blob: 87c6a7dae26783772894a442c0a764d521a6c112 [file] [log] [blame]
/*
* Copyright (C) 2009, 2012-2016 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#if USE(JSVALUE32_64)
#include "JIT.h"
#include "CCallHelpers.h"
#include "Exception.h"
#include "JITInlines.h"
#include "JSArray.h"
#include "JSCell.h"
#include "JSFunction.h"
#include "JSPropertyNameEnumerator.h"
#include "LinkBuffer.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "Opcode.h"
#include "SlowPathCall.h"
#include "TypeProfilerLog.h"
#include "VirtualRegister.h"
namespace JSC {
JIT::CodeRef JIT::privateCompileCTINativeCall(VM* vm, NativeFunction func)
{
// FIXME: This should be able to log ShadowChicken prologue packets.
// https://bugs.webkit.org/show_bug.cgi?id=155689
Call nativeCall;
emitFunctionPrologue();
emitPutToCallFrameHeader(0, CallFrameSlot::codeBlock);
storePtr(callFrameRegister, &m_vm->topCallFrame);
#if CPU(X86)
// Calling convention: f(ecx, edx, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, X86Registers::ecx);
subPtr(TrustedImm32(8), stackPointerRegister); // Align stack for call.
storePtr(X86Registers::ecx, Address(stackPointerRegister));
// call the function
nativeCall = call();
addPtr(TrustedImm32(8), stackPointerRegister);
#elif CPU(ARM) || CPU(SH4) || CPU(MIPS)
#if CPU(MIPS)
// Allocate stack space for (unused) 16 bytes (8-byte aligned) for 4 arguments.
subPtr(TrustedImm32(16), stackPointerRegister);
#endif
// Calling convention is f(argumentGPR0, argumentGPR1, ...).
// Host function signature is f(ExecState*).
move(callFrameRegister, argumentGPR0);
emitGetFromCallFrameHeaderPtr(CallFrameSlot::callee, argumentGPR1);
loadPtr(Address(argumentGPR1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
// call the function
nativeCall = call();
#if CPU(MIPS)
// Restore stack space
addPtr(TrustedImm32(16), stackPointerRegister);
#endif
restoreReturnAddressBeforeReturn(regT3);
#else
#error "JIT not supported on this platform."
abortWithReason(JITNotSupported);
#endif // CPU(X86)
// Check for an exception
Jump sawException = branch32(NotEqual, AbsoluteAddress(vm->addressOfException()), TrustedImm32(0));
emitFunctionEpilogue();
// Return.
ret();
// Handle an exception
sawException.link(this);
storePtr(callFrameRegister, &m_vm->topCallFrame);
#if CPU(X86)
addPtr(TrustedImm32(-4), stackPointerRegister);
move(callFrameRegister, X86Registers::ecx);
push(X86Registers::ecx);
#else
move(callFrameRegister, argumentGPR0);
#endif
move(TrustedImmPtr(FunctionPtr(operationVMHandleException).value()), regT3);
call(regT3);
#if CPU(X86)
addPtr(TrustedImm32(8), stackPointerRegister);
#endif
jumpToExceptionHandler();
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(*m_vm, *this, GLOBAL_THUNK_ID);
patchBuffer.link(nativeCall, FunctionPtr(func));
return FINALIZE_CODE(patchBuffer, ("JIT CTI native call"));
}
void JIT::emit_op_mov(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
if (m_codeBlock->isConstantRegisterIndex(src))
emitStore(dst, getConstantOperand(src));
else {
emitLoad(src, regT1, regT0);
emitStore(dst, regT1, regT0);
}
}
void JIT::emit_op_end(Instruction* currentInstruction)
{
ASSERT(returnValueGPR != callFrameRegister);
emitLoad(currentInstruction[1].u.operand, regT1, returnValueGPR);
emitRestoreCalleeSaves();
emitFunctionEpilogue();
ret();
}
void JIT::emit_op_jmp(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target);
}
void JIT::emit_op_new_object(Instruction* currentInstruction)
{
Structure* structure = currentInstruction[3].u.objectAllocationProfile->structure();
size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity());
MarkedAllocator* allocator = m_vm->heap.allocatorForObjectWithoutDestructor(allocationSize);
RegisterID resultReg = returnValueGPR;
RegisterID allocatorReg = regT1;
RegisterID scratchReg = regT3;
move(TrustedImmPtr(allocator), allocatorReg);
if (allocator)
addSlowCase(Jump());
JumpList slowCases;
emitAllocateJSObject(resultReg, allocator, allocatorReg, TrustedImmPtr(structure), TrustedImmPtr(0), scratchReg, slowCases);
addSlowCase(slowCases);
emitStoreCell(currentInstruction[1].u.operand, resultReg);
}
void JIT::emitSlow_op_new_object(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
int dst = currentInstruction[1].u.operand;
Structure* structure = currentInstruction[3].u.objectAllocationProfile->structure();
callOperation(operationNewObject, structure);
emitStoreCell(dst, returnValueGPR);
}
void JIT::emit_op_overrides_has_instance(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int constructor = currentInstruction[2].u.operand;
int hasInstanceValue = currentInstruction[3].u.operand;
emitLoadPayload(hasInstanceValue, regT0);
// We don't jump if we know what Symbol.hasInstance would do.
