blob: b2976e93e30da19f839a7f977d4bb2b9de888d2d [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2012-2015 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <arch/arm64/hypervisor/gic/gicv2.h>
#include <arch/arm64/periphmap.h>
#include <arch/ops.h>
#include <assert.h>
#include <bits.h>
#include <debug.h>
#include <dev/interrupt.h>
#include <dev/interrupt/arm_gic_common.h>
#include <dev/interrupt/arm_gicv2_regs.h>
#include <dev/interrupt/arm_gicv2m.h>
#include <dev/interrupt/arm_gicv2m_msi.h>
#include <err.h>
#include <inttypes.h>
#include <kernel/stats.h>
#include <kernel/thread.h>
#include <lib/ktrace.h>
#include <lk/init.h>
#include <pdev/driver.h>
#include <pdev/interrupt.h>
#include <reg.h>
#include <sys/types.h>
#include <trace.h>
#include <zircon/boot/driver-config.h>
#include <zircon/types.h>
#define LOCAL_TRACE 0
#include <arch/arm64.h>
#define iframe arm64_iframe_short
#define IFRAME_PC(frame) ((frame)->elr)
static spin_lock_t gicd_lock;
#define GICD_LOCK_FLAGS SPIN_LOCK_FLAG_INTERRUPTS
// values read from zbi
vaddr_t arm_gicv2_gic_base = 0;
uint64_t arm_gicv2_gicd_offset = 0;
uint64_t arm_gicv2_gicc_offset = 0;
uint64_t arm_gicv2_gich_offset = 0;
uint64_t arm_gicv2_gicv_offset = 0;
static uint32_t ipi_base = 0;
static uint max_irqs = 0;
static zx_status_t arm_gic_init();
static zx_status_t gic_configure_interrupt(unsigned int vector,
enum interrupt_trigger_mode tm,
enum interrupt_polarity pol);
static void suspend_resume_fiq(bool resume_gicc, bool resume_gicd) {
}
static bool gic_is_valid_interrupt(uint vector, uint32_t flags) {
return (vector < max_irqs);
}
static uint32_t gic_get_base_vector() {
// ARM Generic Interrupt Controller v2 chapter 2.1
// INTIDs 0-15 are local CPU interrupts
return 16;
}
static uint32_t gic_get_max_vector() {
return max_irqs;
}
static void gic_set_enable(uint vector, bool enable) {
int reg = vector / 32;
uint32_t mask = (uint32_t)(1ULL << (vector % 32));
if (enable) {
GICREG(0, GICD_ISENABLER(reg)) = mask;
} else {
GICREG(0, GICD_ICENABLER(reg)) = mask;
}
}
static void gic_init_percpu_early() {
GICREG(0, GICC_CTLR) = 0x201; // EnableGrp1 and EOImodeNS
GICREG(0, GICC_PMR) = 0xff; // unmask interrupts at all priority levels
}
static void arm_gic_suspend_cpu(uint level) {
suspend_resume_fiq(false, false);
}
static void arm_gic_resume_cpu(uint level) {
spin_lock_saved_state_t state;
bool resume_gicd = false;
spin_lock_save(&gicd_lock, &state, GICD_LOCK_FLAGS);
if (!(GICREG(0, GICD_CTLR) & 1)) {
dprintf(SPEW, "%s: distributor is off, calling arm_gic_init instead\n", __func__);
arm_gic_init();
resume_gicd = true;
} else {
gic_init_percpu_early();
}
spin_unlock_restore(&gicd_lock, state, GICD_LOCK_FLAGS);
suspend_resume_fiq(true, resume_gicd);
}
// disable for now. we will need to add suspend/resume support to dev/pdev for this to work
#if 0
LK_INIT_HOOK_FLAGS(arm_gic_suspend_cpu, arm_gic_suspend_cpu,
LK_INIT_LEVEL_PLATFORM, LK_INIT_FLAG_CPU_SUSPEND);
LK_INIT_HOOK_FLAGS(arm_gic_resume_cpu, arm_gic_resume_cpu,
LK_INIT_LEVEL_PLATFORM, LK_INIT_FLAG_CPU_RESUME);
