blob: 7416a67f433b6f251f3b9c13088df0fe50759810 [file] [log] [blame]
/*
* Copyright (C) 2013-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGPlan.h"
#if ENABLE(DFG_JIT)
#include "DFGArgumentsEliminationPhase.h"
#include "DFGBackwardsPropagationPhase.h"
#include "DFGByteCodeParser.h"
#include "DFGCFAPhase.h"
#include "DFGCFGSimplificationPhase.h"
#include "DFGCPSRethreadingPhase.h"
#include "DFGCSEPhase.h"
#include "DFGCleanUpPhase.h"
#include "DFGConstantFoldingPhase.h"
#include "DFGConstantHoistingPhase.h"
#include "DFGCriticalEdgeBreakingPhase.h"
#include "DFGDCEPhase.h"
#include "DFGFailedFinalizer.h"
#include "DFGFixupPhase.h"
#include "DFGGraphSafepoint.h"
#include "DFGIntegerCheckCombiningPhase.h"
#include "DFGIntegerRangeOptimizationPhase.h"
#include "DFGInvalidationPointInjectionPhase.h"
#include "DFGJITCompiler.h"
#include "DFGLICMPhase.h"
#include "DFGLiveCatchVariablePreservationPhase.h"
#include "DFGLivenessAnalysisPhase.h"
#include "DFGLoopPreHeaderCreationPhase.h"
#include "DFGMaximalFlushInsertionPhase.h"
#include "DFGMovHintRemovalPhase.h"
#include "DFGOSRAvailabilityAnalysisPhase.h"
#include "DFGOSREntrypointCreationPhase.h"
#include "DFGObjectAllocationSinkingPhase.h"
#include "DFGPhantomInsertionPhase.h"
#include "DFGPredictionInjectionPhase.h"
#include "DFGPredictionPropagationPhase.h"
#include "DFGPutStackSinkingPhase.h"
#include "DFGSSAConversionPhase.h"
#include "DFGSSALoweringPhase.h"
#include "DFGStackLayoutPhase.h"
#include "DFGStaticExecutionCountEstimationPhase.h"
#include "DFGStoreBarrierInsertionPhase.h"
#include "DFGStrengthReductionPhase.h"
#include "DFGStructureRegistrationPhase.h"
#include "DFGTierUpCheckInjectionPhase.h"
#include "DFGTypeCheckHoistingPhase.h"
#include "DFGUnificationPhase.h"
#include "DFGValidate.h"
#include "DFGVarargsForwardingPhase.h"
#include "DFGVirtualRegisterAllocationPhase.h"
#include "DFGWatchpointCollectionPhase.h"
#include "JSCInlines.h"
#include "OperandsInlines.h"
#include "ProfilerDatabase.h"
#include "TrackedReferences.h"
#include "VMInlines.h"
#include <wtf/CurrentTime.h>
#if ENABLE(FTL_JIT)
#include "FTLCapabilities.h"
#include "FTLCompile.h"
#include "FTLFail.h"
#include "FTLLink.h"
#include "FTLLowerDFGToB3.h"
#include "FTLState.h"
#endif
namespace JSC {
extern double totalDFGCompileTime;
extern double totalFTLCompileTime;
extern double totalFTLDFGCompileTime;
extern double totalFTLB3CompileTime;
}
namespace JSC { namespace DFG {
namespace {
void dumpAndVerifyGraph(Graph& graph, const char* text, bool forceDump = false)
{
GraphDumpMode modeForFinalValidate = DumpGraph;
if (verboseCompilationEnabled(graph.m_plan.mode) || forceDump) {
dataLog(text, "\n");
graph.dump();
modeForFinalValidate = DontDumpGraph;
}
if (validationEnabled())
validate(graph, modeForFinalValidate);