Jump hasInstanceValueNotCell = emitJumpIfNotJSCell(hasInstanceValue);
Jump customhasInstanceValue = branchPtr(NotEqual, regT0, TrustedImmPtr(m_codeBlock->globalObject()->functionProtoHasInstanceSymbolFunction()));
// We know that constructor is an object from the way bytecode is emitted for instanceof expressions.
emitLoadPayload(constructor, regT0);
// Check that constructor 'ImplementsDefaultHasInstance' i.e. the object is not a C-API user nor a bound function.
test8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance), regT0);
Jump done = jump();
hasInstanceValueNotCell.link(this);
customhasInstanceValue.link(this);
move(TrustedImm32(1), regT0);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_instanceof(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int proto = currentInstruction[3].u.operand;
// Load the operands into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitLoadPayload(value, regT2);
emitLoadPayload(proto, regT1);
// Check that proto are cells. baseVal must be a cell - this is checked by the get_by_id for Symbol.hasInstance.
emitJumpSlowCaseIfNotJSCell(value);
emitJumpSlowCaseIfNotJSCell(proto);
// Check that prototype is an object
addSlowCase(emitJumpIfCellNotObject(regT1));
// Optimistically load the result true, and start looping.
// Initially, regT1 still contains proto and regT2 still contains value.
// As we loop regT2 will be updated with its prototype, recursively walking the prototype chain.
move(TrustedImm32(1), regT0);
Label loop(this);
addSlowCase(branch8(Equal, Address(regT2, JSCell::typeInfoTypeOffset()), TrustedImm32(ProxyObjectType)));
// Load the prototype of the cell in regT2. If this is equal to regT1 - WIN!
// Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again.
loadPtr(Address(regT2, JSCell::structureIDOffset()), regT2);
load32(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2);
Jump isInstance = branchPtr(Equal, regT2, regT1);
branchTest32(NonZero, regT2).linkTo(loop, this);
// We get here either by dropping out of the loop, or if value was not an Object. Result is false.
move(TrustedImm32(0), regT0);
// isInstance jumps right down to here, to skip setting the result to false (it has already set true).
isInstance.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_instanceof_custom(Instruction*)
{
// This always goes to slow path since we expect it to be rare.
addSlowCase(jump());
}
void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int proto = currentInstruction[3].u.operand;
linkSlowCaseIfNotJSCell(iter, value);
linkSlowCaseIfNotJSCell(iter, proto);
linkSlowCase(iter);
linkSlowCase(iter);
emitLoad(value, regT1, regT0);
emitLoad(proto, regT3, regT2);
callOperation(operationInstanceOf, dst, regT1, regT0, regT3, regT2);
}
void JIT::emitSlow_op_instanceof_custom(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int constructor = currentInstruction[3].u.operand;
int hasInstanceValue = currentInstruction[4].u.operand;
linkSlowCase(iter);
emitLoad(value, regT1, regT0);
emitLoadPayload(constructor, regT2);
emitLoad(hasInstanceValue, regT4, regT3);
callOperation(operationInstanceOfCustom, regT1, regT0, regT2, regT4, regT3);
emitStoreBool(dst, returnValueGPR);
}
void JIT::emit_op_is_empty(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitLoad(value, regT1, regT0);
compare32(Equal, regT1, TrustedImm32(JSValue::EmptyValueTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_undefined(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitLoad(value, regT1, regT0);
Jump isCell = branch32(Equal, regT1, TrustedImm32(JSValue::CellTag));
compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT0);
Jump done = jump();
isCell.link(this);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump notMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT1, Structure::globalObjectOffset()), regT1);
compare32(Equal, regT0, regT1, regT0);
notMasqueradesAsUndefined.link(this);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_boolean(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitLoadTag(value, regT0);
compare32(Equal, regT0, TrustedImm32(JSValue::BooleanTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_number(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitLoadTag(value, regT0);
add32(TrustedImm32(1), regT0);
compare32(Below, regT0, TrustedImm32(JSValue::LowestTag + 1), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_cell_with_type(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int type = currentInstruction[3].u.operand;
emitLoad(value, regT1, regT0);
Jump isNotCell = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
