blob: a216ecde4d50c518396b5a5f90c07a1e7d5eb128 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 2.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture filtering accuracy tests.
*//*--------------------------------------------------------------------*/
#include "es2aTextureFilteringTests.hpp"
#include "glsTextureTestUtil.hpp"
#include "gluTexture.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "tcuSurfaceAccess.hpp"
#include "tcuTestLog.hpp"
#include "tcuTextureUtil.hpp"
#include "deStringUtil.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
using std::string;
namespace deqp
{
namespace gles2
{
namespace Accuracy
{
using std::string;
using std::vector;
using tcu::Sampler;
using tcu::TestLog;
using namespace glu;
using namespace gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
class Texture2DFilteringCase : public tcu::TestCase
{
public:
Texture2DFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &ctxInfo,
const char *name, const char *desc, uint32_t minFilter, uint32_t magFilter, uint32_t wrapS,
uint32_t wrapT, uint32_t format, uint32_t dataType, int width, int height);
Texture2DFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &ctxInfo,
const char *name, const char *desc, uint32_t minFilter, uint32_t magFilter, uint32_t wrapS,
uint32_t wrapT, const std::vector<std::string> &filenames);
~Texture2DFilteringCase(void);
void init(void);
void deinit(void);
IterateResult iterate(void);
private:
Texture2DFilteringCase(const Texture2DFilteringCase &other);
Texture2DFilteringCase &operator=(const Texture2DFilteringCase &other);
glu::RenderContext &m_renderCtx;
const glu::ContextInfo &m_renderCtxInfo;
uint32_t m_minFilter;
uint32_t m_magFilter;
uint32_t m_wrapS;
uint32_t m_wrapT;
uint32_t m_format;
uint32_t m_dataType;
int m_width;
int m_height;
std::vector<std::string> m_filenames;
std::vector<glu::Texture2D *> m_textures;
TextureRenderer m_renderer;
};
Texture2DFilteringCase::Texture2DFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &ctxInfo, const char *name, const char *desc,
uint32_t minFilter, uint32_t magFilter, uint32_t wrapS, uint32_t wrapT,
uint32_t format, uint32_t dataType, int width, int height)
: TestCase(testCtx, tcu::NODETYPE_ACCURACY, name, desc)
, m_renderCtx(renderCtx)
, m_renderCtxInfo(ctxInfo)
, m_minFilter(minFilter)
, m_magFilter(magFilter)
, m_wrapS(wrapS)
, m_wrapT(wrapT)
, m_format(format)
, m_dataType(dataType)
, m_width(width)
, m_height(height)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
{
}
Texture2DFilteringCase::Texture2DFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &ctxInfo, const char *name, const char *desc,
uint32_t minFilter, uint32_t magFilter, uint32_t wrapS, uint32_t wrapT,
const std::vector<std::string> &filenames)
: TestCase(testCtx, tcu::NODETYPE_ACCURACY, name, desc)
, m_renderCtx(renderCtx)
, m_renderCtxInfo(ctxInfo)
, m_minFilter(minFilter)
, m_magFilter(magFilter)
, m_wrapS(wrapS)
, m_wrapT(wrapT)
, m_format(GL_NONE)
, m_dataType(GL_NONE)
, m_width(0)
, m_height(0)
, m_filenames(filenames)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
{
}
Texture2DFilteringCase::~Texture2DFilteringCase(void)
{
deinit();
}
void Texture2DFilteringCase::init(void)
{
try
{
if (!m_filenames.empty())
{
m_textures.reserve(1);
m_textures.push_back(glu::Texture2D::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(),
(int)m_filenames.size(), m_filenames));
}
else
{
// Create 2 textures.
