blob: bc0b60f1aee346775bf388bd8d8037f4e2965dfa [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture format tests.
*
* Constants:
* + nearest-neighbor filtering
* + no mipmaps
* + full texture coordinate range (but not outside) tested
* + accessed from fragment shader
* + texture unit 0
* + named texture object
*
* Variables:
* + texture format
* + texture type: 2D or cubemap
*//*--------------------------------------------------------------------*/
#include "es3fTextureFormatTests.hpp"
#include "gluPixelTransfer.hpp"
#include "gluStrUtil.hpp"
#include "gluTexture.hpp"
#include "gluTextureUtil.hpp"
#include "glsTextureTestUtil.hpp"
#include "tcuTextureUtil.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include "gluContextInfo.hpp"
#include "deUniquePtr.hpp"
using std::vector;
using std::string;
using tcu::TestLog;
using de::MovePtr;
using glu::ContextInfo;
namespace deqp
{
namespace gles3
{
namespace Functional
{
using namespace deqp::gls;
using namespace deqp::gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
using tcu::Sampler;
namespace
{
void checkSupport (const glu::ContextInfo& info, deUint32 internalFormat)
{
if (internalFormat == GL_SR8_EXT && !info.isExtensionSupported("GL_EXT_texture_sRGB_R8"))
TCU_THROW(NotSupportedError, "GL_EXT_texture_sRGB_R8 is not supported.");
if (internalFormat == GL_SRG8_EXT && !info.isExtensionSupported("GL_EXT_texture_sRGB_RG8"))
TCU_THROW(NotSupportedError, "GL_EXT_texture_sRGB_RG8 is not supported.");
}
} // anonymous
// Texture2DFormatCase
class Texture2DFormatCase : public tcu::TestCase
{
public:
Texture2DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height);
Texture2DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height);
~Texture2DFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DFormatCase (const Texture2DFormatCase& other);
Texture2DFormatCase& operator= (const Texture2DFormatCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
deUint32 m_format;
deUint32 m_dataType;
int m_width;
int m_height;
glu::Texture2D* m_texture;
TextureRenderer m_renderer;
};
Texture2DFormatCase::Texture2DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
{
}
Texture2DFormatCase::Texture2DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (internalFormat)
, m_dataType (GL_NONE)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
{
}
Texture2DFormatCase::~Texture2DFormatCase (void)
{
deinit();
}
void Texture2DFormatCase::init (void)
{
checkSupport(m_renderCtxInfo, m_format);
TestLog& log = m_testCtx.getLog();
tcu::TextureFormat fmt = m_dataType ? glu::mapGLTransferFormat(m_format, m_dataType) : glu::mapGLInternalFormat(m_format);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt);
std::ostringstream fmtName;
if (m_dataType)
fmtName << glu::getTextureFormatStr(m_format) << ", " << glu::getTypeStr(m_dataType);
else
fmtName << glu::getTextureFormatStr(m_format);
log << TestLog::Message << "2D texture, " << fmtName.str() << ", " << m_width << "x" << m_height
<< ",\n fill with " << formatGradient(&spec.valueMin, &spec.valueMax) << " gradient"
<< TestLog::EndMessage;
m_texture = m_dataType != GL_NONE
? new glu::Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height) // Implicit internal format.
: new glu::Texture2D(m_renderCtx, m_format, m_width, m_height); // Explicit internal format.
// Fill level 0.
