blob: 81da6bd4c5fea1e6be0bfaf69775e2ac12f212c5 [file] [log] [blame]
/*
* Copyright (C) 2003-2009, 2011, 2013-2016 Apple Inc. All rights reserved.
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "Heap.h"
#include "CodeBlock.h"
#include "ConservativeRoots.h"
#include "DFGWorklist.h"
#include "EdenGCActivityCallback.h"
#include "FullGCActivityCallback.h"
#include "GCActivityCallback.h"
#include "GCIncomingRefCountedSetInlines.h"
#include "GCSegmentedArrayInlines.h"
#include "GCTypeMap.h"
#include "HasOwnPropertyCache.h"
#include "HeapHelperPool.h"
#include "HeapIterationScope.h"
#include "HeapProfiler.h"
#include "HeapRootVisitor.h"
#include "HeapSnapshot.h"
#include "HeapStatistics.h"
#include "HeapVerifier.h"
#include "IncrementalSweeper.h"
#include "Interpreter.h"
#include "JITStubRoutineSet.h"
#include "JITWorklist.h"
#include "JSCInlines.h"
#include "JSGlobalObject.h"
#include "JSLock.h"
#include "JSVirtualMachineInternal.h"
#include "MarkedSpaceInlines.h"
#include "SamplingProfiler.h"
#include "ShadowChicken.h"
#include "SuperSampler.h"
#include "TypeProfilerLog.h"
#include "UnlinkedCodeBlock.h"
#include "VM.h"
#include "WeakSetInlines.h"
#include <algorithm>
#include <wtf/CurrentTime.h>
#include <wtf/MainThread.h>
#include <wtf/ParallelVectorIterator.h>
#include <wtf/ProcessID.h>
#include <wtf/RAMSize.h>
#include <wtf/SimpleStats.h>
#if USE(FOUNDATION)
#if __has_include(<objc/objc-internal.h>)
#include <objc/objc-internal.h>
#else
extern "C" void* objc_autoreleasePoolPush(void);
extern "C" void objc_autoreleasePoolPop(void *context);
#endif
#endif // USE(FOUNDATION)
using namespace std;
namespace JSC {
namespace {
static const size_t largeHeapSize = 32 * MB; // About 1.5X the average webpage.
const size_t smallHeapSize = 1 * MB; // Matches the FastMalloc per-thread cache.
size_t minHeapSize(HeapType heapType, size_t ramSize)
{
if (heapType == LargeHeap)
return min(largeHeapSize, ramSize / 4);
return smallHeapSize;
}
size_t proportionalHeapSize(size_t heapSize, size_t ramSize)
{
// Try to stay under 1/2 RAM size to leave room for the DOM, rendering, networking, etc.
if (heapSize < ramSize / 4)
return 2 * heapSize;
if (heapSize < ramSize / 2)
return 1.5 * heapSize;
return 1.25 * heapSize;
}
bool isValidSharedInstanceThreadState(VM* vm)
{
return vm->currentThreadIsHoldingAPILock();
}
bool isValidThreadState(VM* vm)
{
if (vm->atomicStringTable() != wtfThreadData().atomicStringTable())
return false;
if (vm->isSharedInstance() && !isValidSharedInstanceThreadState(vm))
return false;
return true;
}
void recordType(TypeCountSet& set, JSCell* cell)
{
const char* typeName = "[unknown]";
const ClassInfo* info = cell->classInfo();
if (info && info->className)
typeName = info->className;
set.add(typeName);
}
bool measurePhaseTiming()
{
return false;
}
HashMap<const char*, GCTypeMap<SimpleStats>>& timingStats()
{
static HashMap<const char*, GCTypeMap<SimpleStats>>* result;
static std::once_flag once;
std::call_once(
once,
[] {
result = new HashMap<const char*, GCTypeMap<SimpleStats>>();
});
return *result;
}
SimpleStats& timingStats(const char* name, HeapOperation operation)
{
return timingStats().add(name, GCTypeMap<SimpleStats>()).iterator->value[operation];
}
class TimingScope {
public:
TimingScope(HeapOperation operation, const char* name)
: m_operation(operation)
, m_name(name)
{
if (measurePhaseTiming())
m_before = monotonicallyIncreasingTimeMS();
}
TimingScope(Heap& heap, const char* name)
: TimingScope(heap.operationInProgress(), name)
{
}
void setOperation(HeapOperation operation)
{
m_operation = operation;
}
void setOperation(Heap& heap)
{
setOperation(heap.operationInProgress());
}
~TimingScope()
{
if (measurePhaseTiming()) {
double after = monotonicallyIncreasingTimeMS();
double timing = after - m_before;
SimpleStats& stats = timingStats(m_name, m_operation);
stats.add(timing);
dataLog("[GC:", m_operation, "] ", m_name, " took: ", timing, " ms (average ", stats.mean(), " ms).\n");
}
}
private:
HeapOperation m_operation;
double m_before;
const char* m_name;
};
} // anonymous namespace
Heap::Heap(VM* vm, HeapType heapType)
: m_heapType(heapType)
, m_ramSize(Options::forceRAMSize() ? Options::forceRAMSize() : ramSize())
, m_minBytesPerCycle(minHeapSize(m_heapType, m_ramSize))
, m_sizeAfterLastCollect(0)
, m_sizeAfterLastFullCollect(0)
, m_sizeBeforeLastFullCollect(0)
, m_sizeAfterLastEdenCollect(0)
, m_sizeBeforeLastEdenCollect(0)
, m_bytesAllocatedThisCycle(0)
, m_bytesAbandonedSinceLastFullCollect(0)
, m_maxEdenSize(m_minBytesPerCycle)
, m_maxHeapSize(m_minBytesPerCycle)
, m_shouldDoFullCollection(false)
, m_totalBytesVisited(0)
, m_operationInProgress(NoOperation)
, m_objectSpace(this)
, m_extraMemorySize(0)
, m_deprecatedExtraMemorySize(0)
, m_machineThreads(this)
, m_slotVisitor(*this)
, m_handleSet(vm)
, m_codeBlocks(std::make_unique<CodeBlockSet>())
, m_jitStubRoutines(std::make_unique<JITStubRoutineSet>())
, m_isSafeToCollect(false)
, m_writeBarrierBuffer(256)
, m_vm(vm)
// We seed with 10ms so that GCActivityCallback::didAllocate doesn't continuously
// schedule the timer if we've never done a collection.