m_textures.reserve(2);
for (int ndx = 0; ndx < 2; ndx++)
m_textures.push_back(new glu::Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height));
const bool mipmaps = deIsPowerOfTwo32(m_width) && deIsPowerOfTwo32(m_height);
const int numLevels = mipmaps ? deLog2Floor32(de::max(m_width, m_height)) + 1 : 1;
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_textures[0]->getRefTexture().getFormat());
tcu::Vec4 cBias = fmtInfo.valueMin;
tcu::Vec4 cScale = fmtInfo.valueMax - fmtInfo.valueMin;
// Fill first gradient texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
tcu::Vec4 gMin = tcu::Vec4(-0.5f, -0.5f, -0.5f, 2.0f) * cScale + cBias;
tcu::Vec4 gMax = tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) * cScale + cBias;
m_textures[0]->getRefTexture().allocLevel(levelNdx);
tcu::fillWithComponentGradients(m_textures[0]->getRefTexture().getLevel(levelNdx), gMin, gMax);
}
// Fill second with grid texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
uint32_t step = 0x00ffffff / numLevels;
uint32_t rgb = step * levelNdx;
uint32_t colorA = 0xff000000 | rgb;
uint32_t colorB = 0xff000000 | ~rgb;
m_textures[1]->getRefTexture().allocLevel(levelNdx);
tcu::fillWithGrid(m_textures[1]->getRefTexture().getLevel(levelNdx), 4,
tcu::RGBA(colorA).toVec() * cScale + cBias,
tcu::RGBA(colorB).toVec() * cScale + cBias);
}
// Upload.
for (std::vector<glu::Texture2D *>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
(*i)->upload();
}
}
catch (...)
{
// Clean up to save memory.
Texture2DFilteringCase::deinit();
throw;
}
}
void Texture2DFilteringCase::deinit(void)
{
for (std::vector<glu::Texture2D *>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
m_renderer.clear();
}
Texture2DFilteringCase::IterateResult Texture2DFilteringCase::iterate(void)
{
const glw::Functions &gl = m_renderCtx.getFunctions();
TestLog &log = m_testCtx.getLog();
const int defViewportWidth = 256;
const int defViewportHeight = 256;
RandomViewport viewport(m_renderCtx.getRenderTarget(), defViewportWidth, defViewportHeight,
deStringHash(getName()));
tcu::Surface renderedFrame(viewport.width, viewport.height);
tcu::Surface referenceFrame(viewport.width, viewport.height);
const tcu::TextureFormat &texFmt = m_textures[0]->getRefTexture().getFormat();
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
ReferenceParams refParams(TEXTURETYPE_2D);
vector<float> texCoord;
// Accuracy measurements are off unless viewport size is 256x256
if (viewport.width < defViewportWidth || viewport.height < defViewportHeight)
throw tcu::NotSupportedError("Too small viewport", "", __FILE__, __LINE__);
// Viewport is divided into 4 sections.
int leftWidth = viewport.width / 2;
int rightWidth = viewport.width - leftWidth;
int bottomHeight = viewport.height / 2;
int topHeight = viewport.height - bottomHeight;
int curTexNdx = 0;
// Use unit 0.
gl.activeTexture(GL_TEXTURE0);
// Bind gradient texture and setup sampler parameters.
gl.bindTexture(GL_TEXTURE_2D, m_textures[curTexNdx]->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_magFilter);
// Setup params for reference.
refParams.sampler = mapGLSampler(m_wrapS, m_wrapT, m_minFilter, m_magFilter);
refParams.samplerType = getSamplerType(texFmt);
refParams.lodMode = LODMODE_EXACT;
refParams.colorBias = fmtInfo.lookupBias;
refParams.colorScale = fmtInfo.lookupScale;
// Bottom left: Minification
{
gl.viewport(viewport.x, viewport.y, leftWidth, bottomHeight);
computeQuadTexCoord2D(texCoord, tcu::Vec2(-4.0f, -4.5f), tcu::Vec2(4.0f, 2.5f));
m_renderer.renderQuad(0, &texCoord[0], refParams);
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), 0, 0,
leftWidth, bottomHeight),
m_textures[curTexNdx]->getRefTexture(), &texCoord[0], refParams);
}
// Bottom right: Magnification
{
gl.viewport(viewport.x + leftWidth, viewport.y, rightWidth, bottomHeight);
computeQuadTexCoord2D(texCoord, tcu::Vec2(-0.5f, 0.75f), tcu::Vec2(0.25f, 1.25f));
m_renderer.renderQuad(0, &texCoord[0], refParams);
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), leftWidth, 0,
rightWidth, bottomHeight),
m_textures[curTexNdx]->getRefTexture(), &texCoord[0], refParams);
}
if (m_textures.size() >= 2)
{
curTexNdx += 1;
// Setup second texture.
