blob: 14d70b558488f6241ed99ce46da71087e43b53c9 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Mipmapping accuracy tests.
*//*--------------------------------------------------------------------*/
#include "es3aTextureMipmapTests.hpp"
#include "glsTextureTestUtil.hpp"
#include "gluTexture.hpp"
#include "gluTextureUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuMatrix.hpp"
#include "tcuMatrixUtil.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "deString.h"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
namespace deqp
{
namespace gles3
{
namespace Accuracy
{
using std::string;
using std::vector;
using tcu::IVec4;
using tcu::TestLog;
using tcu::Vec2;
using tcu::Vec3;
using tcu::Vec4;
using namespace gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
enum CoordType
{
COORDTYPE_BASIC, //!< texCoord = translateScale(position).
COORDTYPE_BASIC_BIAS, //!< Like basic, but with bias values.
COORDTYPE_AFFINE, //!< texCoord = translateScaleRotateShear(position).
COORDTYPE_PROJECTED, //!< Projected coordinates, w != 1
COORDTYPE_LAST
};
// Texture2DMipmapCase
class Texture2DMipmapCase : public tcu::TestCase
{
public:
Texture2DMipmapCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &renderCtxInfo,
const char *name, const char *desc, CoordType coordType, uint32_t minFilter, uint32_t wrapS,
uint32_t wrapT, uint32_t format, uint32_t dataType, int width, int height);
~Texture2DMipmapCase(void);
void init(void);
void deinit(void);
IterateResult iterate(void);
private:
Texture2DMipmapCase(const Texture2DMipmapCase &other);
Texture2DMipmapCase &operator=(const Texture2DMipmapCase &other);
glu::RenderContext &m_renderCtx;
const glu::ContextInfo &m_renderCtxInfo;
CoordType m_coordType;
uint32_t m_minFilter;
uint32_t m_wrapS;
uint32_t m_wrapT;
uint32_t m_format;
uint32_t m_dataType;
int m_width;
int m_height;
glu::Texture2D *m_texture;
TextureRenderer m_renderer;
};
Texture2DMipmapCase::Texture2DMipmapCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &renderCtxInfo, const char *name, const char *desc,
CoordType coordType, uint32_t minFilter, uint32_t wrapS, uint32_t wrapT,
uint32_t format, uint32_t dataType, int width, int height)
: TestCase(testCtx, tcu::NODETYPE_ACCURACY, name, desc)
, m_renderCtx(renderCtx)
, m_renderCtxInfo(renderCtxInfo)
, m_coordType(coordType)
, m_minFilter(minFilter)
, m_wrapS(wrapS)
, m_wrapT(wrapT)
, m_format(format)
, m_dataType(dataType)
, m_width(width)
, m_height(height)
, m_texture(DE_NULL)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
{
}
Texture2DMipmapCase::~Texture2DMipmapCase(void)
{
deinit();
}
void Texture2DMipmapCase::init(void)
{
m_texture = new glu::Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height);
int numLevels = deLog2Floor32(de::max(m_width, m_height)) + 1;
// Fill texture with colored grid.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
uint32_t step = 0xff / (numLevels - 1);
uint32_t inc = deClamp32(step * levelNdx, 0x00, 0xff);
uint32_t dec = 0xff - inc;
uint32_t rgb = (inc << 16) | (dec << 8) | 0xff;
uint32_t color = 0xff000000 | rgb;
m_texture->getRefTexture().allocLevel(levelNdx);