, m_lastFullGCLength(0.01)
, m_lastEdenGCLength(0.01)
, m_fullActivityCallback(GCActivityCallback::createFullTimer(this))
, m_edenActivityCallback(GCActivityCallback::createEdenTimer(this))
#if USE(CF)
, m_sweeper(std::make_unique<IncrementalSweeper>(this, CFRunLoopGetCurrent()))
#else
, m_sweeper(std::make_unique<IncrementalSweeper>(this))
#endif
, m_deferralDepth(0)
#if USE(FOUNDATION)
, m_delayedReleaseRecursionCount(0)
#endif
, m_helperClient(&heapHelperPool())
{
if (Options::verifyHeap())
m_verifier = std::make_unique<HeapVerifier>(this, Options::numberOfGCCyclesToRecordForVerification());
}
Heap::~Heap()
{
for (WeakBlock* block : m_logicallyEmptyWeakBlocks)
WeakBlock::destroy(*this, block);
}
bool Heap::isPagedOut(double deadline)
{
return m_objectSpace.isPagedOut(deadline);
}
// The VM is being destroyed and the collector will never run again.
// Run all pending finalizers now because we won't get another chance.
void Heap::lastChanceToFinalize()
{
RELEASE_ASSERT(!m_vm->entryScope);
RELEASE_ASSERT(m_operationInProgress == NoOperation);
m_arrayBuffers.lastChanceToFinalize();
m_codeBlocks->lastChanceToFinalize();
m_objectSpace.lastChanceToFinalize();
releaseDelayedReleasedObjects();
sweepAllLogicallyEmptyWeakBlocks();
}
void Heap::releaseDelayedReleasedObjects()
{
#if USE(FOUNDATION)
// We need to guard against the case that releasing an object can create more objects due to the
// release calling into JS. When those JS call(s) exit and all locks are being dropped we end up
// back here and could try to recursively release objects. We guard that with a recursive entry
// count. Only the initial call will release objects, recursive calls simple return and let the
// the initial call to the function take care of any objects created during release time.
// This also means that we need to loop until there are no objects in m_delayedReleaseObjects
// and use a temp Vector for the actual releasing.
if (!m_delayedReleaseRecursionCount++) {
while (!m_delayedReleaseObjects.isEmpty()) {
ASSERT(m_vm->currentThreadIsHoldingAPILock());
Vector<RetainPtr<CFTypeRef>> objectsToRelease = WTFMove(m_delayedReleaseObjects);
{
// We need to drop locks before calling out to arbitrary code.
JSLock::DropAllLocks dropAllLocks(m_vm);
void* context = objc_autoreleasePoolPush();
objectsToRelease.clear();
objc_autoreleasePoolPop(context);
}
}
}
m_delayedReleaseRecursionCount--;
#endif
}
void Heap::reportExtraMemoryAllocatedSlowCase(size_t size)
{
didAllocate(size);
collectIfNecessaryOrDefer();
}
void Heap::deprecatedReportExtraMemorySlowCase(size_t size)
{
m_deprecatedExtraMemorySize += size;
reportExtraMemoryAllocatedSlowCase(size);
}
void Heap::reportAbandonedObjectGraph()
{
// Our clients don't know exactly how much memory they
// are abandoning so we just guess for them.
size_t abandonedBytes = static_cast<size_t>(0.1 * capacity());
// We want to accelerate the next collection. Because memory has just
// been abandoned, the next collection has the potential to
// be more profitable. Since allocation is the trigger for collection,
// we hasten the next collection by pretending that we've allocated more memory.
if (m_fullActivityCallback) {
m_fullActivityCallback->didAllocate(
m_sizeAfterLastCollect - m_sizeAfterLastFullCollect + m_bytesAllocatedThisCycle + m_bytesAbandonedSinceLastFullCollect);
}
m_bytesAbandonedSinceLastFullCollect += abandonedBytes;
}
void Heap::protect(JSValue k)
{
ASSERT(k);
ASSERT(m_vm->currentThreadIsHoldingAPILock());
if (!k.isCell())
return;
m_protectedValues.add(k.asCell());
}
bool Heap::unprotect(JSValue k)
{
ASSERT(k);
ASSERT(m_vm->currentThreadIsHoldingAPILock());
if (!k.isCell())
return false;
return m_protectedValues.remove(k.asCell());
}
void Heap::addReference(JSCell* cell, ArrayBuffer* buffer)
{
if (m_arrayBuffers.addReference(cell, buffer)) {
collectIfNecessaryOrDefer();
didAllocate(buffer->gcSizeEstimateInBytes());
}
}
void Heap::harvestWeakReferences()
{
m_slotVisitor.harvestWeakReferences();
}
void Heap::finalizeUnconditionalFinalizers()
{
m_slotVisitor.finalizeUnconditionalFinalizers();
}
void Heap::willStartIterating()
{
m_objectSpace.willStartIterating();
}
void Heap::didFinishIterating()
{
m_objectSpace.didFinishIterating();
}
void Heap::completeAllJITPlans()
{
#if ENABLE(JIT)
JITWorklist::instance()->completeAllForVM(*m_vm);
#endif // ENABLE(JIT)
#if ENABLE(DFG_JIT)
DFG::completeAllPlansForVM(*m_vm);
#endif
}
void Heap::markRoots(double gcStartTime, void* stackOrigin, void* stackTop, MachineThreads::RegisterState& calleeSavedRegisters)
{
TimingScope markRootsTimingScope(*this, "Heap::markRoots");
ASSERT(isValidThreadState(m_vm));
HeapRootVisitor heapRootVisitor(m_slotVisitor);
ConservativeRoots conservativeRoots(*this);
{
TimingScope preConvergenceTimingScope(*this, "Heap::markRoots before convergence");
// We gather conservative roots before clearing mark bits because conservative
// gathering uses the mark bits to determine whether a reference is valid.
