blob: 591f1486fa4479c26012cc3fc3d4b346e60cf617 [file] [log] [blame]
/*
* QR Code generator library (JavaScript)
*
* Copyright (c) Project Nayuki. (MIT License)
* https://www.nayuki.io/page/qr-code-generator-library
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
import 'dart:math' as math;
/*
* Module "qrcodegen", public members:
* - Class QrCode:
* - Function encodeText(str text, QrCode.Ecc ecl) -> QrCode
* - Function encodeBinary(list<byte> data, QrCode.Ecc ecl) -> QrCode
* - Function encodeSegments(list<QrSegment> segs, QrCode.Ecc ecl,
* int minVersion=1, int maxVersion=40, mask=-1, boostEcl=true) -> QrCode
* - Constructor QrCode(QrCode qr, int mask)
* - Constructor QrCode(list<int> datacodewords, int mask, int version, QrCode.Ecc ecl)
* - Fields int version, size, mask
* - Field QrCode.Ecc errorCorrectionLevel
* - Method getModule(int x, int y) -> int
* - Method drawCanvas(int scale, int border, HTMLCanvasElement canvas) -> void
* - Method toSvgString(int border) -> str
* - Enum Ecc:
* - Constants LOW, MEDIUM, QUARTILE, HIGH
* - Field int ordinal
* - Class QrSegment:
* - Function makeBytes(list<int> data) -> QrSegment
* - Function makeNumeric(str data) -> QrSegment
* - Function makeAlphanumeric(str data) -> QrSegment
* - Function makeSegments(str text) -> list<QrSegment>
* - Function makeEci(int assignVal) -> QrSegment
* - Constructor QrSegment(QrSegment.Mode mode, int numChars, list<int> bitData)
* - Field QrSegment.Mode mode
* - Field int numChars
* - Method getBits() -> list<int>
* - Constants RegExp NUMERIC_REGEX, ALPHANUMERIC_REGEX
* - Enum Mode:
* - Constants NUMERIC, ALPHANUMERIC, BYTE, KANJI, ECI
*/
/*---- QR Code symbol class ----*/
/// A class that represents an immutable square grid of black and white cells for a QR Code symbol,
/// with associated static functions to create a QR Code from user-supplied textual or binary data.
/// This class covers the QR Code model 2 specification, supporting all versions (sizes)
/// from 1 to 40, all 4 error correction levels.
///
/// This constructor can be called in one of two ways:
/// - new QrCode(datacodewords, mask, version, errCorLvl):
/// Creates a new QR Code symbol with the given version number, error correction level, binary data array,
/// and mask number. This is a cumbersome low-level constructor that should not be invoked directly by the user.
/// To go one level up, see the QrCode.encodeSegments() function.
/// - new QrCode(qr, mask):
/// Creates a new QR Code symbol based on the given existing object, but with a potentially different
/// mask pattern. The version, error correction level, codewords, etc. of the newly created object are
/// all identical to the argument object; only the mask may differ.
/// In both cases, mask = -1 is for automatic choice or 0 to 7 for fixed choice.
class QrCode {
/*---- Read-only instance properties ----*/
/// This QR Code symbol's version number, which is always between 1 and 40 (inclusive).
int version;
/// The width and height of this QR Code symbol, measured in modules.
/// Always equal to version * 4 + 17, in the range 21 to 177.
int size;
/// The error correction level used in this QR Code symbol.
_Ecc errCorLvl;
/// The mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer).
/// Note that even if the constructor was called with automatic masking requested
/// (mask = -1), the resulting object will still have a mask value between 0 and 7.
int mask;
List<List<bool>> _modules;
List<List<bool>> _isFunction;
/// List Constructor.
QrCode.withList(List<int> initData, this.mask, this.version, this.errCorLvl) {
_checkMask();
if (version < 1 || version > 40) {
throw ArgumentError('Version value out of range');
}
_createGrid();
// Handle grid fields
// Draw function patterns, draw all codewords
_drawFunctionPatterns();
_drawCodewords(_appendErrorCorrection(initData));
_handleMasking();
}
/// QrCode Constructor.
QrCode.withQrCode(QrCode initData, this.mask) {
_checkMask();
version = initData.version;
errCorLvl = initData.errCorLvl;
_createGrid();
// Handle grid fields
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
_modules[y][x] = initData.getModule(x, y) == 1;
_isFunction[y][x] = initData.isFunctionModule(x, y);
}
}
_applyMask(initData.mask); // Undo old mask
_handleMasking();
}
/// Returns a QR Code symbol representing the given Unicode text string at the given error correction level.
/// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
/// code points (not UTF-16 code units). The smallest possible QR Code version is automatically chosen for the output.
/// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
factory QrCode.encodeText(String text, EccEnum ecl) =>
QrCode._encodeSegments(
segs: _QrSegment.makeSegments(text),
initialEcl: _kEcc[ecl],
);
/// Returns a QR Code symbol representing the given binary data string at the given error correction level.
/// This function always encodes using the binary segment mode, not any text mode. The maximum number of
/// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
/// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
factory QrCode.encodeBinary(List<int> data, EccEnum ecl) =>
QrCode._encodeSegments(
segs: <_QrSegment>[new _QrSegment.makeBytes(data)],
initialEcl: _kEcc[ecl],
);
/// Returns a QR Code symbol representing the given data segments with the given encoding parameters.
/// The smallest possible QR Code version within the given range is automatically chosen for the output.
/// This function allows the user to create a custom sequence of segments that switches
/// between modes (such as alphanumeric and binary) to encode text more efficiently.
/// This function is considered to be lower level than simply encoding text or binary data.
factory QrCode._encodeSegments(
{List<_QrSegment> segs,
_Ecc initialEcl,
int minVersion = 1,
int maxVersion = 40,
int mask = -1,
bool boostEcl = true}) {
if (!(1 <= minVersion && minVersion <= maxVersion && maxVersion <= 40) ||
mask < -1 ||
mask > 7) {
throw ArgumentError('Invalid value');
}
_Ecc ecl = initialEcl;
// Find the minimal version number to use
int version;
int dataUsedBits;
for (version = minVersion;; version++) {
// Number of data bits available
int dataCapacityBits = _getNumDataCodewords(version, ecl) * 8;
dataUsedBits = _QrSegment.getTotalBits(segs, version);
if (dataUsedBits >= 0 && dataUsedBits <= dataCapacityBits) {
break; // This version number is found to be suitable
}
if (version >= maxVersion) {
// All versions in the range could not fit the given data
throw ArgumentError('Data too long');
}
}
// Increase the error correction level while the data still fits in the current version number
for (_Ecc newEcl in <_Ecc>[
_kEcc[EccEnum.medium],
_kEcc[EccEnum.quartile],
_kEcc[EccEnum.high]
]) {
if (boostEcl &&
dataUsedBits <= _getNumDataCodewords(version, newEcl) * 8) {
ecl = newEcl;
}
}
// Create the data bit string by concatenating all segments
int dataCapacityBits = _getNumDataCodewords(version, ecl) * 8;
_BitBuffer bb = _BitBuffer();
for (_QrSegment seg in segs) {
bb
..appendBits(seg.mode.modeBits, 4)
..appendBits(seg.numChars, seg.mode.numCharCountBits(version))
..appendData(seg);
}
// Add terminator and pad up to a byte if applicable
bb
..appendBits(0, math.min(4, dataCapacityBits - bb.bitLength))
..appendBits(0, (8 - bb.bitLength % 8) % 8);
// Pad with alternate bytes until data capacity is reached
for (int padByte = 0xEC;
bb.bitLength < dataCapacityBits;
padByte ^= 0xEC ^ 0x11) {
bb.appendBits(padByte, 8);
}
assert(bb.bitLength % 8 == 0);
// Create the QR Code symbol
return QrCode.withList(bb.bytes, mask, version, ecl);
}
void _checkMask() {
// Check arguments and handle simple scalar fields
if (mask < -1 || mask > 7) {
throw ArgumentError('Mask value out of range');
}
}
void _createGrid() {
size = version * 4 + 17;
// Initialize both grids to be size*size arrays of Boolean false
_modules = List<List<bool>>.generate(
size,
(_) => List<bool>.filled(size, false),
);
_isFunction = List<List<bool>>.generate(
size,
(_) => List<bool>.filled(size, false),
);
}
void _handleMasking() {
// Handle masking
if (mask == -1) {
// Automatically choose best mask
int minPenalty = 0xFFFFFFFFFFFFFFFF;
for (int i = 0; i < 8; i++) {
_drawFormatBits(i);
_applyMask(i);
int penalty = _getPenaltyScore();
if (penalty < minPenalty) {
mask = i;
minPenalty = penalty;
}
_applyMask(i); // Undoes the mask due to XOR
}
}
assert(mask >= 0 && mask <= 7);
_drawFormatBits(mask); // Overwrite old format bits
_applyMask(mask); // Apply the final choice of mask
}
/*---- Accessor methods ----*/
/// (Public) Returns the color of the module (pixel) at the given coordinates, which is either 0 for white or 1 for black. The top
/// left corner has the coordinates (x=0, y=0). If the given coordinates are out of bounds, then 0 (white) is returned.
int getModule(int x, int y) {
if (0 <= x && x < size && 0 <= y && y < size)
return _modules[y][x] ? 1 : 0;
else
return 0; // Infinite white border
}
/// (Package-private) Tests whether the module at the given coordinates is a function module (true) or not (false).