}
Profiler::CompilationKind profilerCompilationKindForMode(CompilationMode mode)
{
switch (mode) {
case InvalidCompilationMode:
RELEASE_ASSERT_NOT_REACHED();
return Profiler::DFG;
case DFGMode:
return Profiler::DFG;
case FTLMode:
return Profiler::FTL;
case FTLForOSREntryMode:
return Profiler::FTLForOSREntry;
}
RELEASE_ASSERT_NOT_REACHED();
return Profiler::DFG;
}
} // anonymous namespace
Plan::Plan(CodeBlock* passedCodeBlock, CodeBlock* profiledDFGCodeBlock,
CompilationMode mode, unsigned osrEntryBytecodeIndex,
const Operands<JSValue>& mustHandleValues)
: vm(passedCodeBlock->vm())
, codeBlock(passedCodeBlock)
, profiledDFGCodeBlock(profiledDFGCodeBlock)
, mode(mode)
, osrEntryBytecodeIndex(osrEntryBytecodeIndex)
, mustHandleValues(mustHandleValues)
, compilation(vm->m_perBytecodeProfiler ? adoptRef(new Profiler::Compilation(vm->m_perBytecodeProfiler->ensureBytecodesFor(codeBlock), profilerCompilationKindForMode(mode))) : 0)
, inlineCallFrames(adoptRef(new InlineCallFrameSet()))
, identifiers(codeBlock)
, weakReferences(codeBlock)
, stage(Preparing)
{
}
Plan::~Plan()
{
}
bool Plan::computeCompileTimes() const
{
return reportCompileTimes()
|| Options::reportTotalCompileTimes()
|| (vm && vm->m_perBytecodeProfiler);
}
bool Plan::reportCompileTimes() const
{
return Options::reportCompileTimes()
|| Options::reportDFGCompileTimes()
|| (Options::reportFTLCompileTimes() && isFTL(mode));
}
void Plan::compileInThread(LongLivedState& longLivedState, ThreadData* threadData)
{
this->threadData = threadData;
double before = 0;
CString codeBlockName;
if (UNLIKELY(computeCompileTimes()))
before = monotonicallyIncreasingTimeMS();
if (UNLIKELY(reportCompileTimes()))
codeBlockName = toCString(*codeBlock);
CompilationScope compilationScope;
if (logCompilationChanges(mode))
dataLog("DFG(Plan) compiling ", *codeBlock, " with ", mode, ", number of instructions = ", codeBlock->instructionCount(), "\n");
CompilationPath path = compileInThreadImpl(longLivedState);
RELEASE_ASSERT(path == CancelPath || finalizer);
RELEASE_ASSERT((path == CancelPath) == (stage == Cancelled));
double after = 0;
if (UNLIKELY(computeCompileTimes())) {
after = monotonicallyIncreasingTimeMS();
if (Options::reportTotalCompileTimes()) {
if (isFTL(mode)) {
totalFTLCompileTime += after - before;
totalFTLDFGCompileTime += m_timeBeforeFTL - before;
totalFTLB3CompileTime += after - m_timeBeforeFTL;
} else
totalDFGCompileTime += after - before;
}
}
const char* pathName = nullptr;
switch (path) {
case FailPath:
pathName = "N/A (fail)";
break;
case DFGPath:
pathName = "DFG";
break;
case FTLPath:
pathName = "FTL";
break;
case CancelPath:
pathName = "Cancelled";
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
if (codeBlock) { // codeBlock will be null if the compilation was cancelled.