gl.bindTexture(GL_TEXTURE_2D, m_textures[curTexNdx]->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_magFilter);
}
// Top left: Minification
// \note Minification is chosen so that 0.0 < lod <= 0.5. This way special minification threshold rule will be triggered.
{
gl.viewport(viewport.x, viewport.y + bottomHeight, leftWidth, topHeight);
float sMin = -0.5f;
float tMin = -0.2f;
float sRange = ((float)leftWidth * 1.2f) / (float)m_textures[curTexNdx]->getRefTexture().getWidth();
float tRange = ((float)topHeight * 1.1f) / (float)m_textures[curTexNdx]->getRefTexture().getHeight();
computeQuadTexCoord2D(texCoord, tcu::Vec2(sMin, tMin), tcu::Vec2(sMin + sRange, tMin + tRange));
m_renderer.renderQuad(0, &texCoord[0], refParams);
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), 0,
bottomHeight, leftWidth, topHeight),
m_textures[curTexNdx]->getRefTexture(), &texCoord[0], refParams);
}
// Top right: Magnification
{
gl.viewport(viewport.x + leftWidth, viewport.y + bottomHeight, rightWidth, topHeight);
computeQuadTexCoord2D(texCoord, tcu::Vec2(-0.5f, 0.75f), tcu::Vec2(0.25f, 1.25f));
m_renderer.renderQuad(0, &texCoord[0], refParams);
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), leftWidth,
bottomHeight, rightWidth, topHeight),
m_textures[curTexNdx]->getRefTexture(), &texCoord[0], refParams);
}
// Read result.
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compare and log.
{
DE_ASSERT(getNodeType() == tcu::NODETYPE_ACCURACY);
const int bestScoreDiff = 16;
const int worstScoreDiff = 3200;
int score = measureAccuracy(log, referenceFrame, renderedFrame, bestScoreDiff, worstScoreDiff);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(score).c_str());
}
return STOP;
}
class TextureCubeFilteringCase : public tcu::TestCase
{
public:
TextureCubeFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &ctxInfo,
const char *name, const char *desc, uint32_t minFilter, uint32_t magFilter, uint32_t wrapS,
uint32_t wrapT, uint32_t format, uint32_t dataType, int width, int height);
TextureCubeFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &ctxInfo,
const char *name, const char *desc, uint32_t minFilter, uint32_t magFilter, uint32_t wrapS,
uint32_t wrapT, const std::vector<std::string> &filenames);
~TextureCubeFilteringCase(void);
void init(void);
void deinit(void);
IterateResult iterate(void);
private:
TextureCubeFilteringCase(const TextureCubeFilteringCase &other);
TextureCubeFilteringCase &operator=(const TextureCubeFilteringCase &other);
glu::RenderContext &m_renderCtx;
const glu::ContextInfo &m_renderCtxInfo;
uint32_t m_minFilter;
uint32_t m_magFilter;
uint32_t m_wrapS;
uint32_t m_wrapT;
uint32_t m_format;
uint32_t m_dataType;
int m_width;
int m_height;
std::vector<std::string> m_filenames;
std::vector<glu::TextureCube *> m_textures;
TextureRenderer m_renderer;
};
TextureCubeFilteringCase::TextureCubeFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &ctxInfo, const char *name, const char *desc,
uint32_t minFilter, uint32_t magFilter, uint32_t wrapS,
uint32_t wrapT, uint32_t format, uint32_t dataType, int width,
int height)
: TestCase(testCtx, tcu::NODETYPE_ACCURACY, name, desc)
, m_renderCtx(renderCtx)
, m_renderCtxInfo(ctxInfo)
, m_minFilter(minFilter)
, m_magFilter(magFilter)
, m_wrapS(wrapS)
, m_wrapT(wrapT)