m_texture->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax);
}
void Texture2DFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
Texture2DFormatCase::IterateResult Texture2DFormatCase::iterate (void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_renderCtx.getFunctions();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_2D);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
const deUint32 wrapS = GL_CLAMP_TO_EDGE;
const deUint32 wrapT = GL_CLAMP_TO_EDGE;
const deUint32 minFilter = GL_NEAREST;
const deUint32 magFilter = GL_NEAREST;
renderParams.flags |= RenderParams::LOG_ALL;
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
log << TestLog::Message << "Texture parameters:"
<< "\n WRAP_S = " << glu::getTextureParameterValueStr(GL_TEXTURE_WRAP_S, wrapS)
<< "\n WRAP_T = " << glu::getTextureParameterValueStr(GL_TEXTURE_WRAP_T, wrapT)
<< "\n MIN_FILTER = " << glu::getTextureParameterValueStr(GL_TEXTURE_MIN_FILTER, minFilter)
<< "\n MAG_FILTER = " << glu::getTextureParameterValueStr(GL_TEXTURE_MAG_FILTER, magFilter)
<< TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapT);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
// TextureCubeFormatCase
class TextureCubeFormatCase : public tcu::TestCase
{
public:
TextureCubeFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height);
TextureCubeFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height);
~TextureCubeFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureCubeFormatCase (const TextureCubeFormatCase& other);
TextureCubeFormatCase& operator= (const TextureCubeFormatCase& other);
bool testFace (tcu::CubeFace face);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
deUint32 m_format;
deUint32 m_dataType;
int m_width;
int m_height;
glu::TextureCube* m_texture;
TextureRenderer m_renderer;
int m_curFace;
bool m_isOk;
};
TextureCubeFormatCase::TextureCubeFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curFace (0)
, m_isOk (false)
{
}
TextureCubeFormatCase::TextureCubeFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (internalFormat)
, m_dataType (GL_NONE)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curFace (0)
, m_isOk (false)
{
}
TextureCubeFormatCase::~TextureCubeFormatCase (void)
{
deinit();
}
void TextureCubeFormatCase::init (void)
{
checkSupport(m_renderCtxInfo, m_format);
TestLog& log = m_testCtx.getLog();
tcu::TextureFormat fmt = m_dataType ? glu::mapGLTransferFormat(m_format, m_dataType) : glu::mapGLInternalFormat(m_format);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt);
std::ostringstream fmtName;
if (m_dataType)
fmtName << glu::getTextureFormatStr(m_format) << ", " << glu::getTypeStr(m_dataType);
else
fmtName << glu::getTextureFormatStr(m_format);
log << TestLog::Message << "Cube map texture, " << fmtName.str() << ", " << m_width << "x" << m_height
<< ",\n fill with " << formatGradient(&spec.valueMin, &spec.valueMax) << " gradient"
<< TestLog::EndMessage;
DE_ASSERT(m_width == m_height);
m_texture = m_dataType != GL_NONE
? new glu::TextureCube(m_renderCtx, m_format, m_dataType, m_width) // Implicit internal format.
: new glu::TextureCube(m_renderCtx, m_format, m_width); // Explicit internal format.
// Fill level 0.
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
tcu::Vec4 gMin, gMax;
switch (face)
{
case 0: gMin = spec.valueMin.swizzle(0, 1, 2, 3); gMax = spec.valueMax.swizzle(0, 1, 2, 3); break;
case 1: gMin = spec.valueMin.swizzle(2, 1, 0, 3); gMax = spec.valueMax.swizzle(2, 1, 0, 3); break;
case 2: gMin = spec.valueMin.swizzle(1, 2, 0, 3); gMax = spec.valueMax.swizzle(1, 2, 0, 3); break;
case 3: gMin = spec.valueMax.swizzle(0, 1, 2, 3); gMax = spec.valueMin.swizzle(0, 1, 2, 3); break;
case 4: gMin = spec.valueMax.swizzle(2, 1, 0, 3); gMax = spec.valueMin.swizzle(2, 1, 0, 3); break;
case 5: gMin = spec.valueMax.swizzle(1, 2, 0, 3); gMax = spec.valueMin.swizzle(1, 2, 0, 3); break;
default:
DE_ASSERT(false);
}
m_texture->getRefTexture().allocLevel((tcu::CubeFace)face, 0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevelFace(0, (tcu::CubeFace)face), gMin, gMax);
}
// Upload texture data to GL.
m_texture->upload();
// Initialize iteration state.
m_curFace = 0;
m_isOk = true;
}
void TextureCubeFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool TextureCubeFormatCase::testFace (tcu::CubeFace face)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_renderCtx.getFunctions();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName())+(deUint32)face);
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_CUBE);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.sampler.seamlessCubeMap = true;
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
// Log render info on first face.
if (face == tcu::CUBEFACE_NEGATIVE_X)
renderParams.flags |= RenderParams::LOG_ALL;
computeQuadTexCoordCube(texCoord, face);
// \todo [2011-10-28 pyry] Image set name / section?
log << TestLog::Message << face << TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
return compareImages(log, referenceFrame, renderedFrame, threshold);
}
TextureCubeFormatCase::IterateResult TextureCubeFormatCase::iterate (void)
{
// Execute test for all faces.
