| /* ****************************************************************** |
| * hist : Histogram functions |
| * part of Finite State Entropy project |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * |
| * You can contact the author at : |
| * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| /* --- dependencies --- */ |
| #include "../common/mem.h" /* U32, BYTE, etc. */ |
| #include "../common/debug.h" /* assert, DEBUGLOG */ |
| #include "../common/error_private.h" /* ERROR */ |
| #include "hist.h" |
| |
| #if defined(ZSTD_ARCH_ARM_SVE2) |
| #define HIST_FAST_THRESHOLD 500 |
| #else |
| #define HIST_FAST_THRESHOLD 1500 |
| #endif |
| |
| |
| /* --- Error management --- */ |
| unsigned HIST_isError(size_t code) { return ERR_isError(code); } |
| |
| /*-************************************************************** |
| * Histogram functions |
| ****************************************************************/ |
| void HIST_add(unsigned* count, const void* src, size_t srcSize) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| const BYTE* const end = ip + srcSize; |
| |
| while (ip<end) { |
| count[*ip++]++; |
| } |
| } |
| |
| unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* src, size_t srcSize) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| const BYTE* const end = ip + srcSize; |
| unsigned maxSymbolValue = *maxSymbolValuePtr; |
| unsigned largestCount=0; |
| |
| ZSTD_memset(count, 0, (maxSymbolValue+1) * sizeof(*count)); |
| if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; } |
| |
| while (ip<end) { |
| assert(*ip <= maxSymbolValue); |
| count[*ip++]++; |
| } |
| |
| while (!count[maxSymbolValue]) maxSymbolValue--; |
| *maxSymbolValuePtr = maxSymbolValue; |
| |
| { U32 s; |
| for (s=0; s<=maxSymbolValue; s++) |
| if (count[s] > largestCount) largestCount = count[s]; |
| } |
| |
| return largestCount; |
| } |
| |
| typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e; |
| |
| #if defined(ZSTD_ARCH_ARM_SVE2) |
| FORCE_INLINE_TEMPLATE size_t min_size(size_t a, size_t b) { return a < b ? a : b; } |
| |
| static |
| svuint16_t HIST_count_6_sve2(const BYTE* const src, size_t size, U32* const dst, |
| const svuint8_t c0, const svuint8_t c1, |
| const svuint8_t c2, const svuint8_t c3, |
| const svuint8_t c4, const svuint8_t c5, |
| const svuint16_t histmax, size_t maxCount) |
| { |
| const svbool_t vl128 = svptrue_pat_b8(SV_VL16); |
| svuint16_t hh0 = svdup_n_u16(0); |
| svuint16_t hh1 = svdup_n_u16(0); |
| svuint16_t hh2 = svdup_n_u16(0); |
| svuint16_t hh3 = svdup_n_u16(0); |
| svuint16_t hh4 = svdup_n_u16(0); |
| svuint16_t hh5 = svdup_n_u16(0); |
| svuint16_t hh6 = svdup_n_u16(0); |
| svuint16_t hh7 = svdup_n_u16(0); |
| svuint16_t hh8 = svdup_n_u16(0); |
| svuint16_t hh9 = svdup_n_u16(0); |
| svuint16_t hha = svdup_n_u16(0); |
| svuint16_t hhb = svdup_n_u16(0); |
| |
| size_t i = 0; |
