blob: 085adfbac50761ad7d73252559d1a86ccef83a68 [file] [log] [blame]
/*
* Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003-2009, 2012, 2016 Apple Inc. All rights reserved.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
* Copyright (C) 2007 Maks Orlovich
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "JSGlobalObjectFunctions.h"
#include "CallFrame.h"
#include "Interpreter.h"
#include "JSFunction.h"
#include "JSGlobalObject.h"
#include "JSString.h"
#include "JSStringBuilder.h"
#include "Lexer.h"
#include "LiteralParser.h"
#include "Nodes.h"
#include "JSCInlines.h"
#include "Parser.h"
#include "StackVisitor.h"
#include <wtf/dtoa.h>
#include <stdio.h>
#include <stdlib.h>
#include <wtf/ASCIICType.h>
#include <wtf/Assertions.h>
#include <wtf/HexNumber.h>
#include <wtf/MathExtras.h>
#include <wtf/StringExtras.h>
#include <wtf/text/StringBuilder.h>
#include <wtf/unicode/UTF8.h>
using namespace WTF;
using namespace Unicode;
namespace JSC {
template<typename CallbackWhenNoException>
static ALWAYS_INLINE typename std::result_of<CallbackWhenNoException(JSString::SafeView&)>::type toSafeView(ExecState* exec, JSValue value, CallbackWhenNoException callback)
{
JSString* string = value.toStringOrNull(exec);
if (UNLIKELY(!string))
return { };
JSString::SafeView view = string->view(exec);
return callback(view);
}
template<unsigned charactersCount>
static Bitmap<256> makeCharacterBitmap(const char (&characters)[charactersCount])
{
static_assert(charactersCount > 0, "Since string literal is null terminated, characterCount is always larger than 0");
Bitmap<256> bitmap;
for (unsigned i = 0; i < charactersCount - 1; ++i)
bitmap.set(characters[i]);
return bitmap;
}
template<typename CharacterType>
static JSValue encode(ExecState* exec, const Bitmap<256>& doNotEscape, const CharacterType* characters, unsigned length)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
// 18.2.6.1.1 Runtime Semantics: Encode ( string, unescapedSet )
// https://tc39.github.io/ecma262/#sec-encode
auto throwException = [&scope, exec] {
return JSC::throwException(exec, scope, createURIError(exec, ASCIILiteral("String contained an illegal UTF-16 sequence.")));
};
StringBuilder builder;
builder.reserveCapacity(length);
// 4. Repeat
auto* end = characters + length;
for (auto* cursor = characters; cursor != end; ++cursor) {
auto character = *cursor;
// 4-c. If C is in unescapedSet, then
if (character < doNotEscape.size() && doNotEscape.get(character)) {
// 4-c-i. Let S be a String containing only the code unit C.
// 4-c-ii. Let R be a new String value computed by concatenating the previous value of R and S.
builder.append(static_cast<LChar>(character));
continue;
}
// 4-d-i. If the code unit value of C is not less than 0xDC00 and not greater than 0xDFFF, throw a URIError exception.
if (U16_IS_TRAIL(character))
return throwException();
// 4-d-ii. If the code unit value of C is less than 0xD800 or greater than 0xDBFF, then
// 4-d-ii-1. Let V be the code unit value of C.
UChar32 codePoint;
if (!U16_IS_LEAD(character))
codePoint = character;
else {
// 4-d-iii. Else,
// 4-d-iii-1. Increase k by 1.
++cursor;
// 4-d-iii-2. If k equals strLen, throw a URIError exception.
if (cursor == end)
return throwException();
// 4-d-iii-3. Let kChar be the code unit value of the code unit at index k within string.
auto trail = *cursor;
// 4-d-iii-4. If kChar is less than 0xDC00 or greater than 0xDFFF, throw a URIError exception.
if (!U16_IS_TRAIL(trail))
return throwException();
// 4-d-iii-5. Let V be UTF16Decode(C, kChar).
codePoint = U16_GET_SUPPLEMENTARY(character, trail);
}
// 4-d-iv. Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and let L be the array size.
LChar utf8OctetsBuffer[U8_MAX_LENGTH];
unsigned utf8Length = 0;
// We can use U8_APPEND_UNSAFE here since codePoint is either
// 1. non surrogate one, correct code point.