#endif
static int arm_gic_max_cpu() {
return (GICREG(0, GICD_TYPER) >> 5) & 0x7;
}
static zx_status_t arm_gic_init() {
uint i;
// see if we're gic v2
uint rev = 0;
uint32_t pidr2 = GICREG(0, GICD_PIDR2);
if (pidr2 != 0) {
uint rev = BITS_SHIFT(pidr2, 7, 4);
if (rev != GICV2) {
return ZX_ERR_NOT_FOUND;
}
} else {
// some v2's return a null PIDR2
pidr2 = GICREG(0, GICD_V3_PIDR2);
rev = BITS_SHIFT(pidr2, 7, 4);
if (rev >= GICV3) {
// looks like a gic v3
return ZX_ERR_NOT_FOUND;
}
// HACK: if gicv2 and v3 pidr2 seems to be blank, assume we're v2 and continue
}
uint32_t typer = GICREG(0, GICD_TYPER);
uint32_t it_lines_number = BITS_SHIFT(typer, 4, 0);
max_irqs = (it_lines_number + 1) * 32;
LTRACEF("arm_gic_init max_irqs: %u\n", max_irqs);
assert(max_irqs <= MAX_INT);
for (i = 0; i < max_irqs; i += 32) {
GICREG(0, GICD_ICENABLER(i / 32)) = ~0;
GICREG(0, GICD_ICPENDR(i / 32)) = ~0;
}
if (arm_gic_max_cpu() > 0) {
// Set external interrupts to target cpu 0
for (i = 32; i < max_irqs; i += 4) {
GICREG(0, GICD_ITARGETSR(i / 4)) = 0x01010101;
}
}
// Initialize all the SPIs to edge triggered
for (i = GIC_BASE_SPI; i < max_irqs; i++) {
gic_configure_interrupt(i, IRQ_TRIGGER_MODE_EDGE, IRQ_POLARITY_ACTIVE_HIGH);
}
GICREG(0, GICD_CTLR) = 1; // enable GIC0
gic_init_percpu_early();
return ZX_OK;
}
static zx_status_t arm_gic_sgi(u_int irq, u_int flags, u_int cpu_mask) {
u_int val =
((flags & ARM_GIC_SGI_FLAG_TARGET_FILTER_MASK) << 24) |
((cpu_mask & 0xff) << 16) |
((flags & ARM_GIC_SGI_FLAG_NS) ? (1U << 15) : 0) |
(irq & 0xf);
if (irq >= 16) {
return ZX_ERR_INVALID_ARGS;
}
LTRACEF("GICD_SGIR: %x\n", val);
GICREG(0, GICD_SGIR) = val;
return ZX_OK;
}
static zx_status_t gic_mask_interrupt(unsigned int vector) {
if (vector >= max_irqs) {
return ZX_ERR_INVALID_ARGS;
}
gic_set_enable(vector, false);
return ZX_OK;
}
static zx_status_t gic_unmask_interrupt(unsigned int vector) {
if (vector >= max_irqs) {
return ZX_ERR_INVALID_ARGS;
}
gic_set_enable(vector, true);
return ZX_OK;
}
static zx_status_t gic_configure_interrupt(unsigned int vector,
enum interrupt_trigger_mode tm,
enum interrupt_polarity pol) {
// Only configurable for SPI interrupts
if ((vector >= max_irqs) || (vector < GIC_BASE_SPI)) {
return ZX_ERR_INVALID_ARGS;
}
if (pol != IRQ_POLARITY_ACTIVE_HIGH) {
// TODO: polarity should actually be configure through a GPIO controller
return ZX_ERR_NOT_SUPPORTED;
}
// type is encoded with two bits, MSB of the two determine type
// 16 irqs encoded per ICFGR register
uint32_t reg_ndx = vector >> 4;
uint32_t bit_shift = ((vector & 0xf) << 1) + 1;
uint32_t reg_val = GICREG(0, GICD_ICFGR(reg_ndx));
if (tm == IRQ_TRIGGER_MODE_EDGE) {
reg_val |= (1 << bit_shift);
} else {
reg_val &= ~(1 << bit_shift);
}
GICREG(0, GICD_ICFGR(reg_ndx)) = reg_val;
return ZX_OK;
}
static zx_status_t gic_get_interrupt_config(unsigned int vector,
enum interrupt_trigger_mode* tm,
enum interrupt_polarity* pol) {
if (vector >= max_irqs) {
return ZX_ERR_INVALID_ARGS;
}
if (tm) {
*tm = IRQ_TRIGGER_MODE_EDGE;
}
if (pol) {
*pol = IRQ_POLARITY_ACTIVE_HIGH;