| while (i < size) { |
| /* We can only accumulate 15 (15 * 16 <= 255) iterations of histogram |
| * in 8-bit accumulators! */ |
| const size_t size240 = min_size(i + 240, size); |
| |
| svbool_t pred = svwhilelt_b8_u64(i, size); |
| svuint8_t c = svld1rq_u8(pred, src + i); |
| svuint8_t h0 = svhistseg_u8(c0, c); |
| svuint8_t h1 = svhistseg_u8(c1, c); |
| svuint8_t h2 = svhistseg_u8(c2, c); |
| svuint8_t h3 = svhistseg_u8(c3, c); |
| svuint8_t h4 = svhistseg_u8(c4, c); |
| svuint8_t h5 = svhistseg_u8(c5, c); |
| |
| for (i += 16; i < size240; i += 16) { |
| pred = svwhilelt_b8_u64(i, size); |
| c = svld1rq_u8(pred, src + i); |
| h0 = svadd_u8_x(vl128, h0, svhistseg_u8(c0, c)); |
| h1 = svadd_u8_x(vl128, h1, svhistseg_u8(c1, c)); |
| h2 = svadd_u8_x(vl128, h2, svhistseg_u8(c2, c)); |
| h3 = svadd_u8_x(vl128, h3, svhistseg_u8(c3, c)); |
| h4 = svadd_u8_x(vl128, h4, svhistseg_u8(c4, c)); |
| h5 = svadd_u8_x(vl128, h5, svhistseg_u8(c5, c)); |
| } |
| |
| hh0 = svaddwb_u16(hh0, h0); |
| hh1 = svaddwt_u16(hh1, h0); |
| hh2 = svaddwb_u16(hh2, h1); |
| hh3 = svaddwt_u16(hh3, h1); |
| hh4 = svaddwb_u16(hh4, h2); |
| hh5 = svaddwt_u16(hh5, h2); |
| hh6 = svaddwb_u16(hh6, h3); |
| hh7 = svaddwt_u16(hh7, h3); |
| hh8 = svaddwb_u16(hh8, h4); |
| hh9 = svaddwt_u16(hh9, h4); |
| hha = svaddwb_u16(hha, h5); |
| hhb = svaddwt_u16(hhb, h5); |
| } |
| |
| svst1_u32(svwhilelt_b32_u64( 0, maxCount), dst + 0, svshllb_n_u32(hh0, 0)); |
| svst1_u32(svwhilelt_b32_u64( 4, maxCount), dst + 4, svshllt_n_u32(hh0, 0)); |
| svst1_u32(svwhilelt_b32_u64( 8, maxCount), dst + 8, svshllb_n_u32(hh1, 0)); |
| svst1_u32(svwhilelt_b32_u64(12, maxCount), dst + 12, svshllt_n_u32(hh1, 0)); |
| svst1_u32(svwhilelt_b32_u64(16, maxCount), dst + 16, svshllb_n_u32(hh2, 0)); |
| svst1_u32(svwhilelt_b32_u64(20, maxCount), dst + 20, svshllt_n_u32(hh2, 0)); |
| svst1_u32(svwhilelt_b32_u64(24, maxCount), dst + 24, svshllb_n_u32(hh3, 0)); |
| svst1_u32(svwhilelt_b32_u64(28, maxCount), dst + 28, svshllt_n_u32(hh3, 0)); |
| svst1_u32(svwhilelt_b32_u64(32, maxCount), dst + 32, svshllb_n_u32(hh4, 0)); |
| svst1_u32(svwhilelt_b32_u64(36, maxCount), dst + 36, svshllt_n_u32(hh4, 0)); |
| svst1_u32(svwhilelt_b32_u64(40, maxCount), dst + 40, svshllb_n_u32(hh5, 0)); |
| svst1_u32(svwhilelt_b32_u64(44, maxCount), dst + 44, svshllt_n_u32(hh5, 0)); |
| svst1_u32(svwhilelt_b32_u64(48, maxCount), dst + 48, svshllb_n_u32(hh6, 0)); |
| svst1_u32(svwhilelt_b32_u64(52, maxCount), dst + 52, svshllt_n_u32(hh6, 0)); |
| svst1_u32(svwhilelt_b32_u64(56, maxCount), dst + 56, svshllb_n_u32(hh7, 0)); |
| svst1_u32(svwhilelt_b32_u64(60, maxCount), dst + 60, svshllt_n_u32(hh7, 0)); |
| svst1_u32(svwhilelt_b32_u64(64, maxCount), dst + 64, svshllb_n_u32(hh8, 0)); |
| svst1_u32(svwhilelt_b32_u64(68, maxCount), dst + 68, svshllt_n_u32(hh8, 0)); |
| svst1_u32(svwhilelt_b32_u64(72, maxCount), dst + 72, svshllb_n_u32(hh9, 0)); |
