blob: 6563e8fd082d5c3928ce639e5b813aff08c04be8 [file] [log] [blame] [edit]
#ifndef _RSGBUILTINFUNCTIONS_HPP
#define _RSGBUILTINFUNCTIONS_HPP
/*-------------------------------------------------------------------------
* drawElements Quality Program Random Shader Generator
* ----------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Built-in Functions.
*//*--------------------------------------------------------------------*/
#include "rsgDefs.hpp"
#include "rsgExpression.hpp"
#include "rsgUtils.hpp"
#include "deMath.h"
namespace rsg
{
// Template for built-in functions with form "GenType func(GenType val)".
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
class UnaryBuiltinVecFunc : public Expression
{
public:
UnaryBuiltinVecFunc (GeneratorState& state, const char* function, ConstValueRangeAccess valueRange);
virtual ~UnaryBuiltinVecFunc (void);
Expression* createNextChild (GeneratorState& state);
void tokenize (GeneratorState& state, TokenStream& str) const;
void evaluate (ExecutionContext& execCtx);
ExecConstValueAccess getValue (void) const { return m_value.getValue(m_inValueRange.getType()); }
static float getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange);
private:
std::string m_function;
ValueRange m_inValueRange;
ExecValueStorage m_value;
Expression* m_child;
};
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
UnaryBuiltinVecFunc<GetValueRangeWeight, ComputeValueRange, Evaluate>::UnaryBuiltinVecFunc (GeneratorState& state, const char* function, ConstValueRangeAccess valueRange)
: m_function (function)
, m_inValueRange (valueRange.getType())
, m_child (DE_NULL)
{
DE_UNREF(state);
DE_ASSERT(valueRange.getType().isFloatOrVec());
m_value.setStorage(valueRange.getType());
// Compute input value range
for (int ndx = 0; ndx < m_inValueRange.getType().getNumElements(); ndx++)
{
ConstValueRangeAccess outRange = valueRange.component(ndx);
ValueRangeAccess inRange = m_inValueRange.asAccess().component(ndx);
ComputeValueRange()(outRange.getMin().asFloat(), outRange.getMax().asFloat(), inRange.getMin().asFloat(), inRange.getMax().asFloat());
}
}
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
UnaryBuiltinVecFunc<GetValueRangeWeight, ComputeValueRange, Evaluate>::~UnaryBuiltinVecFunc (void)
{
delete m_child;
}
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
Expression* UnaryBuiltinVecFunc<GetValueRangeWeight, ComputeValueRange, Evaluate>::createNextChild (GeneratorState& state)
{
if (m_child)
return DE_NULL;
m_child = Expression::createRandom(state, m_inValueRange.asAccess());
return m_child;
}
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
void UnaryBuiltinVecFunc<GetValueRangeWeight, ComputeValueRange, Evaluate>::tokenize (GeneratorState& state, TokenStream& str) const
{
str << Token(m_function.c_str()) << Token::LEFT_PAREN;
m_child->tokenize(state, str);
str << Token::RIGHT_PAREN;
}
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
void UnaryBuiltinVecFunc<GetValueRangeWeight, ComputeValueRange, Evaluate>::evaluate (ExecutionContext& execCtx)
{
m_child->evaluate(execCtx);
ExecConstValueAccess srcValue = m_child->getValue();
ExecValueAccess dstValue = m_value.getValue(m_inValueRange.getType());
for (int elemNdx = 0; elemNdx < m_inValueRange.getType().getNumElements(); elemNdx++)
{
ExecConstValueAccess srcComp = srcValue.component(elemNdx);
ExecValueAccess dstComp = dstValue.component(elemNdx);
for (int compNdx = 0; compNdx < EXEC_VEC_WIDTH; compNdx++)
dstComp.asFloat(compNdx) = Evaluate()(srcComp.asFloat(compNdx));
}
}
template <class GetValueRangeWeight, class ComputeValueRange, class Evaluate>
float UnaryBuiltinVecFunc<GetValueRangeWeight, ComputeValueRange, Evaluate>::getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
// \todo [2011-06-14 pyry] Void support?
if (!valueRange.getType().isFloatOrVec())
return 0.0f;
int availableLevels = state.getShaderParameters().maxExpressionDepth - state.getExpressionDepth();
if (availableLevels < getConservativeValueExprDepth(state, valueRange) + 1)
return 0.0f;
// Compute value range weight
float combinedWeight = 1.0f;
for (int elemNdx = 0; elemNdx < valueRange.getType().getNumElements(); elemNdx++)
{
float elemWeight = GetValueRangeWeight()(valueRange.component(elemNdx).getMin().asFloat(), valueRange.component(elemNdx).getMax().asFloat());
combinedWeight *= elemWeight;
}
return combinedWeight;
}
// Proxy template.