/// The top left corner has the coordinates (x=0, y=0). If the given coordinates are out of bounds, then false is returned.
/// The JavaScript version of this library has this method because it is impossible to access private variables of another object.
bool isFunctionModule(int x, int y) {
if (0 <= x && x < size && 0 <= y && y < size)
return _isFunction[y][x];
else
return false; // Infinite border
}
/*---- Private helper methods for constructor: Drawing function modules ----*/
void _drawFunctionPatterns() {
// Draw horizontal and vertical timing patterns
for (int i = 0; i < size; i++) {
_setFunctionModule(6, i, i % 2 == 0);
_setFunctionModule(i, 6, i % 2 == 0);
}
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
_drawFinderPattern(3, 3);
_drawFinderPattern(size - 4, 3);
_drawFinderPattern(3, size - 4);
// Draw numerous alignment patterns
List<int> alignPatPos = _getAlignmentPatternPositions(version);
int numAlign = alignPatPos.length;
for (int i = 0; i < numAlign; i++) {
for (int j = 0; j < numAlign; j++) {
if (i == 0 && j == 0 ||
i == 0 && j == numAlign - 1 ||
i == numAlign - 1 && j == 0)
continue; // Skip the three finder corners
else
_drawAlignmentPattern(alignPatPos[i], alignPatPos[j]);
}
}
// Draw configuration data
_drawFormatBits(
0); // Dummy mask value; overwritten later in the constructor
_drawVersion();
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
void _drawFormatBits(int mask) {
// Calculate error correction code and pack bits
int data =
errCorLvl.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3
int rem = data;
for (int i = 0; i < 10; i++) {
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
}
data = data << 10 | rem;
data ^= 0x5412; // uint15
assert(data >> 15 == 0);
// Draw first copy
for (int i = 0; i <= 5; i++) {
_setFunctionModule(8, i, ((data >> i) & 1) != 0);
}
_setFunctionModule(8, 7, ((data >> 6) & 1) != 0);
_setFunctionModule(8, 8, ((data >> 7) & 1) != 0);
_setFunctionModule(7, 8, ((data >> 8) & 1) != 0);
for (int i = 9; i < 15; i++) {
_setFunctionModule(14 - i, 8, ((data >> i) & 1) != 0);
}
// Draw second copy
for (int i = 0; i <= 7; i++) {
_setFunctionModule(size - 1 - i, 8, ((data >> i) & 1) != 0);
}
for (int i = 8; i < 15; i++) {
_setFunctionModule(8, size - 15 + i, ((data >> i) & 1) != 0);
}
_setFunctionModule(8, size - 8, true);
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field (which only has an effect for 7 <= version <= 40).
void _drawVersion() {
if (version < 7) {
return;
}
// Calculate error correction code and pack bits
int rem = version; // version is uint6, in the range [7, 40]
for (int i = 0; i < 12; i++) {
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
}
int data = version << 12 | rem; // uint18
assert(data >> 18 == 0);
// Draw two copies
for (int i = 0; i < 18; i++) {
bool bit = ((data >> i) & 1) != 0;
int a = size - 11 + i % 3, b = (i / 3).floor();
_setFunctionModule(a, b, bit);
_setFunctionModule(b, a, bit);
}
}
// Draws a 9*9 finder pattern including the border separator, with the center module at (x, y).
void _drawFinderPattern(int x, int y) {
for (int i = -4; i <= 4; i++) {
for (int j = -4; j <= 4; j++) {
int dist = math.max(i.abs(), j.abs()); // Chebyshev/infinity norm
int xx = x + j, yy = y + i;
if (0 <= xx && xx < size && 0 <= yy && yy < size) {
_setFunctionModule(xx, yy, dist != 2 && dist != 4);
}
}
}
}
// Draws a 5*5 alignment pattern, with the center module at (x, y).
void _drawAlignmentPattern(int x, int y) {
for (int i = -2; i <= 2; i++) {
for (int j = -2; j <= 2; j++) {
_setFunctionModule(x + j, y + i, math.max(i.abs(), j.abs()) != 1);
}
}
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in range.