tcu::clear(m_texture->getRefTexture().getLevel(levelNdx), tcu::RGBA(color).toVec());
}
}
void Texture2DMipmapCase::deinit(void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
static void getBasicTexCoord2D(std::vector<float> &dst, int cellNdx)
{
static const struct
{
Vec2 bottomLeft;
Vec2 topRight;
} s_basicCoords[] = {
{Vec2(-0.1f, 0.1f), Vec2(0.8f, 1.0f)}, {Vec2(-0.3f, -0.6f), Vec2(0.7f, 0.4f)},
{Vec2(-0.3f, 0.6f), Vec2(0.7f, -0.9f)}, {Vec2(-0.8f, 0.6f), Vec2(0.7f, -0.9f)},
{Vec2(-0.5f, -0.5f), Vec2(1.5f, 1.5f)}, {Vec2(1.0f, -1.0f), Vec2(-1.3f, 1.0f)},
{Vec2(1.2f, -1.0f), Vec2(-1.3f, 1.6f)}, {Vec2(2.2f, -1.1f), Vec2(-1.3f, 0.8f)},
{Vec2(-1.5f, 1.6f), Vec2(1.7f, -1.4f)}, {Vec2(2.0f, 1.6f), Vec2(2.3f, -1.4f)},
{Vec2(1.3f, -2.6f), Vec2(-2.7f, 2.9f)}, {Vec2(-0.8f, -6.6f), Vec2(6.0f, -0.9f)},
{Vec2(-8.0f, 9.0f), Vec2(8.3f, -7.0f)}, {Vec2(-16.0f, 10.0f), Vec2(18.3f, 24.0f)},
{Vec2(30.2f, 55.0f), Vec2(-24.3f, -1.6f)}, {Vec2(-33.2f, 64.1f), Vec2(32.1f, -64.1f)},
};
DE_ASSERT(de::inBounds(cellNdx, 0, DE_LENGTH_OF_ARRAY(s_basicCoords)));
const Vec2 &bottomLeft = s_basicCoords[cellNdx].bottomLeft;
const Vec2 &topRight = s_basicCoords[cellNdx].topRight;
computeQuadTexCoord2D(dst, bottomLeft, topRight);
}
static void getAffineTexCoord2D(std::vector<float> &dst, int cellNdx)
{
// Use basic coords as base.
getBasicTexCoord2D(dst, cellNdx);
// Rotate based on cell index.
float angle = 2.0f * DE_PI * ((float)cellNdx / 16.0f);
tcu::Mat2 rotMatrix = tcu::rotationMatrix(angle);
// Second and third row are sheared.
float shearX = de::inRange(cellNdx, 4, 11) ? (float)(15 - cellNdx) / 16.0f : 0.0f;
tcu::Mat2 shearMatrix = tcu::shearMatrix(tcu::Vec2(shearX, 0.0f));
tcu::Mat2 transform = rotMatrix * shearMatrix;
Vec2 p0 = transform * Vec2(dst[0], dst[1]);
Vec2 p1 = transform * Vec2(dst[2], dst[3]);
Vec2 p2 = transform * Vec2(dst[4], dst[5]);
Vec2 p3 = transform * Vec2(dst[6], dst[7]);
dst[0] = p0.x();
dst[1] = p0.y();
dst[2] = p1.x();
dst[3] = p1.y();
dst[4] = p2.x();
dst[5] = p2.y();
dst[6] = p3.x();
dst[7] = p3.y();
}
Texture2DMipmapCase::IterateResult Texture2DMipmapCase::iterate(void)
{
// Constants.
const uint32_t magFilter = GL_NEAREST;
const glw::Functions &gl = m_renderCtx.getFunctions();
TestLog &log = m_testCtx.getLog();
const tcu::Texture2D &refTexture = m_texture->getRefTexture();
const tcu::TextureFormat &texFmt = refTexture.getFormat();
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
int texWidth = refTexture.getWidth();
int texHeight = refTexture.getHeight();
int defViewportWidth = texWidth * 4;
int defViewportHeight = texHeight * 4;
RandomViewport viewport(m_renderCtx.getRenderTarget(), defViewportWidth, defViewportHeight,
deStringHash(getName()));
ReferenceParams sampleParams(TEXTURETYPE_2D);
vector<float> texCoord;
bool isProjected = m_coordType == COORDTYPE_PROJECTED;
bool useLodBias = m_coordType == COORDTYPE_BASIC_BIAS;
tcu::Surface renderedFrame(viewport.width, viewport.height);
// Accuracy cases test against ideal lod computation.
tcu::Surface idealFrame(viewport.width, viewport.height);
// Viewport is divided into 4x4 grid.