}
return ZX_OK;
}
static unsigned int gic_remap_interrupt(unsigned int vector) {
return vector;
}
static void gic_handle_irq(struct iframe* frame) {
// get the current vector
uint32_t iar = GICREG(0, GICC_IAR);
unsigned int vector = iar & 0x3ff;
if (vector >= 0x3fe) {
// spurious
return;
}
// tracking external hardware irqs in this variable
if (vector >= 32)
CPU_STATS_INC(interrupts);
uint cpu = arch_curr_cpu_num();
ktrace_tiny(TAG_IRQ_ENTER, (vector << 8) | cpu);
LTRACEF_LEVEL(2, "iar 0x%x cpu %u currthread %p vector %u pc %#" PRIxPTR "\n", iar, cpu,
get_current_thread(), vector, (uintptr_t)IFRAME_PC(frame));
// deliver the interrupt
struct int_handler_struct* handler = pdev_get_int_handler(vector);
interrupt_eoi eoi = IRQ_EOI_DEACTIVATE;
if (handler->handler) {
eoi = handler->handler(handler->arg);
}
GICREG(0, GICC_EOIR) = iar;
if (eoi == IRQ_EOI_DEACTIVATE) {
GICREG(0, GICC_DIR) = iar;
}
LTRACEF_LEVEL(2, "cpu %u exit\n", cpu);
ktrace_tiny(TAG_IRQ_EXIT, (vector << 8) | cpu);
}
static void gic_handle_fiq(struct iframe* frame) {
PANIC_UNIMPLEMENTED;
}
static zx_status_t gic_send_ipi(cpu_mask_t target, mp_ipi_t ipi) {
uint gic_ipi_num = ipi + ipi_base;
// filter out targets outside of the range of cpus we care about
target &= ((1UL << SMP_MAX_CPUS) - 1);
if (target != 0) {
LTRACEF("target 0x%x, gic_ipi %u\n", target, gic_ipi_num);
arm_gic_sgi(gic_ipi_num, ARM_GIC_SGI_FLAG_NS, target);
}
return ZX_OK;
}
static interrupt_eoi arm_ipi_halt_handler(void*) {
LTRACEF("cpu %u\n", arch_curr_cpu_num());
arch_disable_ints();
while (true) {
}
return IRQ_EOI_DEACTIVATE;
}
static void gic_init_percpu() {
mp_set_curr_cpu_online(true);
unmask_interrupt(MP_IPI_GENERIC + ipi_base);
unmask_interrupt(MP_IPI_RESCHEDULE + ipi_base);
unmask_interrupt(MP_IPI_INTERRUPT + ipi_base);
unmask_interrupt(MP_IPI_HALT + ipi_base);
}
static void gic_shutdown() {
// Turn off all GIC0 interrupts at the distributor.
GICREG(0, GICD_CTLR) = 0;
}
// Returns true if any PPIs are enabled on the calling CPU.
static bool is_ppi_enabled() {
DEBUG_ASSERT(arch_ints_disabled());
// PPIs are 16-31.
uint32_t ppi_mask = 0xffff0000;
// GICD_ISENABLER0 is banked so it corresponds to *this* CPU's interface.
return (GICREG(0, GICD_ISENABLER(0)) & ppi_mask) != 0;
}
// Returns true if any SPIs are enabled on the calling CPU.
static bool is_spi_enabled() {
DEBUG_ASSERT(arch_ints_disabled());
// We're going to check four interrupts at a time. Build a repeated mask for the current CPU.
// Each byte in the mask is a CPU bit mask corresponding to CPU0..CPU7 (lsb..msb).
uint cpu_num = arch_curr_cpu_num();
DEBUG_ASSERT(cpu_num < 8);
uint32_t mask = 0x01010101U << cpu_num;
for (unsigned int vector = GIC_BASE_SPI; vector < max_irqs; vector += 4) {
uint32_t reg = GICREG(0, GICD_ITARGETSR(vector / 4));
if (reg & mask) {
return true;
}
}
return false;
}
static void gic_shutdown_cpu() {
DEBUG_ASSERT(arch_ints_disabled());
// Before we shutdown the GIC, make sure we've migrated/disabled any and all peripheral
// interrupts targeted at this CPU (PPIs and SPIs).