// 2. correct code point generated from validated lead and trail surrogates.
U8_APPEND_UNSAFE(utf8OctetsBuffer, utf8Length, codePoint);
// 4-d-v. Let j be 0.
// 4-d-vi. Repeat, while j < L
for (unsigned index = 0; index < utf8Length; ++index) {
// 4-d-vi-1. Let jOctet be the value at index j within Octets.
// 4-d-vi-2. Let S be a String containing three code units "%XY" where XY are two uppercase hexadecimal digits encoding the value of jOctet.
// 4-d-vi-3. Let R be a new String value computed by concatenating the previous value of R and S.
builder.append(static_cast<LChar>('%'));
appendByteAsHex(utf8OctetsBuffer[index], builder);
}
}
return jsString(exec, builder.toString());
}
static JSValue encode(ExecState* exec, const Bitmap<256>& doNotEscape)
{
return toSafeView(exec, exec->argument(0), [&] (JSString::SafeView& view) {
if (view.is8Bit())
return encode(exec, doNotEscape, view.characters8(), view.length());
return encode(exec, doNotEscape, view.characters16(), view.length());
});
}
template <typename CharType>
ALWAYS_INLINE
static JSValue decode(ExecState* exec, const CharType* characters, int length, const Bitmap<256>& doNotUnescape, bool strict)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
JSStringBuilder builder;
int k = 0;
UChar u = 0;
while (k < length) {
const CharType* p = characters + k;
CharType c = *p;
if (c == '%') {
int charLen = 0;
if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) {
const char b0 = Lexer<CharType>::convertHex(p[1], p[2]);
const int sequenceLen = UTF8SequenceLength(b0);
if (sequenceLen && k <= length - sequenceLen * 3) {
charLen = sequenceLen * 3;
char sequence[5];
sequence[0] = b0;
for (int i = 1; i < sequenceLen; ++i) {
const CharType* q = p + i * 3;
if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2]))
sequence[i] = Lexer<CharType>::convertHex(q[1], q[2]);
else {
charLen = 0;
break;
}
}
if (charLen != 0) {
sequence[sequenceLen] = 0;
const int character = decodeUTF8Sequence(sequence);
if (character < 0 || character >= 0x110000)
charLen = 0;
else if (character >= 0x10000) {
// Convert to surrogate pair.
builder.append(static_cast<UChar>(0xD800 | ((character - 0x10000) >> 10)));
u = static_cast<UChar>(0xDC00 | ((character - 0x10000) & 0x3FF));
} else
u = static_cast<UChar>(character);
}
}
}
if (charLen == 0) {
if (strict)
return throwException(exec, scope, createURIError(exec, ASCIILiteral("URI error")));
// The only case where we don't use "strict" mode is the "unescape" function.
// For that, it's good to support the wonky "%u" syntax for compatibility with WinIE.
if (k <= length - 6 && p[1] == 'u'
&& isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3])
&& isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) {
charLen = 6;
u = Lexer<UChar>::convertUnicode(p[2], p[3], p[4], p[5]);
}
}
if (charLen && (u >= 128 || !doNotUnescape.get(static_cast<LChar>(u)))) {
builder.append(u);
k += charLen;
continue;
}
}
k++;
builder.append(c);
}
return builder.build(exec);
}
static JSValue decode(ExecState* exec, const Bitmap<256>& doNotUnescape, bool strict)
{
return toSafeView(exec, exec->argument(0), [&] (JSString::SafeView& view) {
if (view.is8Bit())
return decode(exec, view.characters8(), view.length(), doNotUnescape, strict);
return decode(exec, view.characters16(), view.length(), doNotUnescape, strict);
});
}
bool isStrWhiteSpace(UChar c)
{
switch (c) {
// ECMA-262-5th 7.2 & 7.3
case 0x0009:
case 0x000A:
case 0x000B:
case 0x000C:
case 0x000D:
case 0x0020:
case 0x00A0:
case 0x180E: // This character used to be in Zs category before Unicode 6.3, and EcmaScript says that we should keep treating it as such.