compare8(Equal, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(type), regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(0), regT0);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_object(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitLoad(value, regT1, regT0);
Jump isNotCell = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
compare8(AboveOrEqual, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(ObjectType), regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(0), regT0);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_to_primitive(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImm = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
addSlowCase(emitJumpIfCellObject(regT0));
isImm.link(this);
if (dst != src)
emitStore(dst, regT1, regT0);
}
void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_primitive);
slowPathCall.call();
}
void JIT::emit_op_set_function_name(Instruction* currentInstruction)
{
int func = currentInstruction[1].u.operand;
int name = currentInstruction[2].u.operand;
emitLoadPayload(func, regT1);
emitLoad(name, regT3, regT2);
callOperation(operationSetFunctionName, regT1, regT3, regT2);
}
void JIT::emit_op_strcat(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_strcat);
slowPathCall.call();
}
void JIT::emit_op_not(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoadTag(src, regT0);
emitLoad(src, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::BooleanTag)));
xor32(TrustedImm32(1), regT0);
emitStoreBool(dst, regT0, (dst == src));
}
void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_not);
slowPathCall.call();
}
void JIT::emit_op_jfalse(Instruction* currentInstruction)
{
int cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(cond, regT1, regT0);
JSValueRegs value(regT1, regT0);
GPRReg scratch = regT2;
GPRReg result = regT3;
bool shouldCheckMasqueradesAsUndefined = true;
emitConvertValueToBoolean(value, result, scratch, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject());
addJump(branchTest32(Zero, result), target);
}
void JIT::emit_op_jtrue(Instruction* currentInstruction)
{
int cond = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(cond, regT1, regT0);
bool shouldCheckMasqueradesAsUndefined = true;
JSValueRegs value(regT1, regT0);
GPRReg scratch = regT2;
GPRReg result = regT3;
emitConvertValueToBoolean(value, result, scratch, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject());
addJump(branchTest32(NonZero, result), target);
}
void JIT::emit_op_jeq_null(Instruction* currentInstruction)
{
int src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
Jump isNotMasqueradesAsUndefined = branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(Equal, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump masqueradesGlobalObjectIsForeign = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1));
or32(TrustedImm32(1), regT1);
addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), target);
isNotMasqueradesAsUndefined.link(this);
masqueradesGlobalObjectIsForeign.link(this);
}
void JIT::emit_op_jneq_null(Instruction* currentInstruction)
{
int src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
addJump(branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(NotEqual, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1));
or32(TrustedImm32(1), regT1);
addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::NullTag)), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_ptr(Instruction* currentInstruction)
{
int src = currentInstruction[1].u.operand;
Special::Pointer ptr = currentInstruction[2].u.specialPointer;
unsigned target = currentInstruction[3].u.operand;
emitLoad(src, regT1, regT0);
CCallHelpers::Jump notCell = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
CCallHelpers::Jump equal = branchPtr(Equal, regT0, TrustedImmPtr(actualPointerFor(m_codeBlock, ptr)));
notCell.link(this);
store32(TrustedImm32(1), &currentInstruction[4].u.operand);
addJump(jump(), target);
equal.link(this);
}
void JIT::emit_op_eq(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src1 = currentInstruction[2].u.operand;
int src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag)));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
compare32(Equal, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int op1 = currentInstruction[2].u.operand;
int op2 = currentInstruction[3].u.operand;
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchPtr(NotEqual, Address(regT0, JSCell::structureIDOffset()), TrustedImmPtr(m_vm->stringStructure.get())));
genericCase.append(branchPtr(NotEqual, Address(regT2, JSCell::structureIDOffset()), TrustedImmPtr(m_vm->stringStructure.get())));
// String case.