if (path == FTLPath)
CODEBLOCK_LOG_EVENT(codeBlock, "ftlCompile", ("took ", after - before, " ms (DFG: ", m_timeBeforeFTL - before, ", B3: ", after - m_timeBeforeFTL, ") with ", pathName));
else
CODEBLOCK_LOG_EVENT(codeBlock, "dfgCompile", ("took ", after - before, " ms with ", pathName));
}
if (UNLIKELY(reportCompileTimes())) {
dataLog("Optimized ", codeBlockName, " using ", mode, " with ", pathName, " into ", finalizer ? finalizer->codeSize() : 0, " bytes in ", after - before, " ms");
if (path == FTLPath)
dataLog(" (DFG: ", m_timeBeforeFTL - before, ", B3: ", after - m_timeBeforeFTL, ")");
dataLog(".\n");
}
}
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState)
{
cleanMustHandleValuesIfNecessary();
if (verboseCompilationEnabled(mode) && osrEntryBytecodeIndex != UINT_MAX) {
dataLog("\n");
dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n");
dataLog("\n");
}
Graph dfg(*vm, *this, longLivedState);
if (!parse(dfg)) {
finalizer = std::make_unique<FailedFinalizer>(*this);
return FailPath;
}
codeBlock->setCalleeSaveRegisters(RegisterSet::dfgCalleeSaveRegisters());
// By this point the DFG bytecode parser will have potentially mutated various tables
// in the CodeBlock. This is a good time to perform an early shrink, which is more
// powerful than a late one. It's safe to do so because we haven't generated any code
// that references any of the tables directly, yet.
codeBlock->shrinkToFit(CodeBlock::EarlyShrink);
if (validationEnabled())
validate(dfg);
if (Options::dumpGraphAfterParsing()) {
dataLog("Graph after parsing:\n");
dfg.dump();
}
performLiveCatchVariablePreservationPhase(dfg);
if (Options::useMaximalFlushInsertionPhase())
performMaximalFlushInsertion(dfg);
performCPSRethreading(dfg);
performUnification(dfg);
performPredictionInjection(dfg);
performStaticExecutionCountEstimation(dfg);
if (mode == FTLForOSREntryMode) {
bool result = performOSREntrypointCreation(dfg);
if (!result) {
finalizer = std::make_unique<FailedFinalizer>(*this);
return FailPath;
}
performCPSRethreading(dfg);
}
if (validationEnabled())
validate(dfg);
performBackwardsPropagation(dfg);
performPredictionPropagation(dfg);
performFixup(dfg);
performStructureRegistration(dfg);
performInvalidationPointInjection(dfg);
performTypeCheckHoisting(dfg);
dfg.m_fixpointState = FixpointNotConverged;
// For now we're back to avoiding a fixpoint. Note that we've ping-ponged on this decision
// many times. For maximum throughput, it's best to fixpoint. But the throughput benefit is
// small and not likely to show up in FTL anyway. On the other hand, not fixpointing means
// that the compiler compiles more quickly. We want the third tier to compile quickly, which
// not fixpointing accomplishes; and the fourth tier shouldn't need a fixpoint.
if (validationEnabled())
validate(dfg);
performStrengthReduction(dfg);
performCPSRethreading(dfg);
performCFA(dfg);
performConstantFolding(dfg);
bool changed = false;
changed |= performCFGSimplification(dfg);
changed |= performLocalCSE(dfg);
if (validationEnabled())
validate(dfg);
performCPSRethreading(dfg);
if (!isFTL(mode)) {
// Only run this if we're not FTLing, because currently for a LoadVarargs that is forwardable and
// in a non-varargs inlined call frame, this will generate ForwardVarargs while the FTL
// ArgumentsEliminationPhase will create a sequence of GetStack+PutStacks. The GetStack+PutStack
// sequence then gets sunk, eliminating anything that looks like an escape for subsequent phases,
// while the ForwardVarargs doesn't get simplified until later (or not at all) and looks like an
// escape for all of the arguments. This then disables object allocation sinking.
//
// So, for now, we just disable this phase for the FTL.
//
// If we wanted to enable it, we'd have to do any of the following:
// - Enable ForwardVarargs->GetStack+PutStack strength reduction, and have that run before
// PutStack sinking and object allocation sinking.
// - Make VarargsForwarding emit a GetLocal+SetLocal sequence, that we can later turn into
// GetStack+PutStack.