case 0x2028:
case 0x2029:
case 0xFEFF:
return true;
default:
return c > 0xFF && u_charType(c) == U_SPACE_SEPARATOR;
}
}
static int parseDigit(unsigned short c, int radix)
{
int digit = -1;
if (c >= '0' && c <= '9')
digit = c - '0';
else if (c >= 'A' && c <= 'Z')
digit = c - 'A' + 10;
else if (c >= 'a' && c <= 'z')
digit = c - 'a' + 10;
if (digit >= radix)
return -1;
return digit;
}
double parseIntOverflow(const LChar* s, unsigned length, int radix)
{
double number = 0.0;
double radixMultiplier = 1.0;
for (const LChar* p = s + length - 1; p >= s; p--) {
if (radixMultiplier == std::numeric_limits<double>::infinity()) {
if (*p != '0') {
number = std::numeric_limits<double>::infinity();
break;
}
} else {
int digit = parseDigit(*p, radix);
number += digit * radixMultiplier;
}
radixMultiplier *= radix;
}
return number;
}
static double parseIntOverflow(const UChar* s, unsigned length, int radix)
{
double number = 0.0;
double radixMultiplier = 1.0;
for (const UChar* p = s + length - 1; p >= s; p--) {
if (radixMultiplier == std::numeric_limits<double>::infinity()) {
if (*p != '0') {
number = std::numeric_limits<double>::infinity();
break;
}
} else {
int digit = parseDigit(*p, radix);
number += digit * radixMultiplier;
}
radixMultiplier *= radix;
}
return number;
}
static double parseIntOverflow(StringView string, int radix)
{
if (string.is8Bit())
return parseIntOverflow(string.characters8(), string.length(), radix);
return parseIntOverflow(string.characters16(), string.length(), radix);
}
// ES5.1 15.1.2.2
template <typename CharType>
ALWAYS_INLINE
static double parseInt(StringView s, const CharType* data, int radix)
{
// 1. Let inputString be ToString(string).
// 2. Let S be a newly created substring of inputString consisting of the first character that is not a
// StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white
// space.) If inputString does not contain any such characters, let S be the empty string.
int length = s.length();
int p = 0;
while (p < length && isStrWhiteSpace(data[p]))
++p;
// 3. Let sign be 1.
// 4. If S is not empty and the first character of S is a minus sign -, let sign be -1.
// 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S.
double sign = 1;
if (p < length) {
if (data[p] == '+')
++p;
else if (data[p] == '-') {
sign = -1;
++p;
}
}
// 6. Let R = ToInt32(radix).
// 7. Let stripPrefix be true.
// 8. If R != 0,then
// b. If R != 16, let stripPrefix be false.
// 9. Else, R == 0
// a. LetR = 10.
// 10. If stripPrefix is true, then
// a. If the length of S is at least 2 and the first two characters of S are either ―0x or ―0X,
// then remove the first two characters from S and let R = 16.
// 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S
// consisting of all characters before the first such character; otherwise, let Z be S.
if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) {
radix = 16;
p += 2;
} else if (radix == 0)
radix = 10;
// 8.a If R < 2 or R > 36, then return NaN.
if (radix < 2 || radix > 36)
return PNaN;
// 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters
// A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant
// digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation;
// and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the
// mathematical integer value that is represented by Z in radix-R notation.)
// 14. Let number be the Number value for mathInt.
int firstDigitPosition = p;
bool sawDigit = false;
double number = 0;
while (p < length) {
int digit = parseDigit(data[p], radix);
if (digit == -1)
break;
sawDigit = true;
number *= radix;
number += digit;
++p;
}
// 12. If Z is empty, return NaN.
if (!sawDigit)
return PNaN;
// Alternate code path for certain large numbers.
if (number >= mantissaOverflowLowerBound) {
if (radix == 10) {
size_t parsedLength;
number = parseDouble(s.substring(firstDigitPosition, p - firstDigitPosition), parsedLength);
} else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32)
number = parseIntOverflow(s.substring(firstDigitPosition, p - firstDigitPosition), radix);
}
// 15. Return sign x number.
return sign * number;
}
static double parseInt(StringView s, int radix)
{
if (s.is8Bit())
return parseInt(s, s.characters8(), radix);
return parseInt(s, s.characters16(), radix);
}
static const int SizeOfInfinity = 8;
template <typename CharType>
static bool isInfinity(const CharType* data, const CharType* end)
{
return (end - data) >= SizeOfInfinity
&& data[0] == 'I'
&& data[1] == 'n'
&& data[2] == 'f'
&& data[3] == 'i'
&& data[4] == 'n'
&& data[5] == 'i'
&& data[6] == 't'
&& data[7] == 'y';
}
// See ecma-262 6th 11.8.3
template <typename CharType>
static double jsBinaryIntegerLiteral(const CharType*& data, const CharType* end)
{
// Binary number.