callOperation(operationCompareStringEq, regT0, regT2);
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
emitLoad(op1, regT1, regT0);
emitLoad(op2, regT3, regT2);
callOperation(operationCompareEq, regT1, regT0, regT3, regT2);
storeResult.link(this);
emitStoreBool(dst, returnValueGPR);
}
void JIT::emit_op_neq(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src1 = currentInstruction[2].u.operand;
int src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag)));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
compare32(NotEqual, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchPtr(NotEqual, Address(regT0, JSCell::structureIDOffset()), TrustedImmPtr(m_vm->stringStructure.get())));
genericCase.append(branchPtr(NotEqual, Address(regT2, JSCell::structureIDOffset()), TrustedImmPtr(m_vm->stringStructure.get())));
// String case.
callOperation(operationCompareStringEq, regT0, regT2);
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
callOperation(operationCompareEq, regT1, regT0, regT3, regT2);
storeResult.link(this);
xor32(TrustedImm32(0x1), returnValueGPR);
emitStoreBool(dst, returnValueGPR);
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
int dst = currentInstruction[1].u.operand;
int src1 = currentInstruction[2].u.operand;
int src2 = currentInstruction[3].u.operand;
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
// Bail if the tags differ, or are double.
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
// Jump to a slow case if both are strings or symbols (non object).
Jump notCell = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
Jump firstIsObject = emitJumpIfCellObject(regT0);
addSlowCase(emitJumpIfCellNotObject(regT2));
notCell.link(this);
firstIsObject.link(this);
// Simply compare the payloads.
if (type == OpStrictEq)
compare32(Equal, regT0, regT2, regT0);
else
compare32(NotEqual, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_stricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpStrictEq);
}
void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_stricteq);
slowPathCall.call();
}
void JIT::emit_op_nstricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpNStrictEq);
}
void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_nstricteq);
slowPathCall.call();
}
void JIT::emit_op_eq_null(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT1);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
compare32(Equal, regT0, regT2, regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
compare32(Equal, regT1, TrustedImm32(JSValue::NullTag), regT2);
compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT1);
or32(regT2, regT1);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_neq_null(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag));
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(1), regT1);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
compare32(NotEqual, regT0, regT2, regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
compare32(NotEqual, regT1, TrustedImm32(JSValue::NullTag), regT2);
compare32(NotEqual, regT1, TrustedImm32(JSValue::UndefinedTag), regT1);
and32(regT2, regT1);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_throw(Instruction* currentInstruction)
{
ASSERT(regT0 == returnValueGPR);
copyCalleeSavesToVMEntryFrameCalleeSavesBuffer();
emitLoad(currentInstruction[1].u.operand, regT1, regT0);
callOperationNoExceptionCheck(operationThrow, regT1, regT0);
jumpToExceptionHandler();
}
void JIT::emit_op_push_with_scope(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_push_with_scope);
slowPathCall.call();
}
void JIT::emit_op_to_number(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump isInt32 = branch32(Equal, regT1, TrustedImm32(JSValue::Int32Tag));
addSlowCase(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag)));
isInt32.link(this);
emitValueProfilingSite();
if (src != dst)
emitStore(dst, regT1, regT0);
}
void JIT::emitSlow_op_to_number(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_number);
slowPathCall.call();
}
void JIT::emit_op_to_string(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
addSlowCase(branch8(NotEqual, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(StringType)));
if (src != dst)
emitStore(dst, regT1, regT0);
}
void JIT::emitSlow_op_to_string(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // Not JSCell.
linkSlowCase(iter); // Not JSString.
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_string);
slowPathCall.call();
}
void JIT::emit_op_catch(Instruction* currentInstruction)
{
restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer();
move(TrustedImmPtr(m_vm), regT3);
// operationThrow returns the callFrame for the handler.
load32(Address(regT3, VM::callFrameForCatchOffset()), callFrameRegister);
storePtr(TrustedImmPtr(nullptr), Address(regT3, VM::callFrameForCatchOffset()));
addPtr(TrustedImm32(stackPointerOffsetFor(codeBlock()) * sizeof(Register)), callFrameRegister, stackPointerRegister);
callOperationNoExceptionCheck(operationCheckIfExceptionIsUncatchableAndNotifyProfiler);
Jump isCatchableException = branchTest32(Zero, returnValueGPR);
jumpToExceptionHandler();
isCatchableException.link(this);
move(TrustedImmPtr(m_vm), regT3);
// Now store the exception returned by operationThrow.