| svst1_u32(svwhilelt_b32_u64(76, maxCount), dst + 76, svshllt_n_u32(hh9, 0)); |
| svst1_u32(svwhilelt_b32_u64(80, maxCount), dst + 80, svshllb_n_u32(hha, 0)); |
| svst1_u32(svwhilelt_b32_u64(84, maxCount), dst + 84, svshllt_n_u32(hha, 0)); |
| svst1_u32(svwhilelt_b32_u64(88, maxCount), dst + 88, svshllb_n_u32(hhb, 0)); |
| svst1_u32(svwhilelt_b32_u64(92, maxCount), dst + 92, svshllt_n_u32(hhb, 0)); |
| |
| hh0 = svmax_u16_x(vl128, hh0, hh1); |
| hh2 = svmax_u16_x(vl128, hh2, hh3); |
| hh4 = svmax_u16_x(vl128, hh4, hh5); |
| hh6 = svmax_u16_x(vl128, hh6, hh7); |
| hh8 = svmax_u16_x(vl128, hh8, hh9); |
| hha = svmax_u16_x(vl128, hha, hhb); |
| hh0 = svmax_u16_x(vl128, hh0, hh2); |
| hh4 = svmax_u16_x(vl128, hh4, hh6); |
| hh8 = svmax_u16_x(vl128, hh8, hha); |
| hh0 = svmax_u16_x(vl128, hh0, hh4); |
| hh8 = svmax_u16_x(vl128, hh8, histmax); |
| return svmax_u16_x(vl128, hh0, hh8); |
| } |
| |
| static size_t HIST_count_sve2(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* source, size_t sourceSize, |
| HIST_checkInput_e check) |
| { |
| const BYTE* ip = (const BYTE*)source; |
| const size_t maxCount = *maxSymbolValuePtr + 1; |
| |
| assert(*maxSymbolValuePtr <= 255); |
| if (!sourceSize) { |
| ZSTD_memset(count, 0, maxCount * sizeof(*count)); |
| *maxSymbolValuePtr = 0; |
| return 0; |
| } |
| |
| { const svbool_t vl128 = svptrue_pat_b8(SV_VL16); |
| const svuint8_t c0 = svreinterpret_u8(svindex_u32(0x0C040800, 0x01010101)); |
| const svuint8_t c1 = svadd_n_u8_x(vl128, c0, 16); |
| const svuint8_t c2 = svadd_n_u8_x(vl128, c0, 32); |
| const svuint8_t c3 = svadd_n_u8_x(vl128, c1, 32); |
| |
| svuint8_t symbolMax = svdup_n_u8(0); |
| svuint16_t hh0 = svdup_n_u16(0); |
| svuint16_t hh1 = svdup_n_u16(0); |
| svuint16_t hh2 = svdup_n_u16(0); |
| svuint16_t hh3 = svdup_n_u16(0); |
| svuint16_t hh4 = svdup_n_u16(0); |
| svuint16_t hh5 = svdup_n_u16(0); |
| svuint16_t hh6 = svdup_n_u16(0); |
| svuint16_t hh7 = svdup_n_u16(0); |
| svuint16_t max; |
| size_t maxSymbolValue; |
| |
| size_t i = 0; |
| while (i < sourceSize) { |
| /* We can only accumulate 15 (15 * 16 <= 255) iterations of |
| * histogram in 8-bit accumulators! */ |
| const size_t size240 = min_size(i + 240, sourceSize); |
| |
| svbool_t pred = svwhilelt_b8_u64(i, sourceSize); |
| svuint8_t c = svld1rq_u8(pred, ip + i); |
| svuint8_t h0 = svhistseg_u8(c0, c); |
| svuint8_t h1 = svhistseg_u8(c1, c); |
| svuint8_t h2 = svhistseg_u8(c2, c); |
| svuint8_t h3 = svhistseg_u8(c3, c); |
| symbolMax = svmax_u8_x(vl128, symbolMax, c); |
| |
| for (i += 16; i < size240; i += 16) { |
| pred = svwhilelt_b8_u64(i, sourceSize); |
| c = svld1rq_u8(pred, ip + i); |
| h0 = svadd_u8_x(vl128, h0, svhistseg_u8(c0, c)); |
| h1 = svadd_u8_x(vl128, h1, svhistseg_u8(c1, c)); |
| h2 = svadd_u8_x(vl128, h2, svhistseg_u8(c2, c)); |
| h3 = svadd_u8_x(vl128, h3, svhistseg_u8(c3, c)); |