int gridWidth = 4;
int gridHeight = 4;
int cellWidth = viewport.width / gridWidth;
int cellHeight = viewport.height / gridHeight;
// Accuracy measurements are off unless we get the expected viewport size.
if (viewport.width < defViewportWidth || viewport.height < defViewportHeight)
throw tcu::NotSupportedError("Too small viewport", "", __FILE__, __LINE__);
// Sampling parameters.
sampleParams.sampler = glu::mapGLSampler(m_wrapS, m_wrapT, m_minFilter, magFilter);
sampleParams.samplerType = glu::TextureTestUtil::getSamplerType(m_texture->getRefTexture().getFormat());
sampleParams.colorBias = fmtInfo.lookupBias;
sampleParams.colorScale = fmtInfo.lookupScale;
sampleParams.flags = (isProjected ? ReferenceParams::PROJECTED : 0) | (useLodBias ? ReferenceParams::USE_BIAS : 0);
// Upload texture data.
m_texture->upload();
// Use unit 0.
gl.activeTexture(GL_TEXTURE0);
// Bind gradient texture and setup sampler parameters.
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter);
GLU_EXPECT_NO_ERROR(gl.getError(), "After texture setup");
// Bias values.
static const float s_bias[] = {1.0f, -2.0f, 0.8f, -0.5f, 1.5f, 0.9f, 2.0f, 4.0f};
// Projection values.
static const Vec4 s_projections[] = {Vec4(1.2f, 1.0f, 0.7f, 1.0f), Vec4(1.3f, 0.8f, 0.6f, 2.0f),
Vec4(0.8f, 1.0f, 1.7f, 0.6f), Vec4(1.2f, 1.0f, 1.7f, 1.5f)};
// Render cells.
for (int gridY = 0; gridY < gridHeight; gridY++)
{
for (int gridX = 0; gridX < gridWidth; gridX++)
{
int curX = cellWidth * gridX;
int curY = cellHeight * gridY;
int curW = gridX + 1 == gridWidth ? (viewport.width - curX) : cellWidth;
int curH = gridY + 1 == gridHeight ? (viewport.height - curY) : cellHeight;
int cellNdx = gridY * gridWidth + gridX;
// Compute texcoord.
switch (m_coordType)
{
case COORDTYPE_BASIC_BIAS: // Fall-through.
case COORDTYPE_PROJECTED:
case COORDTYPE_BASIC:
getBasicTexCoord2D(texCoord, cellNdx);
break;
case COORDTYPE_AFFINE:
getAffineTexCoord2D(texCoord, cellNdx);
break;
default:
DE_ASSERT(false);
}
if (isProjected)
sampleParams.w = s_projections[cellNdx % DE_LENGTH_OF_ARRAY(s_projections)];
if (useLodBias)
sampleParams.bias = s_bias[cellNdx % DE_LENGTH_OF_ARRAY(s_bias)];
// Render with GL.
gl.viewport(viewport.x + curX, viewport.y + curY, curW, curH);
m_renderer.renderQuad(0, &texCoord[0], sampleParams);
// Render reference(s).
{
tcu::SurfaceAccess idealDst(idealFrame, m_renderCtx.getRenderTarget().getPixelFormat(), curX, curY,
curW, curH);
sampleParams.lodMode = LODMODE_EXACT;
sampleTexture(idealDst, m_texture->getRefTexture(), &texCoord[0], sampleParams);
}
}
}
// Read result.
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compare and log.