{
TimingScope preConvergenceTimingScope(*this, "Heap::markRoots conservative scan");
SuperSamplerScope superSamplerScope(false);
gatherStackRoots(conservativeRoots, stackOrigin, stackTop, calleeSavedRegisters);
gatherJSStackRoots(conservativeRoots);
gatherScratchBufferRoots(conservativeRoots);
}
#if ENABLE(DFG_JIT)
DFG::rememberCodeBlocks(*m_vm);
#endif
#if ENABLE(SAMPLING_PROFILER)
if (SamplingProfiler* samplingProfiler = m_vm->samplingProfiler()) {
// Note that we need to own the lock from now until we're done
// marking the SamplingProfiler's data because once we verify the
// SamplingProfiler's stack traces, we don't want it to accumulate
// more stack traces before we get the chance to mark it.
// This lock is released inside visitSamplingProfiler().
samplingProfiler->getLock().lock();
samplingProfiler->processUnverifiedStackTraces();
}
#endif // ENABLE(SAMPLING_PROFILER)
if (m_operationInProgress == FullCollection) {
m_opaqueRoots.clear();
m_slotVisitor.clearMarkStack();
}
beginMarking();
m_parallelMarkersShouldExit = false;
m_helperClient.setFunction(
[this] () {
SlotVisitor* slotVisitor;
{
LockHolder locker(m_parallelSlotVisitorLock);
if (m_availableParallelSlotVisitors.isEmpty()) {
std::unique_ptr<SlotVisitor> newVisitor =
std::make_unique<SlotVisitor>(*this);
slotVisitor = newVisitor.get();
m_parallelSlotVisitors.append(WTFMove(newVisitor));
} else
slotVisitor = m_availableParallelSlotVisitors.takeLast();
}
WTF::registerGCThread();
{
ParallelModeEnabler parallelModeEnabler(*slotVisitor);
slotVisitor->didStartMarking();
slotVisitor->drainFromShared(SlotVisitor::SlaveDrain);
}
{
LockHolder locker(m_parallelSlotVisitorLock);
m_availableParallelSlotVisitors.append(slotVisitor);
}
});
m_slotVisitor.didStartMarking();
}
{
SuperSamplerScope superSamplerScope(false);
TimingScope convergenceTimingScope(*this, "Heap::markRoots convergence");
ParallelModeEnabler enabler(m_slotVisitor);
m_slotVisitor.donateAndDrain();
visitExternalRememberedSet();
visitSmallStrings();
visitConservativeRoots(conservativeRoots);
visitProtectedObjects(heapRootVisitor);
visitArgumentBuffers(heapRootVisitor);
visitException(heapRootVisitor);
visitStrongHandles(heapRootVisitor);
visitHandleStack(heapRootVisitor);
visitSamplingProfiler();
visitShadowChicken();
traceCodeBlocksAndJITStubRoutines();
m_slotVisitor.drainFromShared(SlotVisitor::MasterDrain);
}
TimingScope postConvergenceTimingScope(*this, "Heap::markRoots after convergence");
// Weak references must be marked last because their liveness depends on
// the liveness of the rest of the object graph.
visitWeakHandles(heapRootVisitor);
{
std::lock_guard<Lock> lock(m_markingMutex);
m_parallelMarkersShouldExit = true;
m_markingConditionVariable.notifyAll();
}
m_helperClient.finish();
updateObjectCounts(gcStartTime);
endMarking();
}
void Heap::gatherStackRoots(ConservativeRoots& roots, void* stackOrigin, void* stackTop, MachineThreads::RegisterState& calleeSavedRegisters)
{
m_jitStubRoutines->clearMarks();
m_machineThreads.gatherConservativeRoots(roots, *m_jitStubRoutines, *m_codeBlocks, stackOrigin, stackTop, calleeSavedRegisters);
}
void Heap::gatherJSStackRoots(ConservativeRoots& roots)
{
#if !ENABLE(JIT)
m_vm->interpreter->cloopStack().gatherConservativeRoots(roots, *m_jitStubRoutines, *m_codeBlocks);
#else
UNUSED_PARAM(roots);
#endif
}
void Heap::gatherScratchBufferRoots(ConservativeRoots& roots)
{
#if ENABLE(DFG_JIT)
m_vm->gatherConservativeRoots(roots);
#else
UNUSED_PARAM(roots);
#endif
}
void Heap::beginMarking()
{
TimingScope timingScope(*this, "Heap::beginMarking");
if (m_operationInProgress == FullCollection)
m_codeBlocks->clearMarksForFullCollection();
{
TimingScope clearNewlyAllocatedTimingScope(*this, "m_objectSpace.clearNewlyAllocated");
m_objectSpace.clearNewlyAllocated();
}
{
TimingScope clearMarksTimingScope(*this, "m_objectSpace.beginMarking");
m_objectSpace.beginMarking();
}
}
void Heap::visitExternalRememberedSet()
{
#if JSC_OBJC_API_ENABLED
scanExternalRememberedSet(*m_vm, m_slotVisitor);
#endif
}
void Heap::visitSmallStrings()
{
if (!m_vm->smallStrings.needsToBeVisited(m_operationInProgress))
return;
m_vm->smallStrings.visitStrongReferences(m_slotVisitor);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Small strings:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitConservativeRoots(ConservativeRoots& roots)
{
m_slotVisitor.append(roots);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Conservative Roots:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitCompilerWorklistWeakReferences()
{
#if ENABLE(DFG_JIT)
for (auto worklist : m_suspendedCompilerWorklists)
worklist->visitWeakReferences(m_slotVisitor);
if (Options::logGC() == GCLogging::Verbose)
dataLog("DFG Worklists:\n", m_slotVisitor);
#endif
}
void Heap::removeDeadCompilerWorklistEntries()
{
#if ENABLE(DFG_JIT)
for (auto worklist : m_suspendedCompilerWorklists)
worklist->removeDeadPlans(*m_vm);
#endif
}
bool Heap::isHeapSnapshotting() const
{
HeapProfiler* heapProfiler = m_vm->heapProfiler();
if (UNLIKELY(heapProfiler))
return heapProfiler->activeSnapshotBuilder();
return false;
}
struct GatherHeapSnapshotData : MarkedBlock::CountFunctor {
GatherHeapSnapshotData(HeapSnapshotBuilder& builder)
: m_builder(builder)
{
}
IterationStatus operator()(HeapCell* heapCell, HeapCell::Kind kind) const