| symbolMax = svmax_u8_x(vl128, symbolMax, c); |
| } |
| |
| hh0 = svaddwb_u16(hh0, h0); |
| hh1 = svaddwt_u16(hh1, h0); |
| hh2 = svaddwb_u16(hh2, h1); |
| hh3 = svaddwt_u16(hh3, h1); |
| hh4 = svaddwb_u16(hh4, h2); |
| hh5 = svaddwt_u16(hh5, h2); |
| hh6 = svaddwb_u16(hh6, h3); |
| hh7 = svaddwt_u16(hh7, h3); |
| } |
| maxSymbolValue = svmaxv_u8(vl128, symbolMax); |
| |
| if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall); |
| *maxSymbolValuePtr = maxSymbolValue; |
| |
| /* If the buffer size is not divisible by 16, the last elements of the final |
| * vector register read will be zeros, and these elements must be subtracted |
| * from the histogram. |
| */ |
| hh0 = svsub_n_u16_m(svptrue_pat_b32(SV_VL1), hh0, -sourceSize & 15); |
| |
| svst1_u32(svwhilelt_b32_u64( 0, maxCount), count + 0, svshllb_n_u32(hh0, 0)); |
| svst1_u32(svwhilelt_b32_u64( 4, maxCount), count + 4, svshllt_n_u32(hh0, 0)); |
| svst1_u32(svwhilelt_b32_u64( 8, maxCount), count + 8, svshllb_n_u32(hh1, 0)); |
| svst1_u32(svwhilelt_b32_u64(12, maxCount), count + 12, svshllt_n_u32(hh1, 0)); |
| svst1_u32(svwhilelt_b32_u64(16, maxCount), count + 16, svshllb_n_u32(hh2, 0)); |
| svst1_u32(svwhilelt_b32_u64(20, maxCount), count + 20, svshllt_n_u32(hh2, 0)); |
| svst1_u32(svwhilelt_b32_u64(24, maxCount), count + 24, svshllb_n_u32(hh3, 0)); |
| svst1_u32(svwhilelt_b32_u64(28, maxCount), count + 28, svshllt_n_u32(hh3, 0)); |
| svst1_u32(svwhilelt_b32_u64(32, maxCount), count + 32, svshllb_n_u32(hh4, 0)); |
| svst1_u32(svwhilelt_b32_u64(36, maxCount), count + 36, svshllt_n_u32(hh4, 0)); |
| svst1_u32(svwhilelt_b32_u64(40, maxCount), count + 40, svshllb_n_u32(hh5, 0)); |
| svst1_u32(svwhilelt_b32_u64(44, maxCount), count + 44, svshllt_n_u32(hh5, 0)); |
| svst1_u32(svwhilelt_b32_u64(48, maxCount), count + 48, svshllb_n_u32(hh6, 0)); |
| svst1_u32(svwhilelt_b32_u64(52, maxCount), count + 52, svshllt_n_u32(hh6, 0)); |
| svst1_u32(svwhilelt_b32_u64(56, maxCount), count + 56, svshllb_n_u32(hh7, 0)); |
| svst1_u32(svwhilelt_b32_u64(60, maxCount), count + 60, svshllt_n_u32(hh7, 0)); |
| |
| hh0 = svmax_u16_x(vl128, hh0, hh1); |
| hh2 = svmax_u16_x(vl128, hh2, hh3); |
| hh4 = svmax_u16_x(vl128, hh4, hh5); |
| hh6 = svmax_u16_x(vl128, hh6, hh7); |
| hh0 = svmax_u16_x(vl128, hh0, hh2); |
| hh4 = svmax_u16_x(vl128, hh4, hh6); |
| max = svmax_u16_x(vl128, hh0, hh4); |
| |
| maxSymbolValue = min_size(maxSymbolValue, maxCount); |
| if (maxSymbolValue >= 64) { |
| const svuint8_t c4 = svadd_n_u8_x(vl128, c0, 64); |
| const svuint8_t c5 = svadd_n_u8_x(vl128, c1, 64); |
| const svuint8_t c6 = svadd_n_u8_x(vl128, c2, 64); |
| const svuint8_t c7 = svadd_n_u8_x(vl128, c3, 64); |
| const svuint8_t c8 = svadd_n_u8_x(vl128, c0, 128); |
| const svuint8_t c9 = svadd_n_u8_x(vl128, c1, 128); |
| |
| max = HIST_count_6_sve2(ip, sourceSize, count + 64, c4, c5, c6, c7, |
| c8, c9, max, maxCount - 64); |