, m_format(format)
, m_dataType(dataType)
, m_width(width)
, m_height(height)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
{
}
TextureCubeFilteringCase::TextureCubeFilteringCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx,
const glu::ContextInfo &ctxInfo, const char *name, const char *desc,
uint32_t minFilter, uint32_t magFilter, uint32_t wrapS,
uint32_t wrapT, const std::vector<std::string> &filenames)
: TestCase(testCtx, tcu::NODETYPE_ACCURACY, name, desc)
, m_renderCtx(renderCtx)
, m_renderCtxInfo(ctxInfo)
, m_minFilter(minFilter)
, m_magFilter(magFilter)
, m_wrapS(wrapS)
, m_wrapT(wrapT)
, m_format(GL_NONE)
, m_dataType(GL_NONE)
, m_width(0)
, m_height(0)
, m_filenames(filenames)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
{
}
TextureCubeFilteringCase::~TextureCubeFilteringCase(void)
{
deinit();
}
void TextureCubeFilteringCase::init(void)
{
try
{
if (!m_filenames.empty())
{
m_textures.reserve(1);
m_textures.push_back(glu::TextureCube::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(),
(int)m_filenames.size() / 6, m_filenames));
}
else
{
m_textures.reserve(2);
DE_ASSERT(m_width == m_height);
for (int ndx = 0; ndx < 2; ndx++)
m_textures.push_back(new glu::TextureCube(m_renderCtx, m_format, m_dataType, m_width));
const bool mipmaps = deIsPowerOfTwo32(m_width) && deIsPowerOfTwo32(m_height);
const int numLevels = mipmaps ? deLog2Floor32(de::max(m_width, m_height)) + 1 : 1;
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_textures[0]->getRefTexture().getFormat());
tcu::Vec4 cBias = fmtInfo.valueMin;
tcu::Vec4 cScale = fmtInfo.valueMax - fmtInfo.valueMin;
// Fill first with gradient texture.
static const tcu::Vec4 gradients[tcu::CUBEFACE_LAST][2] = {
{tcu::Vec4(-1.0f, -1.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // negative x
{tcu::Vec4(0.0f, -1.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // positive x
{tcu::Vec4(-1.0f, 0.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // negative y
{tcu::Vec4(-1.0f, -1.0f, 0.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // positive y
{tcu::Vec4(-1.0f, -1.0f, -1.0f, 0.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f)}, // negative z
{tcu::Vec4(0.0f, 0.0f, 0.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)} // positive z
};
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
m_textures[0]->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
tcu::fillWithComponentGradients(
m_textures[0]->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face),
gradients[face][0] * cScale + cBias, gradients[face][1] * cScale + cBias);
}
}
// Fill second with grid texture.
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
uint32_t step = 0x00ffffff / (numLevels * tcu::CUBEFACE_LAST);
uint32_t rgb = step * levelNdx * face;
uint32_t colorA = 0xff000000 | rgb;
uint32_t colorB = 0xff000000 | ~rgb;
m_textures[1]->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
tcu::fillWithGrid(m_textures[1]->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face), 4,
tcu::RGBA(colorA).toVec() * cScale + cBias,
tcu::RGBA(colorB).toVec() * cScale + cBias);
}
}
// Upload.
for (std::vector<glu::TextureCube *>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
(*i)->upload();
}
}
catch (const std::exception &)
{
// Clean up to save memory.