{
if (kind == HeapCell::JSCell) {
JSCell* cell = static_cast<JSCell*>(heapCell);
cell->methodTable()->heapSnapshot(cell, m_builder);
}
return IterationStatus::Continue;
}
HeapSnapshotBuilder& m_builder;
};
void Heap::gatherExtraHeapSnapshotData(HeapProfiler& heapProfiler)
{
if (HeapSnapshotBuilder* builder = heapProfiler.activeSnapshotBuilder()) {
HeapIterationScope heapIterationScope(*this);
GatherHeapSnapshotData functor(*builder);
m_objectSpace.forEachLiveCell(heapIterationScope, functor);
}
}
struct RemoveDeadHeapSnapshotNodes : MarkedBlock::CountFunctor {
RemoveDeadHeapSnapshotNodes(HeapSnapshot& snapshot)
: m_snapshot(snapshot)
{
}
IterationStatus operator()(HeapCell* cell, HeapCell::Kind kind) const
{
if (kind == HeapCell::JSCell)
m_snapshot.sweepCell(static_cast<JSCell*>(cell));
return IterationStatus::Continue;
}
HeapSnapshot& m_snapshot;
};
void Heap::removeDeadHeapSnapshotNodes(HeapProfiler& heapProfiler)
{
if (HeapSnapshot* snapshot = heapProfiler.mostRecentSnapshot()) {
HeapIterationScope heapIterationScope(*this);
RemoveDeadHeapSnapshotNodes functor(*snapshot);
m_objectSpace.forEachDeadCell(heapIterationScope, functor);
snapshot->shrinkToFit();
}
}
void Heap::visitProtectedObjects(HeapRootVisitor& heapRootVisitor)
{
for (auto& pair : m_protectedValues)
heapRootVisitor.visit(&pair.key);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Protected Objects:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitArgumentBuffers(HeapRootVisitor& visitor)
{
if (!m_markListSet || !m_markListSet->size())
return;
MarkedArgumentBuffer::markLists(visitor, *m_markListSet);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Argument Buffers:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitException(HeapRootVisitor& visitor)
{
if (!m_vm->exception() && !m_vm->lastException())
return;
visitor.visit(m_vm->addressOfException());
visitor.visit(m_vm->addressOfLastException());
if (Options::logGC() == GCLogging::Verbose)
dataLog("Exceptions:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitStrongHandles(HeapRootVisitor& visitor)
{
m_handleSet.visitStrongHandles(visitor);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Strong Handles:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitHandleStack(HeapRootVisitor& visitor)
{
m_handleStack.visit(visitor);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Handle Stack:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitSamplingProfiler()
{
#if ENABLE(SAMPLING_PROFILER)
if (SamplingProfiler* samplingProfiler = m_vm->samplingProfiler()) {
ASSERT(samplingProfiler->getLock().isLocked());
samplingProfiler->visit(m_slotVisitor);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Sampling Profiler data:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
samplingProfiler->getLock().unlock();
}
#endif // ENABLE(SAMPLING_PROFILER)
}
void Heap::visitShadowChicken()
{
m_vm->shadowChicken().visitChildren(m_slotVisitor);
}
void Heap::traceCodeBlocksAndJITStubRoutines()
{
m_jitStubRoutines->traceMarkedStubRoutines(m_slotVisitor);
if (Options::logGC() == GCLogging::Verbose)
dataLog("Code Blocks and JIT Stub Routines:\n", m_slotVisitor);
m_slotVisitor.donateAndDrain();
}
void Heap::visitWeakHandles(HeapRootVisitor& visitor)
{
TimingScope timingScope(*this, "Heap::visitWeakHandles");
while (true) {
{
TimingScope timingScope(*this, "m_objectSpace.visitWeakSets");
m_objectSpace.visitWeakSets(visitor);
}
harvestWeakReferences();
visitCompilerWorklistWeakReferences();
if (m_slotVisitor.isEmpty())
break;
if (Options::logGC() == GCLogging::Verbose)
dataLog("Live Weak Handles:\n", m_slotVisitor);
{
ParallelModeEnabler enabler(m_slotVisitor);
m_slotVisitor.donateAndDrain();
m_slotVisitor.drainFromShared(SlotVisitor::MasterDrain);
}
}
}
void Heap::updateObjectCounts(double gcStartTime)
{
if (Options::logGC() == GCLogging::Verbose) {
size_t visitCount = m_slotVisitor.visitCount();
visitCount += threadVisitCount();
dataLogF("\nNumber of live Objects after GC %lu, took %.6f secs\n", static_cast<unsigned long>(visitCount), WTF::monotonicallyIncreasingTime() - gcStartTime);
}
if (m_operationInProgress == FullCollection)
m_totalBytesVisited = 0;
m_totalBytesVisitedThisCycle = m_slotVisitor.bytesVisited() + threadBytesVisited();
m_totalBytesVisited += m_totalBytesVisitedThisCycle;
}
void Heap::endMarking()
{
m_slotVisitor.reset();
for (auto& parallelVisitor : m_parallelSlotVisitors)
parallelVisitor->reset();
ASSERT(m_sharedMarkStack.isEmpty());
m_weakReferenceHarvesters.removeAll();
m_objectSpace.endMarking();
}
size_t Heap::objectCount()
{
return m_objectSpace.objectCount();
}
size_t Heap::extraMemorySize()
{
return m_extraMemorySize + m_deprecatedExtraMemorySize + m_arrayBuffers.size();
}
size_t Heap::size()
{
return m_objectSpace.size() + extraMemorySize();
}
size_t Heap::capacity()
{
return m_objectSpace.capacity() + extraMemorySize();
}
size_t Heap::protectedGlobalObjectCount()
{
size_t result = 0;
forEachProtectedCell(
[&] (JSCell* cell) {
if (cell->isObject() && asObject(cell)->isGlobalObject())
result++;
});
return result;
}
size_t Heap::globalObjectCount()
{
HeapIterationScope iterationScope(*this);
size_t result = 0;
m_objectSpace.forEachLiveCell(
iterationScope,
[&] (HeapCell* heapCell, HeapCell::Kind kind) -> IterationStatus {