void _setFunctionModule(int x, int y, bool isBlack) {
_modules[y][x] = isBlack;
_isFunction[y][x] = true;
}
/*---- Private helper methods for constructor: Codewords and masking ----*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
List<int> _appendErrorCorrection(List<int> data) {
assert(data.length == QrCode._getNumDataCodewords(version, errCorLvl));
// Calculate parameter numbers
int numBlocks = _kNumErrorCorrectionBlocks[errCorLvl.ordinal][version];
int blockEccLen = _kEccCodewordsPerBlock[errCorLvl.ordinal][version];
int rawCodewords = (_getNumRawDataModules(version) / 8).floor();
int numShortBlocks = numBlocks - rawCodewords % numBlocks;
int shortBlockLen = (rawCodewords / numBlocks).floor();
// Split data into blocks and append ECC to each block
List<List<int>> blocks = <List<int>>[];
_ReedSolomonGenerator rs = _ReedSolomonGenerator(blockEccLen);
for (int i = 0, k = 0; i < numBlocks; i++) {
List<int> dat = data.sublist(
k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1));
k += dat.length;
List<int> ecc = rs.getRemainder(dat);
if (i < numShortBlocks) {
dat.add(0);
}
ecc.forEach(dat.add);
blocks.add(dat);
}
// Interleave (not concatenate) the bytes from every block into a single sequence
List<int> result = <int>[];
for (int i = 0; i < blocks[0].length; i++) {
for (int j = 0; j < blocks.length; j++) {
// Skip the padding byte in short blocks
if (i != shortBlockLen - blockEccLen || j >= numShortBlocks)
result.add(blocks[j][i]);
}
}
assert(result.length == rawCodewords);
return result;
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code symbol. Function modules need to be marked off before this is called.
void _drawCodewords(List<int> data) {
if (data.length != (_getNumRawDataModules(version) / 8).floor()) {
throw ArgumentError('Invalid argument');
}
int i = 0; // Bit index into the data
// Do the funny zigzag scan
for (int right = size - 1; right >= 1; right -= 2) {
// Index of right column in each column pair
if (right == 6) {
right = 5;
}
for (int vert = 0; vert < size; vert++) {
// Vertical counter
for (int j = 0; j < 2; j++) {
int x = right - j; // Actual x coordinate
bool upward = ((right + 1) & 2) == 0;
int y = upward ? size - 1 - vert : vert; // Actual y coordinate
if (!_isFunction[y][x] && i < data.length * 8) {
_modules[y][x] = ((data[i >> 3] >> (7 - (i & 7))) & 1) != 0;
i++;
}
// If there are any remainder bits (0 to 7), they are already
// set to 0/false/white when the grid of modules was initialized
}
}
}
assert(i == data.length * 8);
}
// XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical
// properties, calling applyMask(m) twice with the same value is equivalent to no change at all.
// This means it is possible to apply a mask, undo it, and try another mask. Note that a final
// well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.).
void _applyMask(int mask) {
if (mask < 0 || mask > 7) {
throw ArgumentError('Mask value out of range');
}
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
bool invert;
switch (mask) {
case 0:
invert = (x + y) % 2 == 0;
break;
case 1:
invert = y % 2 == 0;
break;
case 2:
invert = x % 3 == 0;
break;
case 3:
invert = (x + y) % 3 == 0;
break;
case 4:
invert = ((x / 3).floor() + (y / 2).floor()) % 2 == 0;
break;
case 5:
invert = x * y % 2 + x * y % 3 == 0;
break;
case 6:
invert = (x * y % 2 + x * y % 3) % 2 == 0;
break;
case 7:
invert = ((x + y) % 2 + x * y % 3) % 2 == 0;
break;
default:
assert(false);
}
_modules[y][x] = !(_modules[y][x] == (invert && !_isFunction[y][x]));
}
}
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
int _getPenaltyScore() {
int result = 0;
// Adjacent modules in row having same color
for (int y = 0; y < size; y++) {
bool colorX = false;
for (int x = 0, runX; x < size; x++) {
if (x == 0 || _modules[y][x] != colorX) {
colorX = _modules[y][x];
runX = 1;
} else {
runX++;
if (runX == 5)
result += _kPenaltyN1;
else if (runX > 5) {
result++;
}
}
}
}
// Adjacent modules in column having same color
for (int x = 0; x < size; x++) {
bool colorY = false;
for (int y = 0, runY; y < size; y++) {
if (y == 0 || _modules[y][x] != colorY) {
colorY = _modules[y][x];
runY = 1;
} else {
runY++;
if (runY == 5)
result += _kPenaltyN1;
else if (runY > 5) {
result++;
}
}
}
}
// 2*2 blocks of modules having same color
for (int y = 0; y < size - 1; y++) {
for (int x = 0; x < size - 1; x++) {
bool color = _modules[y][x];
if (color == _modules[y][x + 1] &&
color == _modules[y + 1][x] &&
color == _modules[y + 1][x + 1]) {
result += _kPenaltyN2;
}
}
}
// Finder-like pattern in rows
for (int y = 0; y < size; y++) {
for (int x = 0, bits = 0; x < size; x++) {
bits = ((bits << 1) & 0x7FF) | (_modules[y][x] ? 1 : 0);
if (x >= 10 &&
(bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated
result += _kPenaltyN3;
}
}
// Finder-like pattern in columns
// TODO: The following x < size is incorrectly being flagged as invariant.