load32(Address(regT3, VM::exceptionOffset()), regT2);
move(TrustedImm32(JSValue::CellTag), regT1);
store32(TrustedImm32(0), Address(regT3, VM::exceptionOffset()));
unsigned exception = currentInstruction[1].u.operand;
emitStore(exception, regT1, regT2);
load32(Address(regT2, Exception::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
load32(Address(regT2, Exception::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
unsigned thrownValue = currentInstruction[2].u.operand;
emitStore(thrownValue, regT1, regT0);
}
void JIT::emit_op_assert(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_assert);
slowPathCall.call();
}
void JIT::emit_op_create_lexical_environment(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_lexical_environment);
slowPathCall.call();
}
void JIT::emit_op_get_parent_scope(Instruction* currentInstruction)
{
int currentScope = currentInstruction[2].u.operand;
emitLoadPayload(currentScope, regT0);
loadPtr(Address(regT0, JSScope::offsetOfNext()), regT0);
emitStoreCell(currentInstruction[1].u.operand, regT0);
}
void JIT::emit_op_switch_imm(Instruction* currentInstruction)
{
size_t tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate));
jumpTable->ensureCTITable();
emitLoad(scrutinee, regT1, regT0);
callOperation(operationSwitchImmWithUnknownKeyType, regT1, regT0, tableIndex);
jump(returnValueGPR);
}
void JIT::emit_op_switch_char(Instruction* currentInstruction)
{
size_t tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character));
jumpTable->ensureCTITable();
emitLoad(scrutinee, regT1, regT0);
callOperation(operationSwitchCharWithUnknownKeyType, regT1, regT0, tableIndex);
jump(returnValueGPR);
}
void JIT::emit_op_switch_string(Instruction* currentInstruction)
{
size_t tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset));
emitLoad(scrutinee, regT1, regT0);
callOperation(operationSwitchStringWithUnknownKeyType, regT1, regT0, tableIndex);
jump(returnValueGPR);
}
void JIT::emit_op_throw_static_error(Instruction* currentInstruction)
{
emitLoad(m_codeBlock->getConstant(currentInstruction[1].u.operand), regT1, regT0);
callOperation(operationThrowStaticError, regT1, regT0, currentInstruction[2].u.operand);
}
void JIT::emit_op_debug(Instruction* currentInstruction)
{
load32(codeBlock()->debuggerRequestsAddress(), regT0);
Jump noDebuggerRequests = branchTest32(Zero, regT0);
callOperation(operationDebug, currentInstruction[1].u.operand);
noDebuggerRequests.link(this);
}
void JIT::emit_op_enter(Instruction* currentInstruction)
{
emitEnterOptimizationCheck();
// Even though JIT code doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
for (int i = 0; i < m_codeBlock->m_numVars; ++i)
emitStore(virtualRegisterForLocal(i).offset(), jsUndefined());
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_enter);
slowPathCall.call();
}
void JIT::emit_op_get_scope(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
emitGetFromCallFrameHeaderPtr(CallFrameSlot::callee, regT0);
loadPtr(Address(regT0, JSFunction::offsetOfScopeChain()), regT0);
emitStoreCell(dst, regT0);
}
void JIT::emit_op_create_this(Instruction* currentInstruction)
{
int callee = currentInstruction[2].u.operand;
WriteBarrierBase<JSCell>* cachedFunction = &currentInstruction[4].u.jsCell;
RegisterID calleeReg = regT0;
RegisterID rareDataReg = regT4;
RegisterID resultReg = regT0;
RegisterID allocatorReg = regT1;
RegisterID structureReg = regT2;
RegisterID cachedFunctionReg = regT4;
RegisterID scratchReg = regT3;
emitLoadPayload(callee, calleeReg);
addSlowCase(branch8(NotEqual, Address(calleeReg, JSCell::typeInfoTypeOffset()), TrustedImm32(JSFunctionType)));
loadPtr(Address(calleeReg, JSFunction::offsetOfRareData()), rareDataReg);
addSlowCase(branchTestPtr(Zero, rareDataReg));
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfAllocator()), allocatorReg);
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfStructure()), structureReg);
addSlowCase(branchTestPtr(Zero, allocatorReg));
loadPtr(cachedFunction, cachedFunctionReg);
Jump hasSeenMultipleCallees = branchPtr(Equal, cachedFunctionReg, TrustedImmPtr(JSCell::seenMultipleCalleeObjects()));
addSlowCase(branchPtr(NotEqual, calleeReg, cachedFunctionReg));
hasSeenMultipleCallees.link(this);
JumpList slowCases;
emitAllocateJSObject(resultReg, nullptr, allocatorReg, structureReg, TrustedImmPtr(0), scratchReg, slowCases);
addSlowCase(slowCases);
emitStoreCell(currentInstruction[1].u.operand, resultReg);
}
void JIT::emitSlow_op_create_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // Callee::m_type != JSFunctionType.