if (!testFace((tcu::CubeFace)m_curFace))
m_isOk = false;
m_curFace += 1;
if (m_curFace == tcu::CUBEFACE_LAST)
{
m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
m_isOk ? "Pass" : "Image comparison failed");
return STOP;
}
else
return CONTINUE;
}
// Texture2DArrayFormatCase
class Texture2DArrayFormatCase : public tcu::TestCase
{
public:
Texture2DArrayFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height, int numLayers);
Texture2DArrayFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height, int numLayers);
~Texture2DArrayFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DArrayFormatCase (const Texture2DArrayFormatCase& other);
Texture2DArrayFormatCase& operator= (const Texture2DArrayFormatCase& other);
bool testLayer (int layerNdx);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
deUint32 m_format;
deUint32 m_dataType;
int m_width;
int m_height;
int m_numLayers;
glu::Texture2DArray* m_texture;
TextureTestUtil::TextureRenderer m_renderer;
int m_curLayer;
};
Texture2DArrayFormatCase::Texture2DArrayFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height, int numLayers)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_numLayers (numLayers)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curLayer (0)
{
}
Texture2DArrayFormatCase::Texture2DArrayFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height, int numLayers)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (internalFormat)
, m_dataType (GL_NONE)
, m_width (width)
, m_height (height)
, m_numLayers (numLayers)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curLayer (0)
{
}
Texture2DArrayFormatCase::~Texture2DArrayFormatCase (void)
{
deinit();
}
void Texture2DArrayFormatCase::init (void)
{
checkSupport(m_renderCtxInfo, m_format);
m_texture = m_dataType != GL_NONE
? new glu::Texture2DArray(m_renderCtx, m_format, m_dataType, m_width, m_height, m_numLayers) // Implicit internal format.
: new glu::Texture2DArray(m_renderCtx, m_format, m_width, m_height, m_numLayers); // Explicit internal format.
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
// Fill level 0.
m_texture->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax);
// Initialize state.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
m_curLayer = 0;
}
void Texture2DArrayFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool Texture2DArrayFormatCase::testLayer (int layerNdx)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_2D_ARRAY);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoord2DArray(texCoord, layerNdx, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D_ARRAY, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
return compareImages(log, (string("Layer" + de::toString(layerNdx))).c_str(), (string("Layer " + de::toString(layerNdx))).c_str(), referenceFrame, renderedFrame, threshold);
}
Texture2DArrayFormatCase::IterateResult Texture2DArrayFormatCase::iterate (void)
{
// Execute test for all layers.
bool isOk = testLayer(m_curLayer);
if (!isOk && m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
m_curLayer += 1;
return m_curLayer < m_texture->getRefTexture().getNumLayers() ? CONTINUE : STOP;
}
// Texture2DFormatCase
class Texture3DFormatCase : public tcu::TestCase
{
public:
Texture3DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height, int depth);
Texture3DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height, int depth);
~Texture3DFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture3DFormatCase (const Texture3DFormatCase& other);
Texture3DFormatCase& operator= (const Texture3DFormatCase& other);
bool testSlice (int sliceNdx);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
deUint32 m_format;
deUint32 m_dataType;
int m_width;
int m_height;
int m_depth;
glu::Texture3D* m_texture;
TextureTestUtil::TextureRenderer m_renderer;
int m_curSlice;
};
Texture3DFormatCase::Texture3DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height, int depth)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_depth (depth)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curSlice (0)
{
}
Texture3DFormatCase::Texture3DFormatCase (tcu::TestContext& testCtx, Context& context, const char* name, const char* description, deUint32 internalFormat, int width, int height, int depth)
: TestCase (testCtx, name, description)
, m_renderCtx (context.getRenderContext())
, m_renderCtxInfo (context.getContextInfo())
, m_format (internalFormat)
, m_dataType (GL_NONE)
, m_width (width)
, m_height (height)
, m_depth (depth)
, m_texture (DE_NULL)
, m_renderer (context.getRenderContext(), testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curSlice (0)
{
}
Texture3DFormatCase::~Texture3DFormatCase (void)
{
deinit();
}
void Texture3DFormatCase::init (void)
{
checkSupport(m_renderCtxInfo, m_format);
m_texture = m_dataType != GL_NONE
? new glu::Texture3D(m_renderCtx, m_format, m_dataType, m_width, m_height, m_depth) // Implicit internal format.
: new glu::Texture3D(m_renderCtx, m_format, m_width, m_height, m_depth); // Explicit internal format.