TextureCubeFilteringCase::deinit();
throw;
}
}
void TextureCubeFilteringCase::deinit(void)
{
for (std::vector<glu::TextureCube *>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
m_renderer.clear();
}
static void renderFaces(const glw::Functions &gl, const tcu::SurfaceAccess &dstRef, const tcu::TextureCube &refTexture,
const ReferenceParams &params, TextureRenderer &renderer, int x, int y, int width, int height,
const tcu::Vec2 &bottomLeft, const tcu::Vec2 &topRight, const tcu::Vec2 &texCoordTopRightFactor)
{
DE_ASSERT(width == dstRef.getWidth() && height == dstRef.getHeight());
vector<float> texCoord;
DE_STATIC_ASSERT(tcu::CUBEFACE_LAST == 6);
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
bool isRightmost = (face == 2) || (face == 5);
bool isTop = face >= 3;
int curX = (face % 3) * (width / 3);
int curY = (face / 3) * (height / 2);
int curW = isRightmost ? (width - curX) : (width / 3);
int curH = isTop ? (height - curY) : (height / 2);
computeQuadTexCoordCube(texCoord, (tcu::CubeFace)face, bottomLeft, topRight);
{
// Move the top and right edges of the texture coord quad. This is useful when we want a cube edge visible.
int texCoordSRow = face == tcu::CUBEFACE_NEGATIVE_X || face == tcu::CUBEFACE_POSITIVE_X ? 2 : 0;
int texCoordTRow = face == tcu::CUBEFACE_NEGATIVE_Y || face == tcu::CUBEFACE_POSITIVE_Y ? 2 : 1;
texCoord[6 + texCoordSRow] *= texCoordTopRightFactor.x();
texCoord[9 + texCoordSRow] *= texCoordTopRightFactor.x();
texCoord[3 + texCoordTRow] *= texCoordTopRightFactor.y();
texCoord[9 + texCoordTRow] *= texCoordTopRightFactor.y();
}
gl.viewport(x + curX, y + curY, curW, curH);
renderer.renderQuad(0, &texCoord[0], params);
sampleTexture(tcu::SurfaceAccess(dstRef, curX, curY, curW, curH), refTexture, &texCoord[0], params);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "Post render");
}
TextureCubeFilteringCase::IterateResult TextureCubeFilteringCase::iterate(void)
{
const glw::Functions &gl = m_renderCtx.getFunctions();
TestLog &log = m_testCtx.getLog();
const int cellSize = 28;
const int defViewportWidth = cellSize * 6;
const int defViewportHeight = cellSize * 4;
RandomViewport viewport(m_renderCtx.getRenderTarget(), cellSize * 6, cellSize * 4, deStringHash(getName()));
tcu::Surface renderedFrame(viewport.width, viewport.height);
tcu::Surface referenceFrame(viewport.width, viewport.height);
ReferenceParams sampleParams(TEXTURETYPE_CUBE);
const tcu::TextureFormat &texFmt = m_textures[0]->getRefTexture().getFormat();
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
// Accuracy measurements are off unless viewport size is exactly as expected.
if (viewport.width < defViewportWidth || viewport.height < defViewportHeight)
throw tcu::NotSupportedError("Too small viewport", "", __FILE__, __LINE__);
// Viewport is divided into 4 sections.
int leftWidth = viewport.width / 2;
int rightWidth = viewport.width - leftWidth;
int bottomHeight = viewport.height / 2;
int topHeight = viewport.height - bottomHeight;
int curTexNdx = 0;
// Sampling parameters.
sampleParams.sampler = mapGLSampler(m_wrapS, m_wrapT, m_minFilter, m_magFilter);
sampleParams.sampler.seamlessCubeMap = false;
sampleParams.samplerType = getSamplerType(texFmt);
sampleParams.colorBias = fmtInfo.lookupBias;
sampleParams.colorScale = fmtInfo.lookupScale;
sampleParams.lodMode = LODMODE_EXACT;
// Use unit 0.
gl.activeTexture(GL_TEXTURE0);
// Setup gradient texture.