if (kind != HeapCell::JSCell)
return IterationStatus::Continue;
JSCell* cell = static_cast<JSCell*>(heapCell);
if (cell->isObject() && asObject(cell)->isGlobalObject())
result++;
return IterationStatus::Continue;
});
return result;
}
size_t Heap::protectedObjectCount()
{
size_t result = 0;
forEachProtectedCell(
[&] (JSCell*) {
result++;
});
return result;
}
std::unique_ptr<TypeCountSet> Heap::protectedObjectTypeCounts()
{
std::unique_ptr<TypeCountSet> result = std::make_unique<TypeCountSet>();
forEachProtectedCell(
[&] (JSCell* cell) {
recordType(*result, cell);
});
return result;
}
std::unique_ptr<TypeCountSet> Heap::objectTypeCounts()
{
std::unique_ptr<TypeCountSet> result = std::make_unique<TypeCountSet>();
HeapIterationScope iterationScope(*this);
m_objectSpace.forEachLiveCell(
iterationScope,
[&] (HeapCell* cell, HeapCell::Kind kind) -> IterationStatus {
if (kind == HeapCell::JSCell)
recordType(*result, static_cast<JSCell*>(cell));
return IterationStatus::Continue;
});
return result;
}
void Heap::deleteAllCodeBlocks()
{
// If JavaScript is running, it's not safe to delete all JavaScript code, since
// we'll end up returning to deleted code.
RELEASE_ASSERT(!m_vm->entryScope);
ASSERT(m_operationInProgress == NoOperation);
completeAllJITPlans();
for (ExecutableBase* executable : m_executables)
executable->clearCode();
}
void Heap::deleteAllUnlinkedCodeBlocks()
{
for (ExecutableBase* current : m_executables) {
if (!current->isFunctionExecutable())
continue;
static_cast<FunctionExecutable*>(current)->unlinkedExecutable()->clearCode();
}
}
void Heap::clearUnmarkedExecutables()
{
for (unsigned i = m_executables.size(); i--;) {
ExecutableBase* current = m_executables[i];
if (isMarked(current))
continue;
// Eagerly dereference the Executable's JITCode in order to run watchpoint
// destructors. Otherwise, watchpoints might fire for deleted CodeBlocks.
current->clearCode();
std::swap(m_executables[i], m_executables.last());
m_executables.removeLast();
}
m_executables.shrinkToFit();
}
void Heap::deleteUnmarkedCompiledCode()
{
clearUnmarkedExecutables();
m_codeBlocks->deleteUnmarkedAndUnreferenced(m_operationInProgress);
m_jitStubRoutines->deleteUnmarkedJettisonedStubRoutines();
}
void Heap::addToRememberedSet(const JSCell* cell)
{
ASSERT(cell);
ASSERT(!Options::useConcurrentJIT() || !isCompilationThread());
ASSERT(isBlack(cell->cellState()));
// Indicate that this object is grey and that it's one of the following:
// - A re-greyed object during a concurrent collection.
// - An old remembered object.
// "OldGrey" doesn't tell us which of these things is true, but we usually treat the two cases the
// same.
cell->setCellState(CellState::OldGrey);
m_slotVisitor.appendToMarkStack(const_cast<JSCell*>(cell));
}
void Heap::collectAllGarbage()
{
SuperSamplerScope superSamplerScope(false);
if (!m_isSafeToCollect)
return;
collectWithoutAnySweep(FullCollection);
DeferGCForAWhile deferGC(*this);
if (UNLIKELY(Options::useImmortalObjects()))
sweeper()->willFinishSweeping();
else {
double before = 0;
if (Options::logGC()) {
dataLog("[Full sweep: ", capacity() / 1024, " kb ");
before = currentTimeMS();
}
m_objectSpace.sweep();
m_objectSpace.shrink();
if (Options::logGC()) {
double after = currentTimeMS();
dataLog("=> ", capacity() / 1024, " kb, ", after - before, " ms]\n");
}
}
m_objectSpace.assertNoUnswept();
sweepAllLogicallyEmptyWeakBlocks();
}
void Heap::collect(HeapOperation collectionType)
{
SuperSamplerScope superSamplerScope(false);
if (!m_isSafeToCollect)
return;
collectWithoutAnySweep(collectionType);
}
NEVER_INLINE void Heap::collectWithoutAnySweep(HeapOperation collectionType)
{
void* stackTop;
ALLOCATE_AND_GET_REGISTER_STATE(registers);
collectImpl(collectionType, wtfThreadData().stack().origin(), &stackTop, registers);
sanitizeStackForVM(m_vm);
}
NEVER_INLINE void Heap::collectImpl(HeapOperation collectionType, void* stackOrigin, void* stackTop, MachineThreads::RegisterState& calleeSavedRegisters)
{
SuperSamplerScope superSamplerScope(false);
TimingScope collectImplTimingScope(collectionType, "Heap::collectImpl");
#if ENABLE(ALLOCATION_LOGGING)
dataLogF("JSC GC starting collection.\n");
#endif
double before = 0;
if (Options::logGC()) {
dataLog("[GC: ", capacity() / 1024, " kb ");
before = currentTimeMS();
}
double gcStartTime;
{
TimingScope earlyTimingScope(collectionType, "Heap::collectImpl before markRoots");
if (vm()->typeProfiler()) {
DeferGCForAWhile awhile(*this);
vm()->typeProfilerLog()->processLogEntries(ASCIILiteral("GC"));
}
#if ENABLE(JIT)
{
DeferGCForAWhile awhile(*this);
JITWorklist::instance()->completeAllForVM(*m_vm);
}
#endif // ENABLE(JIT)
vm()->shadowChicken().update(*vm(), vm()->topCallFrame);
RELEASE_ASSERT(!m_deferralDepth);
ASSERT(vm()->currentThreadIsHoldingAPILock());
RELEASE_ASSERT(vm()->atomicStringTable() == wtfThreadData().atomicStringTable());
ASSERT(m_isSafeToCollect);
RELEASE_ASSERT(m_operationInProgress == NoOperation);
suspendCompilerThreads();
willStartCollection(collectionType);
collectImplTimingScope.setOperation(*this);
earlyTimingScope.setOperation(*this);
gcStartTime = WTF::monotonicallyIncreasingTime();
if (m_verifier) {
// Verify that live objects from the last GC cycle haven't been corrupted by
// mutators before we begin this new GC cycle.