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
// Fill level 0.
m_texture->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax);
// Initialize state.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
m_curSlice = 0;
}
void Texture3DFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool Texture3DFormatCase::testSlice (int sliceNdx)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_renderCtx.getFunctions();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_3D);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
float r = ((float)sliceNdx + 0.5f) / (float)m_depth;
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoord3D(texCoord, tcu::Vec3(0.0f, 0.0f, r), tcu::Vec3(1.0f, 1.0f, r), tcu::IVec3(0,1,2));
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_3D, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
return compareImages(log, (string("Slice" + de::toString(sliceNdx))).c_str(), (string("Slice " + de::toString(sliceNdx))).c_str(), referenceFrame, renderedFrame, threshold);
}
Texture3DFormatCase::IterateResult Texture3DFormatCase::iterate (void)
{
// Execute test for all slices.
bool isOk = testSlice(m_curSlice);
if (!isOk && m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
m_curSlice += 1;
return m_curSlice < m_texture->getRefTexture().getDepth() ? CONTINUE : STOP;
}
// Compressed2FormatCase
class Compressed2DFormatCase : public tcu::TestCase
{
public:
Compressed2DFormatCase (tcu::TestContext& testCtx,
glu::RenderContext& renderCtx,
const glu::ContextInfo& renderCtxInfo,
const char* name,
const char* description,
tcu::CompressedTexFormat format,
deUint32 randomSeed,
int width,
int height);
~Compressed2DFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Compressed2DFormatCase (const Compressed2DFormatCase& other);
Compressed2DFormatCase& operator= (const Compressed2DFormatCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
tcu::CompressedTexFormat m_format;
deUint32 m_randomSeed;
int m_width;
int m_height;
glu::Texture2D* m_texture;
TextureTestUtil::TextureRenderer m_renderer;
};
Compressed2DFormatCase::Compressed2DFormatCase (tcu::TestContext& testCtx,
glu::RenderContext& renderCtx,
const glu::ContextInfo& renderCtxInfo,
const char* name,
const char* description,
tcu::CompressedTexFormat format,
deUint32 randomSeed,
int width,
int height)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_format (format)
, m_randomSeed (randomSeed)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
{
}
Compressed2DFormatCase::~Compressed2DFormatCase (void)
{
deinit();
}
void Compressed2DFormatCase::init (void)
{
// Create texture.
tcu::CompressedTexture compressedTexture (m_format, m_width, m_height);
int dataSize = compressedTexture.getDataSize();
deUint8* data = (deUint8*)compressedTexture.getData();
de::Random rnd (m_randomSeed);
for (int i = 0; i < dataSize; i++)
data[i] = rnd.getUint32() & 0xff;
m_texture = new glu::Texture2D(m_renderCtx, m_renderCtxInfo, 1, &compressedTexture);
}
void Compressed2DFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
Compressed2DFormatCase::IterateResult Compressed2DFormatCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getWidth(), m_texture->getRefTexture().getHeight(), deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_2D);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
// CompressedCubeFormatCase
class CompressedCubeFormatCase : public tcu::TestCase
{
public:
CompressedCubeFormatCase (tcu::TestContext& testCtx,
glu::RenderContext& renderCtx,
const glu::ContextInfo& renderCtxInfo,
const char* name,
const char* description,
tcu::CompressedTexFormat format,
deUint32 randomSeed,
int width,
int height);
~CompressedCubeFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
CompressedCubeFormatCase (const CompressedCubeFormatCase& other);
CompressedCubeFormatCase& operator= (const CompressedCubeFormatCase& other);
bool testFace (tcu::CubeFace face);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
tcu::CompressedTexFormat m_format;
deUint32 m_randomSeed;
int m_width;
int m_height;
glu::TextureCube* m_texture;
TextureTestUtil::TextureRenderer m_renderer;
int m_curFace;
bool m_isOk;
};
CompressedCubeFormatCase::CompressedCubeFormatCase (tcu::TestContext& testCtx,
glu::RenderContext& renderCtx,
const glu::ContextInfo& renderCtxInfo,
const char* name,
const char* description,
tcu::CompressedTexFormat format,
deUint32 randomSeed,
int width,
int height)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_format (format)
, m_randomSeed (randomSeed)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curFace (0)
, m_isOk (false)
{
}
CompressedCubeFormatCase::~CompressedCubeFormatCase (void)
{
deinit();
}
void CompressedCubeFormatCase::init (void)
{
vector<tcu::CompressedTexture> levels (tcu::CUBEFACE_LAST);
de::Random rnd (m_randomSeed);
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
levels[face].setStorage(m_format, m_width, m_height);
int dataSize = levels[face].getDataSize();
deUint8* data = (deUint8*)levels[face].getData();
for (int i = 0; i < dataSize; i++)
data[i] = rnd.getUint32() & 0xff;
}
m_texture = new glu::TextureCube(m_renderCtx, m_renderCtxInfo, 1, &levels[0]);
m_curFace = 0;
m_isOk = true;
}
void CompressedCubeFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool CompressedCubeFormatCase::testFace (tcu::CubeFace face)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getSize(), m_texture->getRefTexture().getSize(), deStringHash(getName())+(deUint32)face);
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_CUBE);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.sampler.seamlessCubeMap = true;
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoordCube(texCoord, face);
log << TestLog::Message << face << TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
return compareImages(log, referenceFrame, renderedFrame, threshold);
}
CompressedCubeFormatCase::IterateResult CompressedCubeFormatCase::iterate (void)
{
// Execute test for all faces.