//
// But, it's not super valuable to enable those optimizations, since the FTL
// ArgumentsEliminationPhase does everything that this phase does, and it doesn't introduce this
// pathology.
changed |= performVarargsForwarding(dfg); // Do this after CFG simplification and CPS rethreading.
}
if (changed) {
performCFA(dfg);
performConstantFolding(dfg);
}
// If we're doing validation, then run some analyses, to give them an opportunity
// to self-validate. Now is as good a time as any to do this.
if (validationEnabled()) {
dfg.ensureDominators();
dfg.ensureNaturalLoops();
dfg.ensurePrePostNumbering();
}
switch (mode) {
case DFGMode: {
dfg.m_fixpointState = FixpointConverged;
performTierUpCheckInjection(dfg);
performFastStoreBarrierInsertion(dfg);
performCleanUp(dfg);
performCPSRethreading(dfg);
performDCE(dfg);
performPhantomInsertion(dfg);
performStackLayout(dfg);
performVirtualRegisterAllocation(dfg);
performWatchpointCollection(dfg);
dumpAndVerifyGraph(dfg, "Graph after optimization:");
JITCompiler dataFlowJIT(dfg);
if (codeBlock->codeType() == FunctionCode)
dataFlowJIT.compileFunction();
else
dataFlowJIT.compile();
return DFGPath;
}
case FTLMode:
case FTLForOSREntryMode: {
#if ENABLE(FTL_JIT)
if (FTL::canCompile(dfg) == FTL::CannotCompile) {
finalizer = std::make_unique<FailedFinalizer>(*this);
return FailPath;
}
performCleanUp(dfg); // Reduce the graph size a bit.
performCriticalEdgeBreaking(dfg);
if (Options::createPreHeaders())
performLoopPreHeaderCreation(dfg);
performCPSRethreading(dfg);
performSSAConversion(dfg);
performSSALowering(dfg);
// Ideally, these would be run to fixpoint with the object allocation sinking phase.
performArgumentsElimination(dfg);
if (Options::usePutStackSinking())
performPutStackSinking(dfg);
performConstantHoisting(dfg);
performGlobalCSE(dfg);
performLivenessAnalysis(dfg);
performCFA(dfg);
performConstantFolding(dfg);
performCleanUp(dfg); // Reduce the graph size a lot.
changed = false;
changed |= performStrengthReduction(dfg);
if (Options::useObjectAllocationSinking()) {
changed |= performCriticalEdgeBreaking(dfg);
changed |= performObjectAllocationSinking(dfg);
}
if (changed) {
// State-at-tail and state-at-head will be invalid if we did strength reduction since
// it might increase live ranges.
performLivenessAnalysis(dfg);
performCFA(dfg);
performConstantFolding(dfg);
}
// Currently, this relies on pre-headers still being valid. That precludes running CFG
// simplification before it, unless we re-created the pre-headers. There wouldn't be anything
// wrong with running LICM earlier, if we wanted to put other CFG transforms above this point.
// Alternatively, we could run loop pre-header creation after SSA conversion - but if we did that
// then we'd need to do some simple SSA fix-up.
performLivenessAnalysis(dfg);
performCFA(dfg);
performLICM(dfg);
// FIXME: Currently: IntegerRangeOptimization *must* be run after LICM.
//
// IntegerRangeOptimization makes changes on nodes based on preceding blocks
// and nodes. LICM moves nodes which can invalidates assumptions used
// by IntegerRangeOptimization.