m_verifier->verify(HeapVerifier::Phase::BeforeGC);
m_verifier->initializeGCCycle();
m_verifier->gatherLiveObjects(HeapVerifier::Phase::BeforeMarking);
}
flushOldStructureIDTables();
stopAllocation();
prepareForMarking();
flushWriteBarrierBuffer();
if (HasOwnPropertyCache* cache = vm()->hasOwnPropertyCache())
cache->clear();
}
markRoots(gcStartTime, stackOrigin, stackTop, calleeSavedRegisters);
TimingScope lateTimingScope(*this, "Heap::collectImpl after markRoots");
if (m_verifier) {
m_verifier->gatherLiveObjects(HeapVerifier::Phase::AfterMarking);
m_verifier->verify(HeapVerifier::Phase::AfterMarking);
}
if (vm()->typeProfiler())
vm()->typeProfiler()->invalidateTypeSetCache();
reapWeakHandles();
pruneStaleEntriesFromWeakGCMaps();
sweepArrayBuffers();
snapshotUnswept();
finalizeUnconditionalFinalizers();
removeDeadCompilerWorklistEntries();
deleteUnmarkedCompiledCode();
deleteSourceProviderCaches();
notifyIncrementalSweeper();
writeBarrierCurrentlyExecutingCodeBlocks();
prepareForAllocation();
updateAllocationLimits();
didFinishCollection(gcStartTime);
resumeCompilerThreads();
sweepLargeAllocations();
if (m_verifier) {
m_verifier->trimDeadObjects();
m_verifier->verify(HeapVerifier::Phase::AfterGC);
}
if (Options::logGC()) {
double after = currentTimeMS();
dataLog(after - before, " ms]\n");
}
if (false) {
dataLog("Heap state after GC:\n");
m_objectSpace.dumpBits();
}
}
void Heap::sweepLargeAllocations()
{
m_objectSpace.sweepLargeAllocations();
}
void Heap::suspendCompilerThreads()
{
#if ENABLE(DFG_JIT)
ASSERT(m_suspendedCompilerWorklists.isEmpty());
for (unsigned i = DFG::numberOfWorklists(); i--;) {
if (DFG::Worklist* worklist = DFG::worklistForIndexOrNull(i)) {
m_suspendedCompilerWorklists.append(worklist);
worklist->suspendAllThreads();
}
}
#endif
}
void Heap::willStartCollection(HeapOperation collectionType)
{
if (Options::logGC())
dataLog("=> ");
if (shouldDoFullCollection(collectionType)) {
m_operationInProgress = FullCollection;
m_shouldDoFullCollection = false;
if (Options::logGC())
dataLog("FullCollection, ");
} else {
m_operationInProgress = EdenCollection;
if (Options::logGC())
dataLog("EdenCollection, ");
}
if (m_operationInProgress == FullCollection) {
m_sizeBeforeLastFullCollect = m_sizeAfterLastCollect + m_bytesAllocatedThisCycle;
m_extraMemorySize = 0;
m_deprecatedExtraMemorySize = 0;
#if ENABLE(RESOURCE_USAGE)
m_externalMemorySize = 0;
#endif
if (m_fullActivityCallback)
m_fullActivityCallback->willCollect();
} else {
ASSERT(m_operationInProgress == EdenCollection);
m_sizeBeforeLastEdenCollect = m_sizeAfterLastCollect + m_bytesAllocatedThisCycle;
}
if (m_edenActivityCallback)
m_edenActivityCallback->willCollect();
for (auto* observer : m_observers)
observer->willGarbageCollect();
}
void Heap::flushOldStructureIDTables()
{
m_structureIDTable.flushOldTables();
}
void Heap::flushWriteBarrierBuffer()
{
if (m_operationInProgress == EdenCollection) {
m_writeBarrierBuffer.flush(*this);
return;
}
m_writeBarrierBuffer.reset();
}
void Heap::stopAllocation()
{
m_objectSpace.stopAllocating();
}
void Heap::prepareForMarking()
{
m_objectSpace.prepareForMarking();
}
void Heap::reapWeakHandles()
{
m_objectSpace.reapWeakSets();
}
void Heap::pruneStaleEntriesFromWeakGCMaps()
{
if (m_operationInProgress != FullCollection)
return;
for (auto& pruneCallback : m_weakGCMaps.values())
pruneCallback();
}
void Heap::sweepArrayBuffers()
{
m_arrayBuffers.sweep();
}
void Heap::snapshotUnswept()
{
TimingScope timingScope(*this, "Heap::snapshotUnswept");
m_objectSpace.snapshotUnswept();
}
void Heap::deleteSourceProviderCaches()
{
m_vm->clearSourceProviderCaches();
}
void Heap::notifyIncrementalSweeper()
{
if (m_operationInProgress == FullCollection) {
if (!m_logicallyEmptyWeakBlocks.isEmpty())
m_indexOfNextLogicallyEmptyWeakBlockToSweep = 0;
}
m_sweeper->startSweeping();
}
void Heap::writeBarrierCurrentlyExecutingCodeBlocks()
{
m_codeBlocks->writeBarrierCurrentlyExecutingCodeBlocks(this);
}
void Heap::prepareForAllocation()
{
m_objectSpace.prepareForAllocation();
}
void Heap::updateAllocationLimits()
{
static const bool verbose = false;
if (verbose) {
dataLog("\n");
dataLog("bytesAllocatedThisCycle = ", m_bytesAllocatedThisCycle, "\n");
}
// Calculate our current heap size threshold for the purpose of figuring out when we should
// run another collection. This isn't the same as either size() or capacity(), though it should
// be somewhere between the two. The key is to match the size calculations involved calls to
// didAllocate(), while never dangerously underestimating capacity(). In extreme cases of
// fragmentation, we may have size() much smaller than capacity().