| |
| if (maxSymbolValue >= 160) { |
| const svuint8_t ca = svadd_n_u8_x(vl128, c2, 128); |
| const svuint8_t cb = svadd_n_u8_x(vl128, c3, 128); |
| const svuint8_t cc = svadd_n_u8_x(vl128, c4, 128); |
| const svuint8_t cd = svadd_n_u8_x(vl128, c5, 128); |
| const svuint8_t ce = svadd_n_u8_x(vl128, c6, 128); |
| const svuint8_t cf = svadd_n_u8_x(vl128, c7, 128); |
| |
| max = HIST_count_6_sve2(ip, sourceSize, count + 160, ca, cb, cc, |
| cd, ce, cf, max, maxCount - 160); |
| } else if (maxCount > 160) { |
| ZSTD_memset(count + 160, 0, (maxCount - 160) * sizeof(*count)); |
| } |
| } else if (maxCount > 64) { |
| ZSTD_memset(count + 64, 0, (maxCount - 64) * sizeof(*count)); |
| } |
| |
| return svmaxv_u16(vl128, max); |
| } |
| } |
| #endif |
| |
| /* HIST_count_parallel_wksp() : |
| * store histogram into 4 intermediate tables, recombined at the end. |
| * this design makes better use of OoO cpus, |
| * and is noticeably faster when some values are heavily repeated. |
| * But it needs some additional workspace for intermediate tables. |
| * `workSpace` must be a U32 table of size >= HIST_WKSP_SIZE_U32. |
| * @return : largest histogram frequency, |
| * or an error code (notably when histogram's alphabet is larger than *maxSymbolValuePtr) */ |
| static UNUSED_ATTR |
| size_t HIST_count_parallel_wksp(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* source, size_t sourceSize, |
| HIST_checkInput_e check, |
| U32* const workSpace) |
| { |
| const BYTE* ip = (const BYTE*)source; |
| const BYTE* const iend = ip+sourceSize; |
| size_t const countSize = (*maxSymbolValuePtr + 1) * sizeof(*count); |
| unsigned max=0; |
| U32* const Counting1 = workSpace; |
| U32* const Counting2 = Counting1 + 256; |
| U32* const Counting3 = Counting2 + 256; |
| U32* const Counting4 = Counting3 + 256; |
| |
| /* safety checks */ |
| assert(*maxSymbolValuePtr <= 255); |
| if (!sourceSize) { |
| ZSTD_memset(count, 0, countSize); |
| *maxSymbolValuePtr = 0; |
| return 0; |
| } |
| ZSTD_memset(workSpace, 0, 4*256*sizeof(unsigned)); |
| |
| /* by stripes of 16 bytes */ |
| { U32 cached = MEM_read32(ip); ip += 4; |
| while (ip < iend-15) { |
| U32 c = cached; cached = MEM_read32(ip); ip += 4; |
| Counting1[(BYTE) c ]++; |
| Counting2[(BYTE)(c>>8) ]++; |
| Counting3[(BYTE)(c>>16)]++; |
| Counting4[ c>>24 ]++; |
| c = cached; cached = MEM_read32(ip); ip += 4; |
| Counting1[(BYTE) c ]++; |
| Counting2[(BYTE)(c>>8) ]++; |
| Counting3[(BYTE)(c>>16)]++; |
| Counting4[ c>>24 ]++; |
| c = cached; cached = MEM_read32(ip); ip += 4; |
| Counting1[(BYTE) c ]++; |
| Counting2[(BYTE)(c>>8) ]++; |
| Counting3[(BYTE)(c>>16)]++; |
| Counting4[ c>>24 ]++; |
| c = cached; cached = MEM_read32(ip); ip += 4; |
| Counting1[(BYTE) c ]++; |
| Counting2[(BYTE)(c>>8) ]++; |
| Counting3[(BYTE)(c>>16)]++; |
| Counting4[ c>>24 ]++; |
| } |
| ip-=4; |
| } |
| |