//
// Ideally, the dependencies should be explicit. See https://bugs.webkit.org/show_bug.cgi?id=157534.
performLivenessAnalysis(dfg);
performIntegerRangeOptimization(dfg);
performCleanUp(dfg);
performIntegerCheckCombining(dfg);
performGlobalCSE(dfg);
// At this point we're not allowed to do any further code motion because our reasoning
// about code motion assumes that it's OK to insert GC points in random places.
dfg.m_fixpointState = FixpointConverged;
performLivenessAnalysis(dfg);
performCFA(dfg);
performGlobalStoreBarrierInsertion(dfg);
if (Options::useMovHintRemoval())
performMovHintRemoval(dfg);
performCleanUp(dfg);
performDCE(dfg); // We rely on this to kill dead code that won't be recognized as dead by B3.
performStackLayout(dfg);
performLivenessAnalysis(dfg);
performOSRAvailabilityAnalysis(dfg);
performWatchpointCollection(dfg);
if (FTL::canCompile(dfg) == FTL::CannotCompile) {
finalizer = std::make_unique<FailedFinalizer>(*this);
return FailPath;
}
dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:", shouldDumpDisassembly(mode));
// Flash a safepoint in case the GC wants some action.
Safepoint::Result safepointResult;
{
GraphSafepoint safepoint(dfg, safepointResult);
}
if (safepointResult.didGetCancelled())
return CancelPath;
FTL::State state(dfg);
FTL::lowerDFGToB3(state);
if (UNLIKELY(computeCompileTimes()))
m_timeBeforeFTL = monotonicallyIncreasingTimeMS();
if (Options::b3AlwaysFailsBeforeCompile()) {
FTL::fail(state);
return FTLPath;
}
FTL::compile(state, safepointResult);
if (safepointResult.didGetCancelled())
return CancelPath;
if (Options::b3AlwaysFailsBeforeLink()) {
FTL::fail(state);
return FTLPath;
}
if (state.allocationFailed) {
FTL::fail(state);
return FTLPath;
}
FTL::link(state);
if (state.allocationFailed) {
FTL::fail(state);
return FTLPath;
}
return FTLPath;
#else
RELEASE_ASSERT_NOT_REACHED();
return FailPath;
#endif // ENABLE(FTL_JIT)
}
default:
RELEASE_ASSERT_NOT_REACHED();
return FailPath;
}
}
bool Plan::isStillValid()
{
CodeBlock* replacement = codeBlock->replacement();
if (!replacement)
return false;
// FIXME: This is almost certainly not necessary. There's no way for the baseline
// code to be replaced during a compilation, except if we delete the plan, in which
// case we wouldn't be here.
// https://bugs.webkit.org/show_bug.cgi?id=132707
if (codeBlock->alternative() != replacement->baselineVersion())
return false;
if (!watchpoints.areStillValid())
return false;
return true;
}
void Plan::reallyAdd(CommonData* commonData)
{
watchpoints.reallyAdd(codeBlock, *commonData);
identifiers.reallyAdd(*vm, commonData);
weakReferences.reallyAdd(*vm, commonData);
transitions.reallyAdd(*vm, commonData);
}
void Plan::notifyCompiling()
{
stage = Compiling;
}
void Plan::notifyReady()
{
callback->compilationDidBecomeReadyAsynchronously(codeBlock, profiledDFGCodeBlock);
stage = Ready;
}
CompilationResult Plan::finalizeWithoutNotifyingCallback()
{
// We will establish new references from the code block to things. So, we need a barrier.
vm->heap.writeBarrier(codeBlock);
if (!isStillValid()) {
CODEBLOCK_LOG_EVENT(codeBlock, "dfgFinalize", ("invalidated"));
return CompilationInvalidated;
}
bool result;
if (codeBlock->codeType() == FunctionCode)
result = finalizer->finalizeFunction();
else
result = finalizer->finalize();
if (!result) {
CODEBLOCK_LOG_EVENT(codeBlock, "dfgFinalize", ("failed"));
return CompilationFailed;
}
reallyAdd(codeBlock->jitCode()->dfgCommon());
if (validationEnabled()) {
TrackedReferences trackedReferences;
for (WriteBarrier<JSCell>& reference : codeBlock->jitCode()->dfgCommon()->weakReferences)
trackedReferences.add(reference.get());
for (WriteBarrier<Structure>& reference : codeBlock->jitCode()->dfgCommon()->weakStructureReferences)
trackedReferences.add(reference.get());
for (WriteBarrier<Unknown>& constant : codeBlock->constants())
trackedReferences.add(constant.get());
// Check that any other references that we have anywhere in the JITCode are also
// tracked either strongly or weakly.