{
const int bestScoreDiff = (texWidth / 16) * (texHeight / 16);
const int worstScoreDiff = texWidth * texHeight;
int score = measureAccuracy(log, idealFrame, renderedFrame, bestScoreDiff, worstScoreDiff);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(score).c_str());
}
return STOP;
}
// TextureCubeMipmapCase
class TextureCubeMipmapCase : public tcu::TestCase
{
public:
TextureCubeMipmapCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &renderCtxInfo, const char *name, const char *desc,
CoordType coordType, uint32_t minFilter, uint32_t wrapS, uint32_t wrapT, uint32_t format,
uint32_t dataType, int size);
~TextureCubeMipmapCase(void);
void init(void);
void deinit(void);
IterateResult iterate(void);
private:
TextureCubeMipmapCase(const TextureCubeMipmapCase &other);
TextureCubeMipmapCase &operator=(const TextureCubeMipmapCase &other);
glu::RenderContext &m_renderCtx;
const glu::ContextInfo &m_renderCtxInfo;
CoordType m_coordType;
uint32_t m_minFilter;
uint32_t m_wrapS;
uint32_t m_wrapT;
uint32_t m_format;
uint32_t m_dataType;
int m_size;
glu::TextureCube *m_texture;
TextureRenderer m_renderer;
};
TextureCubeMipmapCase::TextureCubeMipmapCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &renderCtxInfo, const char *name, const char *desc,
CoordType coordType, uint32_t minFilter, uint32_t wrapS, uint32_t wrapT,
uint32_t format, uint32_t dataType, int size)
: TestCase(testCtx, tcu::NODETYPE_ACCURACY, name, desc)
, m_renderCtx(renderCtx)
, m_renderCtxInfo(renderCtxInfo)
, m_coordType(coordType)
, m_minFilter(minFilter)
, m_wrapS(wrapS)
, m_wrapT(wrapT)
, m_format(format)
, m_dataType(dataType)
, m_size(size)
, m_texture(DE_NULL)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
{
}
TextureCubeMipmapCase::~TextureCubeMipmapCase(void)
{
deinit();
}
void TextureCubeMipmapCase::init(void)
{
m_texture = new glu::TextureCube(m_renderCtx, m_format, m_dataType, m_size);
int numLevels = deLog2Floor32(m_size) + 1;
// Fill texture with colored grid.
for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
uint32_t step = 0xff / (numLevels - 1);
uint32_t inc = deClamp32(step * levelNdx, 0x00, 0xff);
uint32_t dec = 0xff - inc;
uint32_t rgb = 0;
switch (faceNdx)
{
case 0:
rgb = (inc << 16) | (dec << 8) | 255;
break;
case 1:
rgb = (255 << 16) | (inc << 8) | dec;
break;
case 2:
rgb = (dec << 16) | (255 << 8) | inc;
break;
case 3:
rgb = (dec << 16) | (inc << 8) | 255;
break;
case 4:
rgb = (255 << 16) | (dec << 8) | inc;
break;
case 5:
rgb = (inc << 16) | (255 << 8) | dec;
break;
}
uint32_t color = 0xff000000 | rgb;
m_texture->getRefTexture().allocLevel((tcu::CubeFace)faceNdx, levelNdx);
tcu::clear(m_texture->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)faceNdx),
tcu::RGBA(color).toVec());
}
}
}
void TextureCubeMipmapCase::deinit(void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
static void randomPartition(vector<IVec4> &dst, de::Random &rnd, int x, int y, int width, int height)
{
const int minWidth = 8;
const int minHeight = 8;
bool partition = rnd.getFloat() > 0.4f;
bool partitionX = partition && width > minWidth && rnd.getBool();
bool partitionY = partition && height > minHeight && !partitionX;
if (partitionX)
{
int split = width / 2 + rnd.getInt(-width / 4, +width / 4);
randomPartition(dst, rnd, x, y, split, height);
randomPartition(dst, rnd, x + split, y, width - split, height);
}
else if (partitionY)
{
int split = height / 2 + rnd.getInt(-height / 4, +height / 4);
randomPartition(dst, rnd, x, y, width, split);
randomPartition(dst, rnd, x, y + split, width, height - split);
}
else
dst.push_back(IVec4(x, y, width, height));
}
static void computeGridLayout(vector<IVec4> &dst, int width, int height)
{
de::Random rnd(7);
randomPartition(dst, rnd, 0, 0, width, height);
}
TextureCubeMipmapCase::IterateResult TextureCubeMipmapCase::iterate(void)
{
// Constants.