data += 2;
const CharType* firstDigitPosition = data;
double number = 0;
while (true) {
number = number * 2 + (*data - '0');
++data;
if (data == end)
break;
if (!isASCIIBinaryDigit(*data))
break;
}
if (number >= mantissaOverflowLowerBound)
number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 2);
return number;
}
// See ecma-262 6th 11.8.3
template <typename CharType>
static double jsOctalIntegerLiteral(const CharType*& data, const CharType* end)
{
// Octal number.
data += 2;
const CharType* firstDigitPosition = data;
double number = 0;
while (true) {
number = number * 8 + (*data - '0');
++data;
if (data == end)
break;
if (!isASCIIOctalDigit(*data))
break;
}
if (number >= mantissaOverflowLowerBound)
number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 8);
return number;
}
// See ecma-262 6th 11.8.3
template <typename CharType>
static double jsHexIntegerLiteral(const CharType*& data, const CharType* end)
{
// Hex number.
data += 2;
const CharType* firstDigitPosition = data;
double number = 0;
while (true) {
number = number * 16 + toASCIIHexValue(*data);
++data;
if (data == end)
break;
if (!isASCIIHexDigit(*data))
break;
}
if (number >= mantissaOverflowLowerBound)
number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16);
return number;
}
// See ecma-262 6th 11.8.3
template <typename CharType>
static double jsStrDecimalLiteral(const CharType*& data, const CharType* end)
{
RELEASE_ASSERT(data < end);
size_t parsedLength;
double number = parseDouble(data, end - data, parsedLength);
if (parsedLength) {
data += parsedLength;
return number;
}
// Check for [+-]?Infinity
switch (*data) {
case 'I':
if (isInfinity(data, end)) {
data += SizeOfInfinity;
return std::numeric_limits<double>::infinity();
}
break;
case '+':
if (isInfinity(data + 1, end)) {
data += SizeOfInfinity + 1;
return std::numeric_limits<double>::infinity();
}
break;
case '-':
if (isInfinity(data + 1, end)) {
data += SizeOfInfinity + 1;
return -std::numeric_limits<double>::infinity();
}
break;
}
// Not a number.
return PNaN;
}
template <typename CharType>
static double toDouble(const CharType* characters, unsigned size)
{
const CharType* endCharacters = characters + size;
// Skip leading white space.
for (; characters < endCharacters; ++characters) {
if (!isStrWhiteSpace(*characters))
break;
}
// Empty string.
if (characters == endCharacters)
return 0.0;
double number;
if (characters[0] == '0' && characters + 2 < endCharacters) {
if ((characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2]))
number = jsHexIntegerLiteral(characters, endCharacters);
else if ((characters[1] | 0x20) == 'o' && isASCIIOctalDigit(characters[2]))
number = jsOctalIntegerLiteral(characters, endCharacters);
else if ((characters[1] | 0x20) == 'b' && isASCIIBinaryDigit(characters[2]))
number = jsBinaryIntegerLiteral(characters, endCharacters);
else
number = jsStrDecimalLiteral(characters, endCharacters);
} else
number = jsStrDecimalLiteral(characters, endCharacters);
// Allow trailing white space.
for (; characters < endCharacters; ++characters) {
if (!isStrWhiteSpace(*characters))
break;
}
if (characters != endCharacters)
return PNaN;
return number;
}
// See ecma-262 6th 11.8.3
double jsToNumber(StringView s)
{
unsigned size = s.length();
if (size == 1) {
UChar c = s[0];
if (isASCIIDigit(c))
return c - '0';
if (isStrWhiteSpace(c))
return 0;
return PNaN;
}
if (s.is8Bit())
return toDouble(s.characters8(), size);
return toDouble(s.characters16(), size);
}
static double parseFloat(StringView s)
{
unsigned size = s.length();
if (size == 1) {
UChar c = s[0];
if (isASCIIDigit(c))
return c - '0';
return PNaN;
}
if (s.is8Bit()) {
const LChar* data = s.characters8();
const LChar* end = data + size;
// Skip leading white space.