| /* finish last symbols */ |
| while (ip<iend) Counting1[*ip++]++; |
| |
| { U32 s; |
| for (s=0; s<256; s++) { |
| Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s]; |
| if (Counting1[s] > max) max = Counting1[s]; |
| } } |
| |
| { unsigned maxSymbolValue = 255; |
| while (!Counting1[maxSymbolValue]) maxSymbolValue--; |
| if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall); |
| *maxSymbolValuePtr = maxSymbolValue; |
| ZSTD_memmove(count, Counting1, countSize); /* in case count & Counting1 are overlapping */ |
| } |
| return (size_t)max; |
| } |
| |
| /* HIST_countFast_wksp() : |
| * Same as HIST_countFast(), but using an externally provided scratch buffer. |
| * `workSpace` is a writable buffer which must be 4-bytes aligned, |
| * `workSpaceSize` must be >= HIST_WKSP_SIZE |
| */ |
| size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* source, size_t sourceSize, |
| void* workSpace, size_t workSpaceSize) |
| { |
| if (sourceSize < HIST_FAST_THRESHOLD) /* heuristic threshold */ |
| return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize); |
| #if defined(ZSTD_ARCH_ARM_SVE2) |
| (void)workSpace; |
| (void)workSpaceSize; |
| return HIST_count_sve2(count, maxSymbolValuePtr, source, sourceSize, trustInput); |
| #else |
| if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ |
| if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall); |
| return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace); |
| #endif |
| } |
| |
| /* HIST_count_wksp() : |
| * Same as HIST_count(), but using an externally provided scratch buffer. |
| * `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */ |
| size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* source, size_t sourceSize, |
| void* workSpace, size_t workSpaceSize) |
| { |
| #if defined(ZSTD_ARCH_ARM_SVE2) |
| if (*maxSymbolValuePtr < 255) |
| return HIST_count_sve2(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue); |
| #else |
| if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ |
| if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall); |
| if (*maxSymbolValuePtr < 255) |
| return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace); |
| #endif |
| *maxSymbolValuePtr = 255; |
| return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize); |
| } |
| |
| #ifndef ZSTD_NO_UNUSED_FUNCTIONS |
| /* fast variant (unsafe : won't check if src contains values beyond count[] limit) */ |
| size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* source, size_t sourceSize) |
| { |
| unsigned tmpCounters[HIST_WKSP_SIZE_U32]; |
| return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters)); |
| } |
| |
| size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr, |
| const void* src, size_t srcSize) |
| { |
| unsigned tmpCounters[HIST_WKSP_SIZE_U32]; |
| return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters)); |
| } |
| #endif |