const uint32_t magFilter = GL_NEAREST;
int texWidth = m_texture->getRefTexture().getSize();
int texHeight = m_texture->getRefTexture().getSize();
int defViewportWidth = texWidth * 2;
int defViewportHeight = texHeight * 2;
const glw::Functions &gl = m_renderCtx.getFunctions();
TestLog &log = m_testCtx.getLog();
RandomViewport viewport(m_renderCtx.getRenderTarget(), defViewportWidth, defViewportHeight,
deStringHash(getName()));
tcu::Sampler sampler = glu::mapGLSampler(m_wrapS, m_wrapT, m_minFilter, magFilter);
sampler.seamlessCubeMap = true;
vector<float> texCoord;
bool isProjected = m_coordType == COORDTYPE_PROJECTED;
bool useLodBias = m_coordType == COORDTYPE_BASIC_BIAS;
tcu::Surface renderedFrame(viewport.width, viewport.height);
// Accuracy cases test against ideal lod computation.
tcu::Surface idealFrame(viewport.width, viewport.height);
// Accuracy measurements are off unless we get the expected viewport size.
if (viewport.width < defViewportWidth || viewport.height < defViewportHeight)
throw tcu::NotSupportedError("Too small viewport", "", __FILE__, __LINE__);
// Upload texture data.
m_texture->upload();
// Use unit 0.
gl.activeTexture(GL_TEXTURE0);
// Bind gradient texture and setup sampler parameters.
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, magFilter);
GLU_EXPECT_NO_ERROR(gl.getError(), "After texture setup");
// Compute grid.
vector<IVec4> gridLayout;
computeGridLayout(gridLayout, viewport.width, viewport.height);
// Bias values.
static const float s_bias[] = {1.0f, -2.0f, 0.8f, -0.5f, 1.5f, 0.9f, 2.0f, 4.0f};
// Projection values \note Less agressive than in 2D case due to smaller quads.
static const Vec4 s_projections[] = {Vec4(1.2f, 1.0f, 0.7f, 1.0f), Vec4(1.3f, 0.8f, 0.6f, 1.1f),
Vec4(0.8f, 1.0f, 1.2f, 0.8f), Vec4(1.2f, 1.0f, 1.3f, 0.9f)};
for (int cellNdx = 0; cellNdx < (int)gridLayout.size(); cellNdx++)
{
int curX = gridLayout[cellNdx].x();
int curY = gridLayout[cellNdx].y();
int curW = gridLayout[cellNdx].z();
int curH = gridLayout[cellNdx].w();
tcu::CubeFace cubeFace = (tcu::CubeFace)(cellNdx % tcu::CUBEFACE_LAST);
ReferenceParams params(TEXTURETYPE_CUBE);
params.sampler = sampler;
DE_ASSERT(m_coordType != COORDTYPE_AFFINE); // Not supported.
computeQuadTexCoordCube(texCoord, cubeFace);
if (isProjected)
{
params.flags |= ReferenceParams::PROJECTED;
params.w = s_projections[cellNdx % DE_LENGTH_OF_ARRAY(s_projections)];
}
if (useLodBias)
{
params.flags |= ReferenceParams::USE_BIAS;
params.bias = s_bias[cellNdx % DE_LENGTH_OF_ARRAY(s_bias)];
}
// Render with GL.
gl.viewport(viewport.x + curX, viewport.y + curY, curW, curH);
m_renderer.renderQuad(0, &texCoord[0], params);
// Render reference(s).
{
tcu::SurfaceAccess idealDst(idealFrame, m_renderCtx.getRenderTarget().getPixelFormat(), curX, curY, curW,
curH);
params.lodMode = LODMODE_EXACT;
sampleTexture(idealDst, m_texture->getRefTexture(), &texCoord[0], params);
}
}
// Read result.
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compare and log.