linkSlowCase(iter); // doesn't have rare data
linkSlowCase(iter); // doesn't have an allocation profile
linkSlowCase(iter); // allocation failed (no allocator)
linkSlowCase(iter); // allocation failed (allocator empty)
linkSlowCase(iter); // cached function didn't match
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_this);
slowPathCall.call();
}
void JIT::emit_op_to_this(Instruction* currentInstruction)
{
WriteBarrierBase<Structure>* cachedStructure = &currentInstruction[2].u.structure;
int thisRegister = currentInstruction[1].u.operand;
emitLoad(thisRegister, regT3, regT2);
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::CellTag)));
addSlowCase(branch8(NotEqual, Address(regT2, JSCell::typeInfoTypeOffset()), TrustedImm32(FinalObjectType)));
loadPtr(Address(regT2, JSCell::structureIDOffset()), regT0);
loadPtr(cachedStructure, regT2);
addSlowCase(branchPtr(NotEqual, regT0, regT2));
}
void JIT::emitSlow_op_to_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_this);
slowPathCall.call();
}
void JIT::emit_op_check_tdz(Instruction* currentInstruction)
{
emitLoadTag(currentInstruction[1].u.operand, regT0);
addSlowCase(branch32(Equal, regT0, TrustedImm32(JSValue::EmptyValueTag)));
}
void JIT::emitSlow_op_check_tdz(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_throw_tdz_error);
slowPathCall.call();
}
void JIT::emit_op_has_structure_property(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int enumerator = currentInstruction[4].u.operand;
emitLoadPayload(base, regT0);
emitJumpSlowCaseIfNotJSCell(base);
emitLoadPayload(enumerator, regT1);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
addSlowCase(branch32(NotEqual, regT0, Address(regT1, JSPropertyNameEnumerator::cachedStructureIDOffset())));
move(TrustedImm32(1), regT0);
emitStoreBool(dst, regT0);
}
void JIT::privateCompileHasIndexedProperty(ByValInfo* byValInfo, ReturnAddressPtr returnAddress, JITArrayMode arrayMode)
{
Instruction* currentInstruction = m_codeBlock->instructions().begin() + byValInfo->bytecodeIndex;
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, arrayMode, badType);
move(TrustedImm32(1), regT0);
Jump done = jump();
LinkBuffer patchBuffer(*m_vm, *this, m_codeBlock);
patchBuffer.link(badType, CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(returnAddress.value())).labelAtOffset(byValInfo->returnAddressToSlowPath));
patchBuffer.link(slowCases, CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(returnAddress.value())).labelAtOffset(byValInfo->returnAddressToSlowPath));
patchBuffer.link(done, byValInfo->badTypeJump.labelAtOffset(byValInfo->badTypeJumpToDone));
byValInfo->stubRoutine = FINALIZE_CODE_FOR_STUB(
m_codeBlock, patchBuffer,
("Baseline has_indexed_property stub for %s, return point %p", toCString(*m_codeBlock).data(), returnAddress.value()));
MacroAssembler::repatchJump(byValInfo->badTypeJump, CodeLocationLabel(byValInfo->stubRoutine->code().code()));
MacroAssembler::repatchCall(CodeLocationCall(MacroAssemblerCodePtr(returnAddress)), FunctionPtr(operationHasIndexedPropertyGeneric));
}
void JIT::emit_op_has_indexed_property(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int property = currentInstruction[3].u.operand;
ArrayProfile* profile = currentInstruction[4].u.arrayProfile;
ByValInfo* byValInfo = m_codeBlock->addByValInfo();
emitLoadPayload(base, regT0);
emitJumpSlowCaseIfNotJSCell(base);
emitLoadPayload(property, regT1);
// This is technically incorrect - we're zero-extending an int32. On the hot path this doesn't matter.