if (!testFace((tcu::CubeFace)m_curFace))
m_isOk = false;
m_curFace += 1;
if (m_curFace == tcu::CUBEFACE_LAST)
{
m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
m_isOk ? "Pass" : "Image comparison failed");
return STOP;
}
else
return CONTINUE;
}
// Texture2DFileCase
class Texture2DFileCase : public tcu::TestCase
{
public:
Texture2DFileCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames);
~Texture2DFileCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DFileCase (const Texture2DFileCase& other);
Texture2DFileCase& operator= (const Texture2DFileCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
std::vector<std::string> m_filenames;
glu::Texture2D* m_texture;
TextureRenderer m_renderer;
};
Texture2DFileCase::Texture2DFileCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_filenames (filenames)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
{
}
Texture2DFileCase::~Texture2DFileCase (void)
{
deinit();
}
void Texture2DFileCase::init (void)
{
// Create texture.
m_texture = glu::Texture2D::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size(), m_filenames);
}
void Texture2DFileCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
Texture2DFileCase::IterateResult Texture2DFileCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getWidth(), m_texture->getRefTexture().getHeight(), deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_2D);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
ReferenceParams refParams(TEXTURETYPE_2D);
refParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], refParams);
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
// TextureCubeFileCase
class TextureCubeFileCase : public tcu::TestCase
{
public:
TextureCubeFileCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames);
~TextureCubeFileCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureCubeFileCase (const TextureCubeFileCase& other);
TextureCubeFileCase& operator= (const TextureCubeFileCase& other);
bool testFace (tcu::CubeFace face);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
std::vector<std::string> m_filenames;
glu::TextureCube* m_texture;
TextureRenderer m_renderer;
int m_curFace;
bool m_isOk;
};
TextureCubeFileCase::TextureCubeFileCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_filenames (filenames)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_curFace (0)
, m_isOk (false)
{
}
TextureCubeFileCase::~TextureCubeFileCase (void)
{
deinit();
}
void TextureCubeFileCase::init (void)
{
// Create texture.
DE_ASSERT(m_filenames.size() % 6 == 0);
m_texture = glu::TextureCube::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size()/6, m_filenames);
m_curFace = 0;
m_isOk = true;
}
void TextureCubeFileCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool TextureCubeFileCase::testFace (tcu::CubeFace face)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getSize(), m_texture->getRefTexture().getSize(), deStringHash(getName())+(deUint32)face);
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
Sampler sampler (Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
computeQuadTexCoordCube(texCoord, face);
// \todo [2011-10-28 pyry] Image set name / section?
log << TestLog::Message << face << TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_CUBE);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], ReferenceParams(TEXTURETYPE_CUBE, sampler));
// Compare and log.
return compareImages(log, referenceFrame, renderedFrame, threshold);
}
TextureCubeFileCase::IterateResult TextureCubeFileCase::iterate (void)
{
// Execute test for all faces.