for (; data < end; ++data) {
if (!isStrWhiteSpace(*data))
break;
}
// Empty string.
if (data == end)
return PNaN;
return jsStrDecimalLiteral(data, end);
}
const UChar* data = s.characters16();
const UChar* end = data + size;
// Skip leading white space.
for (; data < end; ++data) {
if (!isStrWhiteSpace(*data))
break;
}
// Empty string.
if (data == end)
return PNaN;
return jsStrDecimalLiteral(data, end);
}
EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
JSValue x = exec->argument(0);
if (!x.isString())
return JSValue::encode(x);
JSGlobalObject* globalObject = exec->lexicalGlobalObject();
if (!globalObject->evalEnabled()) {
throwException(exec, scope, createEvalError(exec, globalObject->evalDisabledErrorMessage()));
return JSValue::encode(jsUndefined());
}
String s = x.toString(exec)->value(exec);
RETURN_IF_EXCEPTION(scope, encodedJSValue());
if (s.is8Bit()) {
LiteralParser<LChar> preparser(exec, s.characters8(), s.length(), NonStrictJSON);
if (JSValue parsedObject = preparser.tryLiteralParse())
return JSValue::encode(parsedObject);
} else {
LiteralParser<UChar> preparser(exec, s.characters16(), s.length(), NonStrictJSON);
if (JSValue parsedObject = preparser.tryLiteralParse())
return JSValue::encode(parsedObject);
}
JSGlobalObject* calleeGlobalObject = exec->callee()->globalObject();
VariableEnvironment emptyTDZVariables; // Indirect eval does not have access to the lexical scope.
EvalExecutable* eval = EvalExecutable::create(exec, makeSource(s), false, DerivedContextType::None, false, EvalContextType::None, &emptyTDZVariables);
if (!eval)
return JSValue::encode(jsUndefined());
return JSValue::encode(exec->interpreter()->execute(eval, exec, calleeGlobalObject->globalThis(), calleeGlobalObject->globalScope()));
}
EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec)
{
JSValue value = exec->argument(0);
JSValue radixValue = exec->argument(1);
// Optimized handling for numbers:
// If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt
// results in a truncation to integer. In the case of -0, this is converted to 0.
//
// This is also a truncation for values in the range INT_MAX+1 <= n < 10^21,
// however these values cannot be trivially truncated to int since 10^21 exceeds
// even the int64_t range. Negative numbers are a little trickier, the case for
// values in the range -10^21 < n <= -1 are similar to those for integer, but
// values in the range -1 < n <= -10^-6 need to truncate to -0, not 0.
static const double tenToTheMinus6 = 0.000001;
static const double intMaxPlusOne = 2147483648.0;
if (value.isNumber()) {
double n = value.asNumber();
if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull())
return JSValue::encode(jsNumber(static_cast<int32_t>(n)));
}
// If ToString throws, we shouldn't call ToInt32.
return toSafeView(exec, value, [&] (JSString::SafeView& view) {
return JSValue::encode(jsNumber(parseInt(view.get(), radixValue.toInt32(exec))));
});
}
EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec)
{
return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec)->view(exec).get())));
}
EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec)
{
static Bitmap<256> doNotUnescapeWhenDecodingURI = makeCharacterBitmap(
"#$&+,/:;=?@"
);
return JSValue::encode(decode(exec, doNotUnescapeWhenDecodingURI, true));
}
EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec)
{
static Bitmap<256> emptyBitmap;
return JSValue::encode(decode(exec, emptyBitmap, true));
}
EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec)
{
static Bitmap<256> doNotEscapeWhenEncodingURI = makeCharacterBitmap(
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!#$&'()*+,-./:;=?@_~"
);
return JSValue::encode(encode(exec, doNotEscapeWhenEncodingURI));
}
EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec)
{
static Bitmap<256> doNotEscapeWhenEncodingURIComponent = makeCharacterBitmap(
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!'()*-._~"
);
return JSValue::encode(encode(exec, doNotEscapeWhenEncodingURIComponent));
}
EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec)
{
static Bitmap<256> doNotEscape = makeCharacterBitmap(
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"*+-./@_"
);