// Remove this ignore once this is fixed in the analyzer.
// ignore: invariant_booleans
for (int x = 0; x < size; x++) {
for (int y = 0, bits = 0; y < size; y++) {
bits = ((bits << 1) & 0x7FF) | (_modules[y][x] ? 1 : 0);
if (y >= 10 &&
(bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated
result += _kPenaltyN3;
}
}
// Balance of black and white modules
int black = 0;
for (List<bool> row in _modules) {
for (bool color in row) {
if (color) {
black++;
}
}
}
int total = size * size;
// Find smallest k such that (45-5k)% <= dark/total <= (55+5k)%
for (int k = 0;
black * 20 < (9 - k) * total || black * 20 > (11 + k) * total;
k++) {
result += _kPenaltyN4;
}
return result;
}
/*---- Private static helper functions QrCode ----*/
// Returns a sequence of positions of the alignment patterns in ascending order. These positions are
// used on both the x and y axes. Each value in the resulting sequence is in the range [0, 177).
// This stateless pure function could be implemented as table of 40 variable-length lists of integers.
static List<int> _getAlignmentPatternPositions(int ver) {
if (ver != null && (ver < 1 || ver > 40))
throw ArgumentError('Version number out of range');
else if (ver == 1)
return <int>[];
else {
int size = ver * 4 + 17;
int numAlign = (ver / 7).floor() + 2;
int step;
if (ver != 32)
step = ((size - 13) / (2 * numAlign - 2)).ceil() * 2;
else // C-C-C-Combo breaker!
step = 26;
List<int> result = <int>[6];
for (int i = 0, pos = size - 7; i < numAlign - 1; i++, pos -= step) {
result.insert(1, pos);
}
return result;
}
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
static int _getNumRawDataModules(int ver) {
if (ver < 1 || ver > 40)
throw ArgumentError('Version number out of range');
int result = (16 * ver + 128) * ver + 64;
if (ver >= 2) {
int numAlign = (ver / 7).floor() + 2;
result -= (25 * numAlign - 10) * numAlign - 55;
if (ver >= 7) {
result -= 18 * 2; // Subtract version information
}
}
return result;
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
static int _getNumDataCodewords(int ver, _Ecc ecl) {
if (ver < 1 || ver > 40)
throw ArgumentError('Version number out of range');
return (_getNumRawDataModules(ver) / 8).floor() -
_kEccCodewordsPerBlock[ecl.ordinal][ver] *
QrCode._kNumErrorCorrectionBlocks[ecl.ordinal][ver];
}
/*---- Private tables of constants for QrCode ----*/
// For use in getPenaltyScore(), when evaluating which mask is best.