if (!testFace((tcu::CubeFace)m_curFace))
m_isOk = false;
m_curFace += 1;
if (m_curFace == tcu::CUBEFACE_LAST)
{
m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
m_isOk ? "Pass" : "Image comparison failed");
return STOP;
}
else
return CONTINUE;
}
// TextureFormatTests
TextureFormatTests::TextureFormatTests (Context& context)
: TestCaseGroup(context, "format", "Texture Format Tests")
{
}
TextureFormatTests::~TextureFormatTests (void)
{
}
vector<string> toStringVector (const char* const* str, int numStr)
{
vector<string> v;
v.resize(numStr);
for (int i = 0; i < numStr; i++)
v[i] = str[i];
return v;
}
void TextureFormatTests::init (void)
{
tcu::TestCaseGroup* unsizedGroup = DE_NULL;
tcu::TestCaseGroup* sizedGroup = DE_NULL;
tcu::TestCaseGroup* compressedGroup = DE_NULL;
addChild((unsizedGroup = new tcu::TestCaseGroup(m_testCtx, "unsized", "Unsized formats")));
addChild((sizedGroup = new tcu::TestCaseGroup(m_testCtx, "sized", "Sized formats")));
addChild((compressedGroup = new tcu::TestCaseGroup(m_testCtx, "compressed", "Compressed formats")));
tcu::TestCaseGroup* sized2DGroup = DE_NULL;
tcu::TestCaseGroup* sizedCubeGroup = DE_NULL;
tcu::TestCaseGroup* sized2DArrayGroup = DE_NULL;
tcu::TestCaseGroup* sized3DGroup = DE_NULL;
sizedGroup->addChild((sized2DGroup = new tcu::TestCaseGroup(m_testCtx, "2d", "Sized formats (2D)")));
sizedGroup->addChild((sizedCubeGroup = new tcu::TestCaseGroup(m_testCtx, "cube", "Sized formats (Cubemap)")));
sizedGroup->addChild((sized2DArrayGroup = new tcu::TestCaseGroup(m_testCtx, "2d_array", "Sized formats (2D Array)")));
sizedGroup->addChild((sized3DGroup = new tcu::TestCaseGroup(m_testCtx, "3d", "Sized formats (3D)")));
struct
{
const char* name;
deUint32 format;
deUint32 dataType;
} texFormats[] =
{
{ "alpha", GL_ALPHA, GL_UNSIGNED_BYTE },
{ "luminance", GL_LUMINANCE, GL_UNSIGNED_BYTE },
{ "luminance_alpha", GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE },
{ "rgb_unsigned_short_5_6_5", GL_RGB, GL_UNSIGNED_SHORT_5_6_5 },
{ "rgb_unsigned_byte", GL_RGB, GL_UNSIGNED_BYTE },
{ "rgba_unsigned_short_4_4_4_4", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4 },
{ "rgba_unsigned_short_5_5_5_1", GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1 },
{ "rgba_unsigned_byte", GL_RGBA, GL_UNSIGNED_BYTE }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(texFormats); formatNdx++)
{
deUint32 format = texFormats[formatNdx].format;
deUint32 dataType = texFormats[formatNdx].dataType;
string nameBase = texFormats[formatNdx].name;
string descriptionBase = string(glu::getTextureFormatName(format)) + ", " + glu::getTypeName(dataType);
unsizedGroup->addChild(new Texture2DFormatCase (m_testCtx, m_context, (nameBase + "_2d_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), format, dataType, 128, 128));
unsizedGroup->addChild(new Texture2DFormatCase (m_testCtx, m_context, (nameBase + "_2d_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), format, dataType, 63, 112));
unsizedGroup->addChild(new TextureCubeFormatCase (m_testCtx, m_context, (nameBase + "_cube_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), format, dataType, 64, 64));
unsizedGroup->addChild(new TextureCubeFormatCase (m_testCtx, m_context, (nameBase + "_cube_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), format, dataType, 57, 57));
unsizedGroup->addChild(new Texture2DArrayFormatCase (m_testCtx, m_context, (nameBase + "_2d_array_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D_ARRAY").c_str(), format, dataType, 64, 64, 8));
unsizedGroup->addChild(new Texture2DArrayFormatCase (m_testCtx, m_context, (nameBase + "_2d_array_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D_ARRAY").c_str(), format, dataType, 63, 57, 7));
unsizedGroup->addChild(new Texture3DFormatCase (m_testCtx, m_context, (nameBase + "_3d_pot").c_str(), (descriptionBase + ", GL_TEXTURE_3D").c_str(), format, dataType, 8, 32, 16));
unsizedGroup->addChild(new Texture3DFormatCase (m_testCtx, m_context, (nameBase + "_3d_npot").c_str(), (descriptionBase + ", GL_TEXTURE_3D").c_str(), format, dataType, 11, 31, 7));
}
struct
{
const char* name;
deUint32 internalFormat;
} sizedColorFormats[] =
{
{ "rgba32f", GL_RGBA32F, },
{ "rgba32i", GL_RGBA32I, },