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_textures[curTexNdx]->getGLTexture());
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, m_magFilter);
// Bottom left: Minification
renderFaces(gl,
tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), 0, 0, leftWidth,
bottomHeight),
m_textures[curTexNdx]->getRefTexture(), sampleParams, m_renderer, viewport.x, viewport.y, leftWidth,
bottomHeight, tcu::Vec2(-0.81f, -0.81f), tcu::Vec2(0.8f, 0.8f), tcu::Vec2(1.0f, 1.0f));
// Bottom right: Magnification
renderFaces(gl,
tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), leftWidth, 0,
rightWidth, bottomHeight),
m_textures[curTexNdx]->getRefTexture(), sampleParams, m_renderer, viewport.x + leftWidth, viewport.y,
rightWidth, bottomHeight, tcu::Vec2(0.5f, 0.65f), tcu::Vec2(0.8f, 0.8f), tcu::Vec2(1.0f, 1.0f));
if (m_textures.size() >= 2)
{
curTexNdx += 1;
// Setup second texture.
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_textures[curTexNdx]->getGLTexture());
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, m_magFilter);
}
// Top left: Minification
renderFaces(gl,
tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), 0, bottomHeight,
leftWidth, topHeight),
m_textures[curTexNdx]->getRefTexture(), sampleParams, m_renderer, viewport.x, viewport.y + bottomHeight,
leftWidth, topHeight, tcu::Vec2(-0.81f, -0.81f), tcu::Vec2(0.8f, 0.8f), tcu::Vec2(1.0f, 1.0f));
// Top right: Magnification
renderFaces(gl,
tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat(), leftWidth,
bottomHeight, rightWidth, topHeight),
m_textures[curTexNdx]->getRefTexture(), sampleParams, m_renderer, viewport.x + leftWidth,
viewport.y + bottomHeight, rightWidth, topHeight, tcu::Vec2(0.5f, -0.65f), tcu::Vec2(0.8f, -0.8f),
tcu::Vec2(1.0f, 1.0f));
// Read result.
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compare and log.
{
DE_ASSERT(getNodeType() == tcu::NODETYPE_ACCURACY);
const int bestScoreDiff = 16;
const int worstScoreDiff = 10000;
int score = measureAccuracy(log, referenceFrame, renderedFrame, bestScoreDiff, worstScoreDiff);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(score).c_str());
}
return STOP;
}
TextureFilteringTests::TextureFilteringTests(Context &context)
: TestCaseGroup(context, "filter", "Texture Filtering Accuracy Tests")
{
}
TextureFilteringTests::~TextureFilteringTests(void)
{
}
void TextureFilteringTests::init(void)
{
tcu::TestCaseGroup *group2D = new tcu::TestCaseGroup(m_testCtx, "2d", "2D Texture Filtering");
tcu::TestCaseGroup *groupCube = new tcu::TestCaseGroup(m_testCtx, "cube", "Cube Map Filtering");
addChild(group2D);
addChild(groupCube);
static const struct
{
const char *name;
uint32_t mode;
} wrapModes[] = {{"clamp", GL_CLAMP_TO_EDGE}, {"repeat", GL_REPEAT}, {"mirror", GL_MIRRORED_REPEAT}};
static const struct
{
const char *name;
uint32_t mode;
} minFilterModes[] = {{"nearest", GL_NEAREST},
{"linear", GL_LINEAR},
{"nearest_mipmap_nearest", GL_NEAREST_MIPMAP_NEAREST},
{"linear_mipmap_nearest", GL_LINEAR_MIPMAP_NEAREST},
{"nearest_mipmap_linear", GL_NEAREST_MIPMAP_LINEAR},
{"linear_mipmap_linear", GL_LINEAR_MIPMAP_LINEAR}};
static const struct
{
const char *name;
uint32_t mode;
} magFilterModes[] = {{"nearest", GL_NEAREST}, {"linear", GL_LINEAR}};
static const struct
{
const char *name;
int width;
int height;
} sizes2D[] = {{"pot", 32, 64}, {"npot", 31, 55}};
static const struct
{
const char *name;
int width;
int height;
} sizesCube[] = {{"pot", 64, 64}, {"npot", 63, 63}};
static const struct
{
const char *name;
uint32_t format;
uint32_t dataType;
} formats[] = {{"rgba8888", GL_RGBA, GL_UNSIGNED_BYTE}, {"rgba4444", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4}};
#define FOR_EACH(ITERATOR, ARRAY, BODY) \
for (int ITERATOR = 0; ITERATOR < DE_LENGTH_OF_ARRAY(ARRAY); ITERATOR++) \
BODY
// 2D cases.