static const int _kPenaltyN1 = 3;
static const int _kPenaltyN2 = 3;
static const int _kPenaltyN3 = 40;
static const int _kPenaltyN4 = 10;
static final List<List<int>> _kEccCodewordsPerBlock = <List<int>>[
// Version: (note that index 0 is for padding, and is set to an illegal value)
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
<int>[
null,
7,
10,
15,
20,
26,
18,
20,
24,
30,
18,
20,
24,
26,
30,
22,
24,
28,
30,
28,
28,
28,
28,
30,
30,
26,
28,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30
], // Low
<int>[
null,
10,
16,
26,
18,
24,
16,
18,
22,
22,
26,
30,
22,
22,
24,
24,
28,
28,
26,
26,
26,
26,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28
], // Medium
<int>[
null,
13,
22,
18,
26,
18,
24,
18,
22,
20,
24,
28,
26,
24,
20,
30,
24,
28,
28,
26,
30,
28,
30,
30,
30,
30,
28,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30
], // Quartile
<int>[
null,
17,
28,
22,
16,
22,
28,
26,
26,
24,
28,
24,
28,
22,
24,
24,
30,
28,
28,
26,
28,
30,
24,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30
], // High
];
static final List<List<int>> _kNumErrorCorrectionBlocks = <List<int>>[
// Version: (note that index 0 is for padding, and is set to an illegal value)
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
<int>[
null,
1,
1,
1,
1,
1,
2,
2,
2,
2,
4,
4,
4,
4,
4,
6,
6,
6,
6,
7,
8,
8,
9,
9,
10,
12,
12,
12,
13,
14,
15,
16,
17,
18,
19,
19,
20,
21,
22,
24,
25
], // Low
<int>[
null,
1,
1,
1,
2,
2,
4,
4,
4,
5,
5,
5,
8,
9,
9,
10,
10,
11,
13,
14,
16,
17,
17,
18,
20,
21,
23,
25,
26,
28,
29,
31,
33,
35,
37,
38,
40,
43,
45,
47,
49
], // Medium
<int>[
null,
1,
1,
2,
2,
4,
4,
6,
6,
8,
8,
8,
10,
12,
16,
12,
17,
16,
18,
21,
20,
23,
23,
25,
27,
29,
34,
34,
35,
38,
40,
43,
45,
48,
51,
53,
56,
59,
62,
65,
68
], // Quartile
<int>[
null,
1,
1,
2,
4,
4,
4,
5,
6,
8,
8,
11,
11,
16,
16,
18,
16,
19,
21,
25,
25,
25,
34,
30,
32,
35,
37,
40,
42,
45,
48,
51,
54,
57,
60,
63,
66,
70,
74,
77,
81
], // High
];
/*---- Public helper enumeration ----*/
/*
* Represents the error correction level used in a QR Code symbol.
*/
static final Map<EccEnum, _Ecc> _kEcc = <EccEnum, _Ecc>{
// Constants declared in ascending order of error protection
EccEnum.low: _Ecc(0, 1),
EccEnum.medium: _Ecc(1, 0),
EccEnum.quartile: _Ecc(2, 3),
EccEnum.high: _Ecc(3, 2),
};
}
/// Represents the error correction level used in a QR Code symbol.
enum EccEnum {
/// Corresponds to a data restoration rate of about 7%.
low,
/// Corresponds to a data restoration rate of about 15%.
medium,
/// Corresponds to a data restoration rate of about 25%.
quartile,
/// Corresponds to a data restoration rate of about 30%.
high,
}
class _Ecc {
// (Public) In the range 0 to 3 (unsigned 2-bit integer)
final int ordinal;
// (Package-private) In the range 0 to 3 (unsigned 2-bit integer)
final int formatBits;
_Ecc(this.ordinal, this.formatBits);
}
/*---- Data segment class ----*/
/*
* A public class that represents a character string to be encoded in a QR Code symbol.
* Each segment has a mode, and a sequence of characters that is already encoded as
* a sequence of bits. Instances of this class are immutable.
* This segment class imposes no length restrictions, but QR Codes have restrictions.
* Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
* Any segment longer than this is meaningless for the purpose of generating QR Codes.
*/
class _QrSegment {
// The mode indicator for this segment.
final _Mode mode;
// The length of this segment's unencoded data, measured in characters. Always zero or positive.
final int numChars;
final List<int> bitData;
_QrSegment(this.mode, this.numChars, this.bitData) {
if (numChars < 0) {
throw ArgumentError('Invalid argument');
}
}
/*---- Public static factory functions for QrSegment ----*/
/// Returns a segment representing the given binary data encoded in byte mode.
factory _QrSegment.makeBytes(List<int> data) {
_BitBuffer bb = _BitBuffer();
for (int b in data) {
bb.appendBits(b, 8);
}
return _QrSegment(kMode[_ModeEnum.byte], data.length, bb.bits);
}
/// Returns a segment representing the given string of decimal digits encoded in numeric mode.