return JSValue::encode(toSafeView(exec, exec->argument(0), [&] (JSString::SafeView& view) {
JSStringBuilder builder;
if (view.is8Bit()) {
const LChar* c = view.characters8();
for (unsigned k = 0; k < view.length(); k++, c++) {
int u = c[0];
if (doNotEscape.get(static_cast<LChar>(u)))
builder.append(*c);
else {
builder.append(static_cast<LChar>('%'));
appendByteAsHex(static_cast<LChar>(u), builder);
}
}
return builder.build(exec);
}
const UChar* c = view.characters16();
for (unsigned k = 0; k < view.length(); k++, c++) {
UChar u = c[0];
if (u >= doNotEscape.size()) {
builder.append(static_cast<LChar>('%'));
builder.append(static_cast<LChar>('u'));
appendByteAsHex(u >> 8, builder);
appendByteAsHex(u & 0xFF, builder);
} else if (doNotEscape.get(static_cast<LChar>(u)))
builder.append(*c);
else {
builder.append(static_cast<LChar>('%'));
appendByteAsHex(u, builder);
}
}
return builder.build(exec);
}));
}
EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec)
{
return JSValue::encode(toSafeView(exec, exec->argument(0), [&] (JSString::SafeView& view) {
StringBuilder builder;
int k = 0;
int len = view.length();
if (view.is8Bit()) {
const LChar* characters = view.characters8();
LChar convertedLChar;
while (k < len) {
const LChar* c = characters + k;
if (c[0] == '%' && k <= len - 6 && c[1] == 'u') {
if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) {
builder.append(Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]));
k += 6;
continue;
}
} else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) {
convertedLChar = LChar(Lexer<LChar>::convertHex(c[1], c[2]));
c = &convertedLChar;
k += 2;
}
builder.append(*c);
k++;
}
} else {
const UChar* characters = view.characters16();
while (k < len) {
const UChar* c = characters + k;
UChar convertedUChar;
if (c[0] == '%' && k <= len - 6 && c[1] == 'u') {
if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) {
convertedUChar = Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]);
c = &convertedUChar;
k += 5;
}
} else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) {
convertedUChar = UChar(Lexer<UChar>::convertHex(c[1], c[2]));
c = &convertedUChar;
k += 2;
}
k++;
builder.append(*c);
}
}
return jsString(exec, builder.toString());
}));
}
EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
return throwVMTypeError(exec, scope);
}
EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeErrorArgumentsCalleeAndCaller(ExecState* exec)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
return throwVMTypeError(exec, scope, "'arguments', 'callee', and 'caller' cannot be accessed in strict mode.");
}
EncodedJSValue JSC_HOST_CALL globalFuncProtoGetter(ExecState* exec)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
if (exec->thisValue().isUndefinedOrNull())
return throwVMTypeError(exec, scope, ASCIILiteral("Can't convert undefined or null to object"));
JSObject* thisObject = jsDynamicCast<JSObject*>(exec->thisValue().toThis(exec, NotStrictMode));
if (!thisObject) {
JSObject* prototype = exec->thisValue().synthesizePrototype(exec);
if (UNLIKELY(!prototype))
return JSValue::encode(JSValue());
return JSValue::encode(prototype);
}
return JSValue::encode(thisObject->getPrototype(vm, exec));
}
EncodedJSValue JSC_HOST_CALL globalFuncProtoSetter(ExecState* exec)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
if (exec->thisValue().isUndefinedOrNull())
return throwVMTypeError(exec, scope, ASCIILiteral("Can't convert undefined or null to object"));
JSValue value = exec->argument(0);
JSObject* thisObject = jsDynamicCast<JSObject*>(exec->thisValue().toThis(exec, NotStrictMode));
// Setting __proto__ of a primitive should have no effect.
if (!thisObject)
return JSValue::encode(jsUndefined());
// Setting __proto__ to a non-object, non-null value is silently ignored to match Mozilla.
if (!value.isObject() && !value.isNull())
return JSValue::encode(jsUndefined());
bool shouldThrowIfCantSet = true;
thisObject->setPrototype(vm, exec, value, shouldThrowIfCantSet);
return JSValue::encode(jsUndefined());
}
EncodedJSValue JSC_HOST_CALL globalFuncBuiltinLog(ExecState* exec)
{
dataLog(exec->argument(0).toWTFString(exec), "\n");
return JSValue::encode(jsUndefined());
}
} // namespace JSC