codeBlock->jitCode()->validateReferences(trackedReferences);
}
CODEBLOCK_LOG_EVENT(codeBlock, "dfgFinalize", ("succeeded"));
return CompilationSuccessful;
}
void Plan::finalizeAndNotifyCallback()
{
callback->compilationDidComplete(codeBlock, profiledDFGCodeBlock, finalizeWithoutNotifyingCallback());
}
CompilationKey Plan::key()
{
return CompilationKey(codeBlock->alternative(), mode);
}
void Plan::rememberCodeBlocks()
{
// Compilation writes lots of values to a CodeBlock without performing
// an explicit barrier. So, we need to be pessimistic and assume that
// all our CodeBlocks must be visited during GC.
Heap::heap(codeBlock)->writeBarrier(codeBlock);
Heap::heap(codeBlock)->writeBarrier(codeBlock->alternative());
if (profiledDFGCodeBlock)
Heap::heap(profiledDFGCodeBlock)->writeBarrier(profiledDFGCodeBlock);
}
void Plan::checkLivenessAndVisitChildren(SlotVisitor& visitor)
{
if (!isKnownToBeLiveDuringGC())
return;
cleanMustHandleValuesIfNecessary();
for (unsigned i = mustHandleValues.size(); i--;)
visitor.appendUnbarrieredValue(&mustHandleValues[i]);
visitor.appendUnbarrieredReadOnlyPointer(codeBlock);
visitor.appendUnbarrieredReadOnlyPointer(codeBlock->alternative());
visitor.appendUnbarrieredReadOnlyPointer(profiledDFGCodeBlock);
if (inlineCallFrames) {
for (auto* inlineCallFrame : *inlineCallFrames) {
ASSERT(inlineCallFrame->baselineCodeBlock.get());
visitor.appendUnbarrieredReadOnlyPointer(inlineCallFrame->baselineCodeBlock.get());
}
}
weakReferences.visitChildren(visitor);
transitions.visitChildren(visitor);
}
bool Plan::isKnownToBeLiveDuringGC()
{
if (stage == Cancelled)
return false;
if (!Heap::isMarked(codeBlock->ownerExecutable()))
return false;
if (!Heap::isMarked(codeBlock->alternative()))
return false;
if (!!profiledDFGCodeBlock && !Heap::isMarked(profiledDFGCodeBlock))
return false;
return true;
}
void Plan::cancel()
{
vm = nullptr;
codeBlock = nullptr;
profiledDFGCodeBlock = nullptr;
mustHandleValues.clear();
compilation = nullptr;
finalizer = nullptr;
inlineCallFrames = nullptr;
watchpoints = DesiredWatchpoints();
identifiers = DesiredIdentifiers();
weakReferences = DesiredWeakReferences();
transitions = DesiredTransitions();
callback = nullptr;
stage = Cancelled;
}
void Plan::cleanMustHandleValuesIfNecessary()
{
LockHolder locker(mustHandleValueCleaningLock);
if (!mustHandleValuesMayIncludeGarbage)
return;
mustHandleValuesMayIncludeGarbage = false;
if (!codeBlock)
return;
if (!mustHandleValues.numberOfLocals())
return;
FastBitVector liveness = codeBlock->alternative()->livenessAnalysis().getLivenessInfoAtBytecodeOffset(osrEntryBytecodeIndex);
for (unsigned local = mustHandleValues.numberOfLocals(); local--;) {
if (!liveness[local])
mustHandleValues.local(local) = jsUndefined();
}
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)