// We check the value as if it was a uint32 against the m_vectorLength - which will always fail if
// number was signed since m_vectorLength is always less than intmax (since the total allocation
// size is always less than 4Gb). As such zero extending will have been correct (and extending the value
// to 64-bits is necessary since it's used in the address calculation. We zero extend rather than sign
// extending since it makes it easier to re-tag the value in the slow case.
zeroExtend32ToPtr(regT1, regT1);
emitArrayProfilingSiteWithCell(regT0, regT2, profile);
and32(TrustedImm32(IndexingShapeMask), regT2);
JITArrayMode mode = chooseArrayMode(profile);
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, mode, badType);
move(TrustedImm32(1), regT0);
addSlowCase(badType);
addSlowCase(slowCases);
Label done = label();
emitStoreBool(dst, regT0);
Label nextHotPath = label();
m_byValCompilationInfo.append(ByValCompilationInfo(byValInfo, m_bytecodeOffset, PatchableJump(), badType, mode, profile, done, nextHotPath));
}
void JIT::emitSlow_op_has_indexed_property(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int property = currentInstruction[3].u.operand;
ByValInfo* byValInfo = m_byValCompilationInfo[m_byValInstructionIndex].byValInfo;
linkSlowCaseIfNotJSCell(iter, base); // base cell check
linkSlowCase(iter); // base array check
linkSlowCase(iter); // vector length check
linkSlowCase(iter); // empty value
Label slowPath = label();
emitLoad(base, regT1, regT0);
emitLoad(property, regT3, regT2);
Call call = callOperation(operationHasIndexedPropertyDefault, dst, regT1, regT0, regT3, regT2, byValInfo);
m_byValCompilationInfo[m_byValInstructionIndex].slowPathTarget = slowPath;
m_byValCompilationInfo[m_byValInstructionIndex].returnAddress = call;
m_byValInstructionIndex++;
}
void JIT::emit_op_get_direct_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int index = currentInstruction[4].u.operand;
int enumerator = currentInstruction[5].u.operand;
// Check that base is a cell
emitLoadPayload(base, regT0);
emitJumpSlowCaseIfNotJSCell(base);
// Check the structure
emitLoadPayload(enumerator, regT1);
load32(Address(regT0, JSCell::structureIDOffset()), regT2);
addSlowCase(branch32(NotEqual, regT2, Address(regT1, JSPropertyNameEnumerator::cachedStructureIDOffset())));
// Compute the offset
emitLoadPayload(index, regT2);
// If index is less than the enumerator's cached inline storage, then it's an inline access
Jump outOfLineAccess = branch32(AboveOrEqual, regT2, Address(regT1, JSPropertyNameEnumerator::cachedInlineCapacityOffset()));
addPtr(TrustedImm32(JSObject::offsetOfInlineStorage()), regT0);
load32(BaseIndex(regT0, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
load32(BaseIndex(regT0, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
Jump done = jump();
// Otherwise it's out of line
outOfLineAccess.link(this);
loadPtr(Address(regT0, JSObject::butterflyOffset()), regT0);
sub32(Address(regT1, JSPropertyNameEnumerator::cachedInlineCapacityOffset()), regT2);
neg32(regT2);
int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue);
load32(BaseIndex(regT0, regT2, TimesEight, offsetOfFirstProperty + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
load32(BaseIndex(regT0, regT2, TimesEight, offsetOfFirstProperty + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
done.link(this);
emitValueProfilingSite();
emitStore(dst, regT1, regT0);
}
void JIT::emitSlow_op_get_direct_pname(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int base = currentInstruction[2].u.operand;
linkSlowCaseIfNotJSCell(iter, base);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_get_direct_pname);
slowPathCall.call();
}
void JIT::emit_op_enumerator_structure_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int enumerator = currentInstruction[2].u.operand;
int index = currentInstruction[3].u.operand;
emitLoadPayload(index, regT0);
emitLoadPayload(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endStructurePropertyIndexOffset()));
move(TrustedImm32(JSValue::NullTag), regT2);
move(TrustedImm32(0), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
loadPtr(BaseIndex(regT1, regT0, timesPtr()), regT0);
move(TrustedImm32(JSValue::CellTag), regT2);
done.link(this);
emitStore(dst, regT2, regT0);
}
void JIT::emit_op_enumerator_generic_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int enumerator = currentInstruction[2].u.operand;
int index = currentInstruction[3].u.operand;
emitLoadPayload(index, regT0);
emitLoadPayload(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endGenericPropertyIndexOffset()));
move(TrustedImm32(JSValue::NullTag), regT2);
move(TrustedImm32(0), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
loadPtr(BaseIndex(regT1, regT0, timesPtr()), regT0);
move(TrustedImm32(JSValue::CellTag), regT2);
done.link(this);
emitStore(dst, regT2, regT0);
}
void JIT::emit_op_profile_type(Instruction* currentInstruction)
{
TypeLocation* cachedTypeLocation = currentInstruction[2].u.location;
int valueToProfile = currentInstruction[1].u.operand;
// Load payload in T0. Load tag in T3.
emitLoadPayload(valueToProfile, regT0);
emitLoadTag(valueToProfile, regT3);
JumpList jumpToEnd;
jumpToEnd.append(branch32(Equal, regT3, TrustedImm32(JSValue::EmptyValueTag)));
// Compile in a predictive type check, if possible, to see if we can skip writing to the log.