FOR_EACH(minFilter, minFilterModes,
FOR_EACH(magFilter, magFilterModes,
FOR_EACH(wrapMode, wrapModes,
FOR_EACH(format, formats, FOR_EACH(size, sizes2D, {
bool isMipmap = minFilterModes[minFilter].mode != GL_NEAREST &&
minFilterModes[minFilter].mode != GL_LINEAR;
bool isClamp = wrapModes[wrapMode].mode == GL_CLAMP_TO_EDGE;
bool isRepeat = wrapModes[wrapMode].mode == GL_REPEAT;
bool isMagNearest = magFilterModes[magFilter].mode == GL_NEAREST;
bool isPotSize = deIsPowerOfTwo32(sizes2D[size].width) &&
deIsPowerOfTwo32(sizes2D[size].height);
if ((isMipmap || !isClamp) && !isPotSize)
continue; // Not supported.
if ((format != 0) && !(!isMipmap || (isRepeat && isMagNearest)))
continue; // Skip.
string name = string("") + minFilterModes[minFilter].name + "_" +
magFilterModes[magFilter].name + "_" +
wrapModes[wrapMode].name + "_" + formats[format].name;
if (!isMipmap)
name += string("_") + sizes2D[size].name;
group2D->addChild(new Texture2DFilteringCase(
m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "", minFilterModes[minFilter].mode,
magFilterModes[magFilter].mode, wrapModes[wrapMode].mode,
wrapModes[wrapMode].mode, formats[format].format,
formats[format].dataType, sizes2D[size].width, sizes2D[size].height));
})))))
// Cubemap cases.
FOR_EACH(minFilter, minFilterModes,
FOR_EACH(magFilter, magFilterModes,
FOR_EACH(wrapMode, wrapModes,
FOR_EACH(format, formats, FOR_EACH(size, sizesCube, {
bool isMipmap = minFilterModes[minFilter].mode != GL_NEAREST &&
minFilterModes[minFilter].mode != GL_LINEAR;
bool isClamp = wrapModes[wrapMode].mode == GL_CLAMP_TO_EDGE;
bool isRepeat = wrapModes[wrapMode].mode == GL_REPEAT;
bool isMagNearest = magFilterModes[magFilter].mode == GL_NEAREST;
bool isPotSize = deIsPowerOfTwo32(sizesCube[size].width) &&
deIsPowerOfTwo32(sizesCube[size].height);
if ((isMipmap || !isClamp) && !isPotSize)
continue; // Not supported.
if (format != 0 && !(!isMipmap || (isRepeat && isMagNearest)))
continue; // Skip.
string name = string("") + minFilterModes[minFilter].name + "_" +
magFilterModes[magFilter].name + "_" +
wrapModes[wrapMode].name + "_" + formats[format].name;
if (!isMipmap)
name += string("_") + sizesCube[size].name;
groupCube->addChild(new TextureCubeFilteringCase(
m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "", minFilterModes[minFilter].mode,
magFilterModes[magFilter].mode, wrapModes[wrapMode].mode,
wrapModes[wrapMode].mode, formats[format].format,
formats[format].dataType, sizesCube[size].width,
sizesCube[size].height));
})))))
}
} // namespace Accuracy
} // namespace gles2
} // namespace deqp