template <class C>
struct GetUnaryBuiltinVecWeight
{
inline float operator() (float outMin, float outMax) const { return C::getCompWeight(outMin, outMax); }
};
template <class C>
struct ComputeUnaryBuiltinVecRange
{
inline void operator() (float outMin, float outMax, float& inMin, float& inMax) const { C::computeValueRange(outMin, outMax, inMin, inMax); }
};
template <class C>
struct EvaluateUnaryBuiltinVec
{
inline float operator() (float inVal) const { return C::evaluateComp(inVal); }
};
template <class C>
class UnaryBuiltinVecTemplateProxy : public UnaryBuiltinVecFunc<GetUnaryBuiltinVecWeight<C>, ComputeUnaryBuiltinVecRange<C>, EvaluateUnaryBuiltinVec<C> >
{
public:
UnaryBuiltinVecTemplateProxy (GeneratorState& state, const char* function, ConstValueRangeAccess valueRange)
: UnaryBuiltinVecFunc<GetUnaryBuiltinVecWeight<C>, ComputeUnaryBuiltinVecRange<C>, EvaluateUnaryBuiltinVec<C> >(state, function, valueRange)
{
}
};
// Template for trigonometric function group.
template <class C>
class UnaryTrigonometricFunc : public UnaryBuiltinVecTemplateProxy<C>
{
public:
UnaryTrigonometricFunc (GeneratorState& state, const char* function, ConstValueRangeAccess valueRange)
: UnaryBuiltinVecTemplateProxy<C>(state, function, valueRange)
{
}
static inline float getCompWeight (float outMin, float outMax)
{
if (Scalar::min<float>() == outMin || Scalar::max<float>() == outMax)
return 1.0f; // Infinite value range, anything goes
// Transform range
float inMin, inMax;
if (!C::transformValueRange(outMin, outMax, inMin, inMax))
return 0.0f; // Not possible to transform value range (out of range perhaps)
// Quantize
if (!quantizeFloatRange(inMin, inMax))
return 0.0f; // Not possible to quantize - would cause accuracy issues
if (outMin == outMax)
return 1.0f; // Constant value and passed quantization
// Evaluate new intersection
float intersectionLen = C::evaluateComp(inMax) - C::evaluateComp(inMin);
float valRangeLen = outMax - outMin;
return deFloatMax(0.1f, intersectionLen/valRangeLen);
}
static inline void computeValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
DE_VERIFY(C::transformValueRange(outMin, outMax, inMin, inMax));
DE_VERIFY(quantizeFloatRange(inMin, inMax));
DE_ASSERT(inMin <= inMax);
}
static float getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (state.getProgramParameters().trigonometricBaseWeight <= 0.0f)
return 0.0f;
return UnaryBuiltinVecTemplateProxy<C>::getWeight(state, valueRange) * state.getProgramParameters().trigonometricBaseWeight;
}
};
class SinOp : public UnaryTrigonometricFunc<SinOp>
{
public:
SinOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryTrigonometricFunc<SinOp>(state, "sin", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
if (outMax < -1.0f || outMin > 1.0f)
return false;
inMin = (outMin >= -1.0f) ? deFloatAsin(outMin) : -0.5f*DE_PI;
inMax = (outMax <= +1.0f) ? deFloatAsin(outMax) : +0.5f*DE_PI;
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatSin(inVal);
}
};
class CosOp : public UnaryTrigonometricFunc<CosOp>
{
public:
CosOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryTrigonometricFunc<CosOp>(state, "cos", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
if (outMax < -1.0f || outMin > 1.0f)
return false;
inMax = (outMin >= -1.0f) ? deFloatAcos(outMin) : +DE_PI;
inMin = (outMax <= +1.0f) ? deFloatAcos(outMax) : -DE_PI;
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatCos(inVal);
}
};
class TanOp : public UnaryTrigonometricFunc<TanOp>
{
public:
TanOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryTrigonometricFunc<TanOp>(state, "tan", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// \note Currently tan() is limited to -4..4 range. Otherwise we will run into accuracy issues
const float rangeMin = -4.0f;
const float rangeMax = +4.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false;
inMin = deFloatAtanOver(deFloatMax(outMin, rangeMin));
inMax = deFloatAtanOver(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatTan(inVal);
}
};
class AsinOp : public UnaryTrigonometricFunc<AsinOp>
{
public:
AsinOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryTrigonometricFunc<AsinOp>(state, "asin", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
const float rangeMin = -DE_PI/2.0f;
const float rangeMax = +DE_PI/2.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatSin(deFloatMax(outMin, rangeMin));
inMax = deFloatSin(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatAsin(inVal);
}
};
class AcosOp : public UnaryTrigonometricFunc<AcosOp>
{
public:
AcosOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryTrigonometricFunc<AcosOp>(state, "acos", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
const float rangeMin = 0.0f;
const float rangeMax = DE_PI;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMax = deFloatCos(deFloatMax(outMin, rangeMin));
inMin = deFloatCos(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatAcos(inVal);
}
};
class AtanOp : public UnaryTrigonometricFunc<AtanOp>
{
public:
AtanOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryTrigonometricFunc<AtanOp>(state, "atan", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// \note For accuracy reasons output range is limited to -1..1
const float rangeMin = -1.0f;
const float rangeMax = +1.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatTan(deFloatMax(outMin, rangeMin));
inMax = deFloatTan(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatAtanOver(inVal);
}
};
// Template for exponential function group.