{
const int bestScoreDiff = (texWidth / 16) * (texHeight / 16);
const int worstScoreDiff = texWidth * texHeight;
int score = measureAccuracy(log, idealFrame, renderedFrame, bestScoreDiff, worstScoreDiff);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(score).c_str());
}
return STOP;
}
TextureMipmapTests::TextureMipmapTests(Context &context) : TestCaseGroup(context, "mipmap", "Mipmapping accuracy tests")
{
}
TextureMipmapTests::~TextureMipmapTests(void)
{
}
void TextureMipmapTests::init(void)
{
tcu::TestCaseGroup *group2D = new tcu::TestCaseGroup(m_testCtx, "2d", "2D Texture Mipmapping");
tcu::TestCaseGroup *groupCube = new tcu::TestCaseGroup(m_testCtx, "cube", "Cube Map Filtering");
addChild(group2D);
addChild(groupCube);
static const struct
{
const char *name;
uint32_t mode;
} wrapModes[] = {{"clamp", GL_CLAMP_TO_EDGE}, {"repeat", GL_REPEAT}, {"mirror", GL_MIRRORED_REPEAT}};
static const struct
{
const char *name;
uint32_t mode;
} minFilterModes[] = {{"nearest_nearest", GL_NEAREST_MIPMAP_NEAREST},
{"linear_nearest", GL_LINEAR_MIPMAP_NEAREST},
{"nearest_linear", GL_NEAREST_MIPMAP_LINEAR},
{"linear_linear", GL_LINEAR_MIPMAP_LINEAR}};
static const struct
{
CoordType type;
const char *name;
const char *desc;
} coordTypes[] = {{COORDTYPE_BASIC, "basic", "Mipmapping with translated and scaled coordinates"},
{COORDTYPE_AFFINE, "affine", "Mipmapping with affine coordinate transform"},
{COORDTYPE_PROJECTED, "projected", "Mipmapping with perspective projection"}};
const int tex2DWidth = 64;
const int tex2DHeight = 64;
// 2D cases.
for (int coordType = 0; coordType < DE_LENGTH_OF_ARRAY(coordTypes); coordType++)
{
tcu::TestCaseGroup *coordTypeGroup =
new tcu::TestCaseGroup(m_testCtx, coordTypes[coordType].name, coordTypes[coordType].desc);
group2D->addChild(coordTypeGroup);
for (int minFilter = 0; minFilter < DE_LENGTH_OF_ARRAY(minFilterModes); minFilter++)
{
for (int wrapMode = 0; wrapMode < DE_LENGTH_OF_ARRAY(wrapModes); wrapMode++)
{
std::ostringstream name;
name << minFilterModes[minFilter].name << "_" << wrapModes[wrapMode].name;
coordTypeGroup->addChild(new Texture2DMipmapCase(
m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), name.str().c_str(), "",
coordTypes[coordType].type, minFilterModes[minFilter].mode, wrapModes[wrapMode].mode,
wrapModes[wrapMode].mode, GL_RGBA, GL_UNSIGNED_BYTE, tex2DWidth, tex2DHeight));
}
}
}
const int cubeMapSize = 64;
static const struct
{
CoordType type;
const char *name;
const char *desc;
} cubeCoordTypes[] = {{COORDTYPE_BASIC, "basic", "Mipmapping with translated and scaled coordinates"},
{COORDTYPE_PROJECTED, "projected", "Mipmapping with perspective projection"}};
// Cubemap cases.
for (int coordType = 0; coordType < DE_LENGTH_OF_ARRAY(cubeCoordTypes); coordType++)
{
tcu::TestCaseGroup *coordTypeGroup =
new tcu::TestCaseGroup(m_testCtx, cubeCoordTypes[coordType].name, cubeCoordTypes[coordType].desc);
groupCube->addChild(coordTypeGroup);
for (int minFilter = 0; minFilter < DE_LENGTH_OF_ARRAY(minFilterModes); minFilter++)
{
coordTypeGroup->addChild(new TextureCubeMipmapCase(
m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), minFilterModes[minFilter].name, "",
cubeCoordTypes[coordType].type, minFilterModes[minFilter].mode, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE,
GL_RGBA, GL_UNSIGNED_BYTE, cubeMapSize));
}
}
}
} // namespace Accuracy
} // namespace gles3
} // namespace deqp