DEBUG_ASSERT(!is_ppi_enabled());
DEBUG_ASSERT(!is_spi_enabled());
// Turn off interrupts at the CPU interface.
GICREG(0, GICC_CTLR) = 0;
}
static const struct pdev_interrupt_ops gic_ops = {
.mask = gic_mask_interrupt,
.unmask = gic_unmask_interrupt,
.configure = gic_configure_interrupt,
.get_config = gic_get_interrupt_config,
.is_valid = gic_is_valid_interrupt,
.get_base_vector = gic_get_base_vector,
.get_max_vector = gic_get_max_vector,
.remap = gic_remap_interrupt,
.send_ipi = gic_send_ipi,
.init_percpu_early = gic_init_percpu_early,
.init_percpu = gic_init_percpu,
.handle_irq = gic_handle_irq,
.handle_fiq = gic_handle_fiq,
.shutdown = gic_shutdown,
.shutdown_cpu = gic_shutdown_cpu,
.msi_is_supported = arm_gicv2m_msi_is_supported,
.msi_supports_masking = arm_gicv2m_msi_supports_masking,
.msi_mask_unmask = arm_gicv2m_msi_mask_unmask,
.msi_alloc_block = arm_gicv2m_msi_alloc_block,
.msi_free_block = arm_gicv2m_msi_free_block,
.msi_register_handler = arm_gicv2m_msi_register_handler,
};
static void arm_gic_v2_init(const void* driver_data, uint32_t length) {
ASSERT(length >= sizeof(dcfg_arm_gicv2_driver_t));
auto driver = static_cast<const dcfg_arm_gicv2_driver_t*>(driver_data);
ASSERT(driver->mmio_phys);
arm_gicv2_gic_base = periph_paddr_to_vaddr(driver->mmio_phys);
ASSERT(arm_gicv2_gic_base);
arm_gicv2_gicd_offset = driver->gicd_offset;
arm_gicv2_gicc_offset = driver->gicc_offset;
arm_gicv2_gich_offset = driver->gich_offset;
arm_gicv2_gicv_offset = driver->gicv_offset;
ipi_base = driver->ipi_base;
if (arm_gic_init() != ZX_OK) {
if (driver->optional) {
// failed to detect gic v2 but it's marked optional. continue
return;
}
printf("GICv2: failed to detect GICv2, interrupts will be broken\n");
return;
}
dprintf(SPEW, "detected GICv2 (ID %#x)\n", GICREG(0, GICC_IIDR));
// pass the list of physical and virtual addresses for the GICv2m register apertures
if (driver->msi_frame_phys) {
// the following arrays must be static because arm_gicv2m_init stashes the pointer
static paddr_t GICV2M_REG_FRAMES[] = {0};
static vaddr_t GICV2M_REG_FRAMES_VIRT[] = {0};
GICV2M_REG_FRAMES[0] = driver->msi_frame_phys;
GICV2M_REG_FRAMES_VIRT[0] = periph_paddr_to_vaddr(driver->msi_frame_phys);
ASSERT(GICV2M_REG_FRAMES_VIRT[0]);
arm_gicv2m_init(GICV2M_REG_FRAMES, GICV2M_REG_FRAMES_VIRT, countof(GICV2M_REG_FRAMES));
}
pdev_register_interrupts(&gic_ops);
zx_status_t status = gic_register_sgi_handler(MP_IPI_GENERIC + ipi_base, &mp_mbx_generic_irq);
DEBUG_ASSERT(status == ZX_OK);
status = gic_register_sgi_handler(MP_IPI_RESCHEDULE + ipi_base, &mp_mbx_reschedule_irq);
DEBUG_ASSERT(status == ZX_OK);
status = gic_register_sgi_handler(MP_IPI_INTERRUPT + ipi_base, &mp_mbx_interrupt_irq);
DEBUG_ASSERT(status == ZX_OK);
status = gic_register_sgi_handler(MP_IPI_HALT + ipi_base, &arm_ipi_halt_handler);
DEBUG_ASSERT(status == ZX_OK);
gicv2_hw_interface_register();
}
LK_PDEV_INIT(arm_gic_v2_init, KDRV_ARM_GIC_V2, arm_gic_v2_init, LK_INIT_LEVEL_PLATFORM_EARLY);