf("skipping test trylock_or_cancel_get_lock, not enough online cpus\n"); |
| return true; |
| } |
| |
| timer_args arg{}; |
| timer_t t = TIMER_INITIAL_VALUE(t); |
| |
| SpinLock lock; |
| arg.lock = lock.GetInternal(); |
| arg.wait = 1; |
| |
| arch_disable_ints(); |
| |
| uint timer_cpu = arch_curr_cpu_num(); |
| timer_set(&t, current_time() + ZX_USEC(100), TIMER_SLACK_CENTER, 0, timer_trylock_cb, &arg); |
| |
| // The timer is set to run on timer_cpu, switch to a different CPU, acquire the spinlock then |
| // signal the callback to proceed. |
| thread_set_cpu_affinity(get_current_thread(), ~cpu_num_to_mask(timer_cpu)); |
| DEBUG_ASSERT(arch_curr_cpu_num() != timer_cpu); |
| |
| arch_enable_ints(); |
| |
| { |
| AutoSpinLock guard(&lock); |
| |
| while (!atomic_load(&arg.timer_fired)) { |
| } |
| |
| // Callback should now be running. Tell it to stop waiting and start trylocking. |
| atomic_store(&arg.wait, 0); |
| } |
| |
| // See that timer_cancel returns false indicating that the timer ran. |
| ASSERT_FALSE(timer_cancel(&t), ""); |
| |
| // Note, we cannot assert the value of arg.result. We have both released the lock and canceled |
| // the timer, but we don't know which of these events the timer observed first. |
| |
| END_TEST; |
| } |
| |
| UNITTEST_START_TESTCASE(timer_tests) |
| UNITTEST("cancel_before_deadline", cancel_before_deadline) |
| UNITTEST("cancel_after_fired", cancel_after_fired) |
| UNITTEST("cancel_from_callback", cancel_from_callback) |
| UNITTEST("set_from_callback", set_from_callback) |
| UNITTEST("trylock_or_cancel_canceled", trylock_or_cancel_canceled) |
| UNITTEST("trylock_or_cancel_get_lock", trylock_or_cancel_get_lock) |
| UNITTEST_END_TESTCASE(timer_tests, "timer", "timer tests"); |