// \todo [2011-07-07 pyry] Shares most of the code with Trigonometric variant..
template <class C>
class UnaryExponentialFunc : public UnaryBuiltinVecTemplateProxy<C>
{
public:
UnaryExponentialFunc (GeneratorState& state, const char* function, ConstValueRangeAccess valueRange)
: UnaryBuiltinVecTemplateProxy<C>(state, function, valueRange)
{
}
static inline float getCompWeight (float outMin, float outMax)
{
if (Scalar::min<float>() == outMin || Scalar::max<float>() == outMax)
return 1.0f; // Infinite value range, anything goes
// Transform range
float inMin, inMax;
if (!C::transformValueRange(outMin, outMax, inMin, inMax))
return 0.0f; // Not possible to transform value range (out of range perhaps)
// Quantize
if (!quantizeFloatRange(inMin, inMax))
return 0.0f; // Not possible to quantize - would cause accuracy issues
if (outMin == outMax)
return 1.0f; // Constant value and passed quantization
// Evaluate new intersection
float intersectionLen = C::evaluateComp(inMax) - C::evaluateComp(inMin);
float valRangeLen = outMax - outMin;
return deFloatMax(0.1f, intersectionLen/valRangeLen);
}
static inline void computeValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
DE_VERIFY(C::transformValueRange(outMin, outMax, inMin, inMax));
DE_VERIFY(quantizeFloatRange(inMin, inMax));
DE_ASSERT(inMin <= inMax);
}
static float getWeight (const GeneratorState& state, ConstValueRangeAccess valueRange)
{
if (state.getProgramParameters().exponentialBaseWeight <= 0.0f)
return 0.0f;
return UnaryBuiltinVecTemplateProxy<C>::getWeight(state, valueRange) * state.getProgramParameters().exponentialBaseWeight;
}
};
class ExpOp : public UnaryExponentialFunc<ExpOp>
{
public:
ExpOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryExponentialFunc<ExpOp>(state, "exp", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// Limited due to accuracy reasons, should be 0..+inf
const float rangeMin = 0.1f;
const float rangeMax = 10.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatLog(deFloatMax(outMin, rangeMin));
inMax = deFloatLog(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatExp(inVal);
}
};
class LogOp : public UnaryExponentialFunc<LogOp>
{
public:
LogOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryExponentialFunc<LogOp>(state, "log", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// Limited due to accuracy reasons, should be -inf..+inf
const float rangeMin = 0.1f;
const float rangeMax = 6.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatExp(deFloatMax(outMin, rangeMin));
inMax = deFloatExp(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatLog(inVal);
}
};
class Exp2Op : public UnaryExponentialFunc<Exp2Op>
{
public:
Exp2Op (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryExponentialFunc<Exp2Op>(state, "exp2", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// Limited due to accuracy reasons, should be 0..+inf
const float rangeMin = 0.1f;
const float rangeMax = 10.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatLog2(deFloatMax(outMin, rangeMin));
inMax = deFloatLog2(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatExp2(inVal);
}
};
class Log2Op : public UnaryExponentialFunc<Log2Op>
{
public:
Log2Op (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryExponentialFunc<Log2Op>(state, "log2", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// Limited due to accuracy reasons, should be -inf..+inf
const float rangeMin = 0.1f;
const float rangeMax = 6.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatExp2(deFloatMax(outMin, rangeMin));
inMax = deFloatExp2(deFloatMin(outMax, rangeMax));
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatLog2(inVal);
}
};
class SqrtOp : public UnaryExponentialFunc<SqrtOp>
{
public:
SqrtOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryExponentialFunc<SqrtOp>(state, "sqrt", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// Limited due to accuracy reasons, should be 0..+inf
const float rangeMin = 0.0f;
const float rangeMax = 4.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMin = deFloatMax(outMin, rangeMin);
inMax = deFloatMin(outMax, rangeMax);
inMin *= inMin;
inMax *= inMax;
return true;
}
static inline float evaluateComp (float inVal)
{
return deFloatSqrt(inVal);
}
};
class InvSqrtOp : public UnaryExponentialFunc<InvSqrtOp>
{
public:
InvSqrtOp (GeneratorState& state, ConstValueRangeAccess valueRange)
: UnaryExponentialFunc<InvSqrtOp>(state, "inversesqrt", valueRange)
{
}
static inline bool transformValueRange (float outMin, float outMax, float& inMin, float& inMax)
{
// Limited due to accuracy reasons
const float rangeMin = 0.4f;
const float rangeMax = 3.0f;
if (outMax < rangeMin || outMin > rangeMax)
return false; // Out of range
inMax = 1.0f/deFloatMax(outMin, rangeMin);
inMin = 1.0f/deFloatMin(outMax, rangeMax);
inMin *= inMin;
inMax *= inMax;
return true;
}
static inline float evaluateComp (float inVal)
{
return 1.0f/deFloatSqrt(inVal);
}
};
} // rsg
#endif // _RSGBUILTINFUNCTIONS_HPP