blob: 1b747246028f48d1a1c1ccbdd518c9db39329ceb [file] [log] [blame]
/*
* Copyright (C) 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGNaturalLoops.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "JSCInlines.h"
#include <wtf/CommaPrinter.h>
namespace JSC { namespace DFG {
void NaturalLoop::dump(PrintStream& out) const
{
out.print("[Header: ", *header(), ", Body:");
for (unsigned i = 0; i < m_body.size(); ++i)
out.print(" ", *m_body[i]);
out.print("]");
}
NaturalLoops::NaturalLoops(Graph& graph)
{
ASSERT(graph.m_dominators);
// Implement the classic dominator-based natural loop finder. The first
// step is to find all control flow edges A -> B where B dominates A.
// Then B is a loop header and A is a backward branching block. We will
// then accumulate, for each loop header, multiple backward branching
// blocks. Then we backwards graph search from the backward branching
// blocks to their loop headers, which gives us all of the blocks in the
// loop body.
static const bool verbose = false;
if (verbose) {
dataLog("Dominators:\n");
graph.m_dominators->dump(WTF::dataFile());
}
m_loops.resize(0);
for (BlockIndex blockIndex = graph.numBlocks(); blockIndex--;) {
BasicBlock* block = graph.block(blockIndex);
if (!block)
continue;
for (unsigned i = block->numSuccessors(); i--;) {
BasicBlock* successor = block->successor(i);
if (!graph.m_dominators->dominates(successor, block))
continue;
bool found = false;
for (unsigned j = m_loops.size(); j--;) {
if (m_loops[j].header() == successor) {
m_loops[j].addBlock(block);
found = true;
break;
}
}
if (found)
continue;
NaturalLoop loop(successor, m_loops.size());
loop.addBlock(block);
m_loops.append(loop);
}
}
if (verbose)
dataLog("After bootstrap: ", *this, "\n");
FastBitVector seenBlocks;
Vector<BasicBlock*, 4> blockWorklist;
seenBlocks.resize(graph.numBlocks());
for (unsigned i = m_loops.size(); i--;) {
NaturalLoop& loop = m_loops[i];
seenBlocks.clearAll();
ASSERT(blockWorklist.isEmpty());
if (verbose)
dataLog("Dealing with loop ", loop, "\n");
for (unsigned j = loop.size(); j--;) {
seenBlocks[loop[j]->index] = true;
blockWorklist.append(loop[j]);
}
while (!blockWorklist.isEmpty()) {
BasicBlock* block = blockWorklist.takeLast();
if (verbose)
dataLog(" Dealing with ", *block, "\n");
if (block == loop.header())
continue;
for (unsigned j = block->predecessors.size(); j--;) {
BasicBlock* predecessor = block->predecessors[j];
if (seenBlocks[predecessor->index])
continue;
loop.addBlock(predecessor);
blockWorklist.append(predecessor);
seenBlocks[predecessor->index] = true;
}
}
}
// Figure out reverse mapping from blocks to loops.
for (BlockIndex blockIndex = graph.numBlocks(); blockIndex--;) {
BasicBlock* block = graph.block(blockIndex);
if (!block)
continue;
for (unsigned i = BasicBlock::numberOfInnerMostLoopIndices; i--;)
block->innerMostLoopIndices[i] = UINT_MAX;
}
for (unsigned loopIndex = m_loops.size(); loopIndex--;) {
NaturalLoop& loop = m_loops[loopIndex];
for (unsigned blockIndexInLoop = loop.size(); blockIndexInLoop--;) {
BasicBlock* block = loop[blockIndexInLoop];
for (unsigned i = 0; i < BasicBlock::numberOfInnerMostLoopIndices; ++i) {
unsigned thisIndex = block->innerMostLoopIndices[i];
if (thisIndex == UINT_MAX || loop.size() < m_loops[thisIndex].size()) {
insertIntoBoundedVector(
block->innerMostLoopIndices, BasicBlock::numberOfInnerMostLoopIndices,
loopIndex, i);
break;
}
}
}
}
// Now each block knows its inner-most loop and its next-to-inner-most loop. Use
// this to figure out loop parenting.
for (unsigned i = m_loops.size(); i--;) {
NaturalLoop& loop = m_loops[i];
RELEASE_ASSERT(loop.header()->innerMostLoopIndices[0] == i);
loop.m_outerLoopIndex = loop.header()->innerMostLoopIndices[1];
}
if (validationEnabled()) {
// Do some self-verification that we've done some of this correctly.
for (BlockIndex blockIndex = graph.numBlocks(); blockIndex--;) {
BasicBlock* block = graph.block(blockIndex);
if (!block)
continue;
Vector<const NaturalLoop*> simpleLoopsOf;
for (unsigned i = m_loops.size(); i--;) {
if (m_loops[i].contains(block))
simpleLoopsOf.append(&m_loops[i]);
}
Vector<const NaturalLoop*> fancyLoopsOf = loopsOf(block);
std::sort(simpleLoopsOf.begin(), simpleLoopsOf.end());
std::sort(fancyLoopsOf.begin(), fancyLoopsOf.end());
RELEASE_ASSERT(simpleLoopsOf == fancyLoopsOf);
}
}
if (verbose)
dataLog("Results: ", *this, "\n");
}
NaturalLoops::~NaturalLoops() { }
Vector<const NaturalLoop*> NaturalLoops::loopsOf(BasicBlock* block) const
{
Vector<const NaturalLoop*> result;
for (const NaturalLoop* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop))
result.append(loop);
return result;
}
void NaturalLoops::dump(PrintStream& out) const
{
out.print("NaturalLoops:{");
CommaPrinter comma;
for (unsigned i = 0; i < m_loops.size(); ++i)
out.print(comma, m_loops[i]);
out.print("}");
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)