{ "rgba32ui", GL_RGBA32UI, },
{ "rgba16f", GL_RGBA16F, },
{ "rgba16i", GL_RGBA16I, },
{ "rgba16ui", GL_RGBA16UI, },
{ "rgba8", GL_RGBA8, },
{ "rgba8i", GL_RGBA8I, },
{ "rgba8ui", GL_RGBA8UI, },
{ "srgb8_alpha8", GL_SRGB8_ALPHA8, },
{ "srgb_r8", GL_SR8_EXT, },
{ "srgb_rg8", GL_SRG8_EXT, },
{ "rgb10_a2", GL_RGB10_A2, },
{ "rgb10_a2ui", GL_RGB10_A2UI, },
{ "rgba4", GL_RGBA4, },
{ "rgb5_a1", GL_RGB5_A1, },
{ "rgba8_snorm", GL_RGBA8_SNORM, },
{ "rgb8", GL_RGB8, },
{ "rgb565", GL_RGB565, },
{ "r11f_g11f_b10f", GL_R11F_G11F_B10F, },
{ "rgb32f", GL_RGB32F, },
{ "rgb32i", GL_RGB32I, },
{ "rgb32ui", GL_RGB32UI, },
{ "rgb16f", GL_RGB16F, },
{ "rgb16i", GL_RGB16I, },
{ "rgb16ui", GL_RGB16UI, },
{ "rgb8_snorm", GL_RGB8_SNORM, },
{ "rgb8i", GL_RGB8I, },
{ "rgb8ui", GL_RGB8UI, },
{ "srgb8", GL_SRGB8, },
{ "rgb9_e5", GL_RGB9_E5, },
{ "rg32f", GL_RG32F, },
{ "rg32i", GL_RG32I, },
{ "rg32ui", GL_RG32UI, },
{ "rg16f", GL_RG16F, },
{ "rg16i", GL_RG16I, },
{ "rg16ui", GL_RG16UI, },
{ "rg8", GL_RG8, },
{ "rg8i", GL_RG8I, },
{ "rg8ui", GL_RG8UI, },
{ "rg8_snorm", GL_RG8_SNORM, },
{ "r32f", GL_R32F, },
{ "r32i", GL_R32I, },
{ "r32ui", GL_R32UI, },
{ "r16f", GL_R16F, },
{ "r16i", GL_R16I, },
{ "r16ui", GL_R16UI, },
{ "r8", GL_R8, },
{ "r8i", GL_R8I, },
{ "r8ui", GL_R8UI, },
{ "r8_snorm", GL_R8_SNORM, }
};
struct
{
const char* name;
deUint32 internalFormat;
} sizedDepthStencilFormats[] =
{
// Depth and stencil formats
{ "depth_component32f", GL_DEPTH_COMPONENT32F },
{ "depth_component24", GL_DEPTH_COMPONENT24 },
{ "depth_component16", GL_DEPTH_COMPONENT16 },
{ "depth32f_stencil8", GL_DEPTH32F_STENCIL8 },
{ "depth24_stencil8", GL_DEPTH24_STENCIL8 }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(sizedColorFormats); formatNdx++)
{
deUint32 internalFormat = sizedColorFormats[formatNdx].internalFormat;
string nameBase = sizedColorFormats[formatNdx].name;
string descriptionBase = glu::getTextureFormatName(internalFormat);
sized2DGroup->addChild (new Texture2DFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), internalFormat, 128, 128));
sized2DGroup->addChild (new Texture2DFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), internalFormat, 63, 112));
sizedCubeGroup->addChild (new TextureCubeFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), internalFormat, 64, 64));
sizedCubeGroup->addChild (new TextureCubeFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), internalFormat, 57, 57));
sized2DArrayGroup->addChild (new Texture2DArrayFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D_ARRAY").c_str(), internalFormat, 64, 64, 8));
sized2DArrayGroup->addChild (new Texture2DArrayFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D_ARRAY").c_str(), internalFormat, 63, 57, 7));
sized3DGroup->addChild (new Texture3DFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_3D").c_str(), internalFormat, 8, 32, 16));
sized3DGroup->addChild (new Texture3DFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_3D").c_str(), internalFormat, 11, 31, 7));
}
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(sizedDepthStencilFormats); formatNdx++)
{
deUint32 internalFormat = sizedDepthStencilFormats[formatNdx].internalFormat;
string nameBase = sizedDepthStencilFormats[formatNdx].name;
string descriptionBase = glu::getTextureFormatName(internalFormat);
sized2DGroup->addChild (new Texture2DFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), internalFormat, 128, 128));
sized2DGroup->addChild (new Texture2DFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), internalFormat, 63, 112));
sizedCubeGroup->addChild (new TextureCubeFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), internalFormat, 64, 64));
sizedCubeGroup->addChild (new TextureCubeFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), internalFormat, 57, 57));
sized2DArrayGroup->addChild (new Texture2DArrayFormatCase (m_testCtx, m_context, (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D_ARRAY").c_str(), internalFormat, 64, 64, 8));
sized2DArrayGroup->addChild (new Texture2DArrayFormatCase (m_testCtx, m_context, (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D_ARRAY").c_str(), internalFormat, 63, 57, 7));
}
// ETC-1 compressed formats.