// These typechecks are inlined to match those of the 32-bit JSValue type checks.
if (cachedTypeLocation->m_lastSeenType == TypeUndefined)
jumpToEnd.append(branch32(Equal, regT3, TrustedImm32(JSValue::UndefinedTag)));
else if (cachedTypeLocation->m_lastSeenType == TypeNull)
jumpToEnd.append(branch32(Equal, regT3, TrustedImm32(JSValue::NullTag)));
else if (cachedTypeLocation->m_lastSeenType == TypeBoolean)
jumpToEnd.append(branch32(Equal, regT3, TrustedImm32(JSValue::BooleanTag)));
else if (cachedTypeLocation->m_lastSeenType == TypeAnyInt)
jumpToEnd.append(branch32(Equal, regT3, TrustedImm32(JSValue::Int32Tag)));
else if (cachedTypeLocation->m_lastSeenType == TypeNumber) {
jumpToEnd.append(branch32(Below, regT3, TrustedImm32(JSValue::LowestTag)));
jumpToEnd.append(branch32(Equal, regT3, TrustedImm32(JSValue::Int32Tag)));
} else if (cachedTypeLocation->m_lastSeenType == TypeString) {
Jump isNotCell = branch32(NotEqual, regT3, TrustedImm32(JSValue::CellTag));
jumpToEnd.append(branch8(Equal, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(StringType)));
isNotCell.link(this);
}
// Load the type profiling log into T2.
TypeProfilerLog* cachedTypeProfilerLog = m_vm->typeProfilerLog();
move(TrustedImmPtr(cachedTypeProfilerLog), regT2);
// Load the next log entry into T1.
loadPtr(Address(regT2, TypeProfilerLog::currentLogEntryOffset()), regT1);
// Store the JSValue onto the log entry.
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)));
store32(regT3, Address(regT1, TypeProfilerLog::LogEntry::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)));
// Store the structureID of the cell if argument is a cell, otherwise, store 0 on the log entry.
Jump notCell = branch32(NotEqual, regT3, TrustedImm32(JSValue::CellTag));
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
Jump skipNotCell = jump();
notCell.link(this);
store32(TrustedImm32(0), Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
skipNotCell.link(this);
// Store the typeLocation on the log entry.
move(TrustedImmPtr(cachedTypeLocation), regT0);
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::locationOffset()));
// Increment the current log entry.
addPtr(TrustedImm32(sizeof(TypeProfilerLog::LogEntry)), regT1);
store32(regT1, Address(regT2, TypeProfilerLog::currentLogEntryOffset()));
jumpToEnd.append(branchPtr(NotEqual, regT1, TrustedImmPtr(cachedTypeProfilerLog->logEndPtr())));
// Clear the log if we're at the end of the log.
callOperation(operationProcessTypeProfilerLog);
jumpToEnd.link(this);
}
void JIT::emit_op_log_shadow_chicken_prologue(Instruction* currentInstruction)
{
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(shadowPacketReg, scratch1Reg, scratch2Reg);
scratch1Reg = regT4;
emitLoadPayload(currentInstruction[1].u.operand, regT3);
logShadowChickenProloguePacket(shadowPacketReg, scratch1Reg, regT3);
}
void JIT::emit_op_log_shadow_chicken_tail(Instruction* currentInstruction)
{
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(shadowPacketReg, scratch1Reg, scratch2Reg);
emitLoadPayload(currentInstruction[1].u.operand, regT2);
emitLoadTag(currentInstruction[1].u.operand, regT1);
JSValueRegs thisRegs(regT1, regT2);
emitLoadPayload(currentInstruction[2].u.operand, regT3);
logShadowChickenTailPacket(shadowPacketReg, thisRegs, regT3, m_codeBlock, CallSiteIndex(currentInstruction));
}
} // namespace JSC
#endif // USE(JSVALUE32_64)
#endif // ENABLE(JIT)