factory _QrSegment.makeNumeric(String digits) {
if (!digits.contains(kNumericRegEx))
throw ArgumentError('String contains non-numeric characters');
_BitBuffer bb = _BitBuffer();
int i;
for (i = 0; i + 3 <= digits.length; i += 3) // Process groups of 3
bb.appendBits(int.parse(digits.substring(i, 3), radix: 10), 10);
int rem = digits.length - i;
if (rem > 0) // 1 or 2 digits remaining
bb.appendBits(int.parse(digits.substring(i), radix: 10), rem * 3 + 1);
return _QrSegment(kMode[_ModeEnum.numeric], digits.length, bb.bits);
}
/// Returns a segment representing the given text string encoded in alphanumeric mode. The characters allowed are:
/// 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
factory _QrSegment.makeAlphanumeric(String text) {
if (!text.contains(kAlphanumericRegex))
throw ArgumentError(
'String contains unencodable characters in alphanumeric mode');
_BitBuffer bb = _BitBuffer();
int i;
for (i = 0; i + 2 <= text.length; i += 2) {
// Process groups of 2
int temp = kAlphanumericCharset.indexOf(text[i]) * 45;
temp += kAlphanumericCharset.indexOf(text[i + 1]);
bb.appendBits(temp, 11);
}
if (i < text.length) // 1 character remaining
bb.appendBits(kAlphanumericCharset.indexOf(text[i]), 6);
return _QrSegment(kMode[_ModeEnum.alphanumeric], text.length, bb.bits);
}
/// Returns a segment representing an Extended Channel Interpretation (ECI) designator with the given assignment value.
factory _QrSegment.makeEci(int assignVal) {
_BitBuffer bb = _BitBuffer();
if (0 <= assignVal && assignVal < (1 << 7))
bb.appendBits(assignVal, 8);
else if ((1 << 7) <= assignVal && assignVal < (1 << 14)) {
bb..appendBits(2, 2)..appendBits(assignVal, 14);
} else if ((1 << 14) <= assignVal && assignVal < 999999) {
bb..appendBits(6, 3)..appendBits(assignVal, 21);
} else
throw ArgumentError('ECI assignment value out of range');
return _QrSegment(kMode[_ModeEnum.eci], 0, bb.bits);
}
// Returns a copy of all bits, which is an array of 0s and 1s.
List<int> get bits => List<int>.from(bitData);
/*
* Returns a mutable list of zero or more segments to represent the given Unicode text string.
* The result may use various segment modes and switch modes to optimize the length of the bit stream.
*/
static List<_QrSegment> makeSegments(String text) {
// Select the most efficient segment encoding automatically
if (text == '')
return <_QrSegment>[];
else if (text.contains(kNumericRegEx))
return <_QrSegment>[new _QrSegment.makeNumeric(text)];
else if (text.contains(kAlphanumericRegex))
return <_QrSegment>[new _QrSegment.makeAlphanumeric(text)];
else
return <_QrSegment>[new _QrSegment.makeBytes(_toUtf8ByteArray(text))];
}
// Package-private helper function.
static int getTotalBits(List<_QrSegment> segs, int version) {
if (version < 1 || version > 40)
throw ArgumentError('Version number out of range');
int result = 0;
for (int i = 0; i < segs.length; i++) {
_QrSegment seg = segs[i];
int ccbits = seg.mode.numCharCountBits(version);
// Fail if segment length value doesn't fit in the length field's bit-width
if (seg.numChars >= (1 << ccbits)) {
return -1;
}
result += 4 + ccbits + seg.bits.length;
}
return result;
}
/*---- Constants for QrSegment ----*/
// (Public) Can test whether a string is encodable in numeric mode (such as by using QrSegment.makeNumeric()).
static final RegExp kNumericRegEx = RegExp(r'/^[0-9]*\$/');
// (Public) Can test whether a string is encodable in alphanumeric mode (such as by using QrSegment.makeAlphanumeric()).
static final RegExp kAlphanumericRegex =
RegExp('r/^[A-Z0-9 \$%*+.\/:-]*\$/');
// (Private) The set of all legal characters in alphanumeric mode, where each character value maps to the index in the string.
static const String kAlphanumericCharset =
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ \$%*+-./:';
/*---- Public helper enumeration ----*/
/*
* Represents the mode field of a segment. Immutable.
*/
static final Map<_ModeEnum, _Mode> kMode = <_ModeEnum, _Mode>{
// Constants
_ModeEnum.numeric: _Mode(0x1, <int>[10, 12, 14]),
_ModeEnum.alphanumeric: _Mode(0x2, <int>[9, 11, 13]),
_ModeEnum.byte: _Mode(0x4, <int>[8, 16, 16]),
_ModeEnum.kanji: _Mode(0x8, <int>[8, 10, 12]),
_ModeEnum.eci: _Mode(0x7, <int>[0, 0, 0]),
};
}
enum _ModeEnum {
numeric,
alphanumeric,
byte,
kanji,
eci,
}
// Private constructor.
class _Mode {
int Function(int ver) numCharCountBits;
// (Package-private) An unsigned 4-bit integer value (range 0 to 15) representing the mode indicator bits for this mode object.
final int modeBits;
_Mode(this.modeBits, List<int> ccbits) {
// (Package-private) Returns the bit width of the segment character count field for this mode object at the given version number.
numCharCountBits = (int ver) {
if (1 <= ver && ver <= 9)
return ccbits[0];
else if (10 <= ver && ver <= 26)
return ccbits[1];
else if (27 <= ver && ver <= 40)
return ccbits[2];
else
throw ArgumentError('Version number out of range');
};
}
}
/*---- Private helper functions and classes ----*/
// Returns a new array of bytes representing the given string encoded in UTF-8.