{
static const char* filenames[] =
{
"data/etc1/photo_helsinki_mip_0.pkm",
"data/etc1/photo_helsinki_mip_1.pkm",
"data/etc1/photo_helsinki_mip_2.pkm",
"data/etc1/photo_helsinki_mip_3.pkm",
"data/etc1/photo_helsinki_mip_4.pkm",
"data/etc1/photo_helsinki_mip_5.pkm",
"data/etc1/photo_helsinki_mip_6.pkm",
"data/etc1/photo_helsinki_mip_7.pkm"
};
compressedGroup->addChild(new Texture2DFileCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_2d_pot", "GL_ETC1_RGB8_OES, GL_TEXTURE_2D", toStringVector(filenames, DE_LENGTH_OF_ARRAY(filenames))));
}
{
vector<string> filenames;
filenames.push_back("data/etc1/photo_helsinki_113x89.pkm");
compressedGroup->addChild(new Texture2DFileCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_2d_npot", "GL_ETC1_RGB8_OES, GL_TEXTURE_2D", filenames));
}
{
static const char* faceExt[] = { "neg_x", "pos_x", "neg_y", "pos_y", "neg_z", "pos_z" };
const int potNumLevels = 7;
vector<string> potFilenames;
for (int level = 0; level < potNumLevels; level++)
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
potFilenames.push_back(string("data/etc1/skybox_") + faceExt[face] + "_mip_" + de::toString(level) + ".pkm");
compressedGroup->addChild(new TextureCubeFileCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_cube_pot", "GL_ETC1_RGB8_OES, GL_TEXTURE_CUBE_MAP", potFilenames));
vector<string> npotFilenames;
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
npotFilenames.push_back(string("data/etc1/skybox_61x61_") + faceExt[face] + ".pkm");
compressedGroup->addChild(new TextureCubeFileCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_cube_npot", "GL_ETC_RGB8_OES, GL_TEXTURE_CUBE_MAP", npotFilenames));
}
// ETC-2 and EAC compressed formats.
struct {
const char* descriptionBase;
const char* nameBase;
tcu::CompressedTexFormat format;
} etc2Formats[] =
{
{ "GL_COMPRESSED_R11_EAC", "eac_r11", tcu::COMPRESSEDTEXFORMAT_EAC_R11, },
{ "GL_COMPRESSED_SIGNED_R11_EAC", "eac_signed_r11", tcu::COMPRESSEDTEXFORMAT_EAC_SIGNED_R11, },
{ "GL_COMPRESSED_RG11_EAC", "eac_rg11", tcu::COMPRESSEDTEXFORMAT_EAC_RG11, },
{ "GL_COMPRESSED_SIGNED_RG11_EAC", "eac_signed_rg11", tcu::COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11, },
{ "GL_COMPRESSED_RGB8_ETC2", "etc2_rgb8", tcu::COMPRESSEDTEXFORMAT_ETC2_RGB8, },
{ "GL_COMPRESSED_SRGB8_ETC2", "etc2_srgb8", tcu::COMPRESSEDTEXFORMAT_ETC2_SRGB8, },
{ "GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2", "etc2_rgb8_punchthrough_alpha1", tcu::COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1, },
{ "GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2", "etc2_srgb8_punchthrough_alpha1", tcu::COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1, },
{ "GL_COMPRESSED_RGBA8_ETC2_EAC", "etc2_eac_rgba8", tcu::COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8, },
{ "GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC", "etc2_eac_srgb8_alpha8", tcu::COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8, }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(etc2Formats); formatNdx++)
{
string descriptionBase = etc2Formats[formatNdx].descriptionBase;
string nameBase = etc2Formats[formatNdx].nameBase;
compressedGroup->addChild(new Compressed2DFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_2d_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), etc2Formats[formatNdx].format, 1, 128, 64));
compressedGroup->addChild(new CompressedCubeFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_cube_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), etc2Formats[formatNdx].format, 1, 64, 64));
compressedGroup->addChild(new Compressed2DFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_2d_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), etc2Formats[formatNdx].format, 1, 51, 65));
compressedGroup->addChild(new CompressedCubeFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_cube_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), etc2Formats[formatNdx].format, 1, 51, 51));
}
}
} // Functional
} // gles3
} // deqp