size_t currentHeapSize = 0;
// For marked space, we use the total number of bytes visited. This matches the logic for
// MarkedAllocator's calls to didAllocate(), which effectively accounts for the total size of
// objects allocated rather than blocks used. This will underestimate capacity(), and in case
// of fragmentation, this may be substantial. Fortunately, marked space rarely fragments because
// cells usually have a narrow range of sizes. So, the underestimation is probably OK.
currentHeapSize += m_totalBytesVisited;
if (verbose)
dataLog("totalBytesVisited = ", m_totalBytesVisited, ", currentHeapSize = ", currentHeapSize, "\n");
// It's up to the user to ensure that extraMemorySize() ends up corresponding to allocation-time
// extra memory reporting.
currentHeapSize += extraMemorySize();
if (verbose)
dataLog("extraMemorySize() = ", extraMemorySize(), ", currentHeapSize = ", currentHeapSize, "\n");
if (Options::gcMaxHeapSize() && currentHeapSize > Options::gcMaxHeapSize())
HeapStatistics::exitWithFailure();
if (m_operationInProgress == FullCollection) {
// To avoid pathological GC churn in very small and very large heaps, we set
// the new allocation limit based on the current size of the heap, with a
// fixed minimum.
m_maxHeapSize = max(minHeapSize(m_heapType, m_ramSize), proportionalHeapSize(currentHeapSize, m_ramSize));
if (verbose)
dataLog("Full: maxHeapSize = ", m_maxHeapSize, "\n");
m_maxEdenSize = m_maxHeapSize - currentHeapSize;
if (verbose)
dataLog("Full: maxEdenSize = ", m_maxEdenSize, "\n");
m_sizeAfterLastFullCollect = currentHeapSize;
if (verbose)
dataLog("Full: sizeAfterLastFullCollect = ", currentHeapSize, "\n");
m_bytesAbandonedSinceLastFullCollect = 0;
if (verbose)
dataLog("Full: bytesAbandonedSinceLastFullCollect = ", 0, "\n");
} else {
ASSERT(currentHeapSize >= m_sizeAfterLastCollect);
// Theoretically, we shouldn't ever scan more memory than the heap size we planned to have.
// But we are sloppy, so we have to defend against the overflow.
m_maxEdenSize = currentHeapSize > m_maxHeapSize ? 0 : m_maxHeapSize - currentHeapSize;
if (verbose)
dataLog("Eden: maxEdenSize = ", m_maxEdenSize, "\n");
m_sizeAfterLastEdenCollect = currentHeapSize;
if (verbose)
dataLog("Eden: sizeAfterLastEdenCollect = ", currentHeapSize, "\n");
double edenToOldGenerationRatio = (double)m_maxEdenSize / (double)m_maxHeapSize;
double minEdenToOldGenerationRatio = 1.0 / 3.0;
if (edenToOldGenerationRatio < minEdenToOldGenerationRatio)
m_shouldDoFullCollection = true;
// This seems suspect at first, but what it does is ensure that the nursery size is fixed.
m_maxHeapSize += currentHeapSize - m_sizeAfterLastCollect;
if (verbose)
dataLog("Eden: maxHeapSize = ", m_maxHeapSize, "\n");
m_maxEdenSize = m_maxHeapSize - currentHeapSize;
if (verbose)
dataLog("Eden: maxEdenSize = ", m_maxEdenSize, "\n");
if (m_fullActivityCallback) {
ASSERT(currentHeapSize >= m_sizeAfterLastFullCollect);
m_fullActivityCallback->didAllocate(currentHeapSize - m_sizeAfterLastFullCollect);
}
}
m_sizeAfterLastCollect = currentHeapSize;
if (verbose)
dataLog("sizeAfterLastCollect = ", m_sizeAfterLastCollect, "\n");
m_bytesAllocatedThisCycle = 0;
if (Options::logGC())
dataLog(currentHeapSize / 1024, " kb, ");
}
void Heap::didFinishCollection(double gcStartTime)
{
double gcEndTime = WTF::monotonicallyIncreasingTime();
HeapOperation operation = m_operationInProgress;
if (m_operationInProgress == FullCollection)
m_lastFullGCLength = gcEndTime - gcStartTime;
else
m_lastEdenGCLength = gcEndTime - gcStartTime;
#if ENABLE(RESOURCE_USAGE)
ASSERT(externalMemorySize() <= extraMemorySize());
#endif
if (Options::recordGCPauseTimes())
HeapStatistics::recordGCPauseTime(gcStartTime, gcEndTime);
if (Options::useZombieMode())
zombifyDeadObjects();
if (Options::dumpObjectStatistics())
HeapStatistics::dumpObjectStatistics(this);
if (HeapProfiler* heapProfiler = m_vm->heapProfiler()) {
gatherExtraHeapSnapshotData(*heapProfiler);
removeDeadHeapSnapshotNodes(*heapProfiler);
}
RELEASE_ASSERT(m_operationInProgress == EdenCollection || m_operationInProgress == FullCollection);
m_operationInProgress = NoOperation;
for (auto* observer : m_observers)
observer->didGarbageCollect(operation);
}
void Heap::resumeCompilerThreads()
{
#if ENABLE(DFG_JIT)
for (auto worklist : m_suspendedCompilerWorklists)
worklist->resumeAllThreads();
m_suspendedCompilerWorklists.clear();
#endif
}
void Heap::setFullActivityCallback(PassRefPtr<FullGCActivityCallback> activityCallback)
{
m_fullActivityCallback = activityCallback;
}
void Heap::setEdenActivityCallback(PassRefPtr<EdenGCActivityCallback> activityCallback)
{
m_edenActivityCallback = activityCallback;
}
GCActivityCallback* Heap::fullActivityCallback()
{
return m_fullActivityCallback.get();
}
GCActivityCallback* Heap::edenActivityCallback()
{
return m_edenActivityCallback.get();
}
void Heap::setIncrementalSweeper(std::unique_ptr<IncrementalSweeper> sweeper)
{
m_sweeper = WTFMove(sweeper);
}
IncrementalSweeper* Heap::sweeper()
{
return m_sweeper.get();
}
void Heap::setGarbageCollectionTimerEnabled(bool enable)
{
if (m_fullActivityCallback)
m_fullActivityCallback->setEnabled(enable);
if (m_edenActivityCallback)
m_edenActivityCallback->setEnabled(enable);
}
void Heap::didAllocate(size_t bytes)
{
if (m_edenActivityCallback)
m_edenActivityCallback->didAllocate(m_bytesAllocatedThisCycle + m_bytesAbandonedSinceLastFullCollect);
m_bytesAllocatedThisCycle += bytes;
}
bool Heap::isValidAllocation(size_t)
{
if (!isValidThreadState(m_vm))
return false;
if (m_operationInProgress != NoOperation)
return false;
return true;
}
void Heap::addFinalizer(JSCell* cell, Finalizer finalizer)
{
WeakSet::allocate(cell, &m_finalizerOwner, reinterpret_cast<void*>(finalizer)); // Balanced by FinalizerOwner::finalize().