List<int> _toUtf8ByteArray(String unencodedStr) {
String str = Uri.encodeComponent(unencodedStr);
List<int> result = <int>[];
for (int i = 0; i < str.length; i++) {
if (str[i] != '%') {
result.add(str.codeUnitAt(i));
} else {
result.add(int.parse('${str[i+1]}${str[i+2]}', radix: 16));
i += 2;
}
}
return result;
}
/*
* A private helper class that computes the Reed-Solomon error correction codewords for a sequence of
* data codewords at a given degree. Objects are immutable, and the state only depends on the degree.
* This class exists because the divisor polynomial does not need to be recalculated for every input.
* This constructor creates a Reed-Solomon ECC generator for the given degree. This could be implemented
* as a lookup table over all possible parameter values, instead of as an algorithm.
*/
class _ReedSolomonGenerator {
final int degree;
// Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which
// is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
final List<int> coefficients = <int>[];
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
// drop the highest term, and store the rest of the coefficients in order of descending powers.
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
int root = 1;
_ReedSolomonGenerator(this.degree) {
if (degree < 1 || degree > 255)
throw ArgumentError('Degree out of range');
// Start with the monomial x^0
for (int i = 0; i < degree - 1; i++) {
coefficients.add(0);
}
coefficients.add(1);
for (int i = 0; i < degree; i++) {
// Multiply the current product by (x - r^i)
for (int j = 0; j < coefficients.length; j++) {
coefficients[j] = multiply(coefficients[j], root);
if (j + 1 < coefficients.length) {
coefficients[j] ^= coefficients[j + 1];
}
}
root = multiply(root, 0x02);
}
}
// Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords.
// The returned object is always a new byte array. This method does not alter this object's state (because it is immutable).
List<int> getRemainder(List<int> data) {
// Compute the remainder by performing polynomial division
List<int> result = coefficients.map((_) {
return 0;
}).toList();
for (int b in data) {
int factor = b ^ result[0];
result
..removeAt(0)
..add(0);
for (int i = 0; i < result.length; i++) {
result[i] ^= multiply(coefficients[i], factor);
}
}
return result;
}
// This static function returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and
// result are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
static int multiply(int x, int y) {
if (x >> 8 != 0 || y >> 8 != 0)
throw ArgumentError('Byte out of range');
// Russian peasant multiplication
int z = 0;
for (int i = 7; i >= 0; i--) {
z = (z << 1) ^ ((z >> 7) * 0x11D);
z ^= ((y >> i) & 1) * x;
}
assert(z >> 8 == 0);
return z;
}
}
/// A private helper class that represents an appendable sequence of bits.
/// This constructor creates an empty bit buffer (length 0).
class _BitBuffer {
// Array of bits; each item is the integer 0 or 1
final List<int> bitData = <int>[];
// Returns the number of bits in the buffer, which is a non-negative value.
int get bitLength => bitData.length;
// Returns a copy of all bits.
List<int> get bits => List<int>.from(bitData);
// Returns a copy of all bytes, padding up to the nearest byte.
List<int> get bytes {
List<int> result = <int>[];
int numBytes = (bitData.length / 8).ceil();
for (int i = 0; i < numBytes; i++) {
result.add(0);
}
int i = 0;
for (int bit in bitData) {
result[i >> 3] |= bit << (7 - (i & 7));
i++;
}
return result;
}
// Appends the given number of bits of the given value to this sequence.
// If 0 <= len <= 31, then this requires 0 <= val < 2^len.
void appendBits(int val, int len) {
if (len < 0 || len > 32 || len < 32 && (val >> len) != 0)
throw ArgumentError('Value out of range');
for (int i = len - 1; i >= 0; i--) // Append bit by bit
bitData.add((val >> i) & 1);
}
// Appends the bit data of the given segment to this bit buffer.
void appendData(_QrSegment seg) => bitData.addAll(seg.bits);
}