}
void Heap::FinalizerOwner::finalize(Handle<Unknown> handle, void* context)
{
HandleSlot slot = handle.slot();
Finalizer finalizer = reinterpret_cast<Finalizer>(context);
finalizer(slot->asCell());
WeakSet::deallocate(WeakImpl::asWeakImpl(slot));
}
void Heap::addExecutable(ExecutableBase* executable)
{
m_executables.append(executable);
}
void Heap::collectAllGarbageIfNotDoneRecently()
{
if (!m_fullActivityCallback) {
collectAllGarbage();
return;
}
if (m_fullActivityCallback->didSyncGCRecently()) {
// A synchronous GC was already requested recently so we merely accelerate next collection.
reportAbandonedObjectGraph();
return;
}
m_fullActivityCallback->setDidSyncGCRecently();
collectAllGarbage();
}
class Zombify : public MarkedBlock::VoidFunctor {
public:
inline void visit(HeapCell* cell) const
{
void** current = reinterpret_cast<void**>(cell);
// We want to maintain zapped-ness because that's how we know if we've called
// the destructor.
if (cell->isZapped())
current++;
void* limit = static_cast<void*>(reinterpret_cast<char*>(cell) + cell->cellSize());
for (; current < limit; current++)
*current = zombifiedBits;
}
IterationStatus operator()(HeapCell* cell, HeapCell::Kind) const
{
visit(cell);
return IterationStatus::Continue;
}
};
void Heap::zombifyDeadObjects()
{
// Sweep now because destructors will crash once we're zombified.
m_objectSpace.sweep();
HeapIterationScope iterationScope(*this);
m_objectSpace.forEachDeadCell(iterationScope, Zombify());
}
void Heap::flushWriteBarrierBuffer(JSCell* cell)
{
m_writeBarrierBuffer.flush(*this);
m_writeBarrierBuffer.add(cell);
}
bool Heap::shouldDoFullCollection(HeapOperation requestedCollectionType) const
{
if (!Options::useGenerationalGC())
return true;
switch (requestedCollectionType) {
case EdenCollection:
return false;
case FullCollection:
return true;
case AnyCollection:
return m_shouldDoFullCollection;
default:
RELEASE_ASSERT_NOT_REACHED();
return false;
}
RELEASE_ASSERT_NOT_REACHED();
return false;
}
void Heap::addLogicallyEmptyWeakBlock(WeakBlock* block)
{
m_logicallyEmptyWeakBlocks.append(block);
}
void Heap::sweepAllLogicallyEmptyWeakBlocks()
{
if (m_logicallyEmptyWeakBlocks.isEmpty())
return;
m_indexOfNextLogicallyEmptyWeakBlockToSweep = 0;
while (sweepNextLogicallyEmptyWeakBlock()) { }
}
bool Heap::sweepNextLogicallyEmptyWeakBlock()
{
if (m_indexOfNextLogicallyEmptyWeakBlockToSweep == WTF::notFound)
return false;
WeakBlock* block = m_logicallyEmptyWeakBlocks[m_indexOfNextLogicallyEmptyWeakBlockToSweep];
block->sweep();
if (block->isEmpty()) {
std::swap(m_logicallyEmptyWeakBlocks[m_indexOfNextLogicallyEmptyWeakBlockToSweep], m_logicallyEmptyWeakBlocks.last());
m_logicallyEmptyWeakBlocks.removeLast();
WeakBlock::destroy(*this, block);
} else
m_indexOfNextLogicallyEmptyWeakBlockToSweep++;
if (m_indexOfNextLogicallyEmptyWeakBlockToSweep >= m_logicallyEmptyWeakBlocks.size()) {
m_indexOfNextLogicallyEmptyWeakBlockToSweep = WTF::notFound;
return false;
}
return true;
}
size_t Heap::threadVisitCount()
{
unsigned long result = 0;
for (auto& parallelVisitor : m_parallelSlotVisitors)
result += parallelVisitor->visitCount();
return result;
}
size_t Heap::threadBytesVisited()
{
size_t result = 0;
for (auto& parallelVisitor : m_parallelSlotVisitors)
result += parallelVisitor->bytesVisited();
return result;
}
void Heap::forEachCodeBlockImpl(const ScopedLambda<bool(CodeBlock*)>& func)
{
// We don't know the full set of CodeBlocks until compilation has terminated.
completeAllJITPlans();
return m_codeBlocks->iterate(func);
}
} // namespace JSC