blob: 90b432d7953479ae4c4c71fd1ea4a830a3e6a85b [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program Reference Renderer
* -----------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Reference rasterizer
*//*--------------------------------------------------------------------*/
#include "rrRasterizer.hpp"
#include "deMath.h"
#include "tcuVectorUtil.hpp"
namespace rr
{
inline int64_t toSubpixelCoord(float v, int bits)
{
return (int64_t)(v * (float)(1 << bits) + (v < 0.f ? -0.5f : 0.5f));
}
inline int64_t toSubpixelCoord(int32_t v, int bits)
{
return v << bits;
}
inline int32_t ceilSubpixelToPixelCoord(int64_t coord, int bits, bool fillEdge)
{
if (coord >= 0)
return (int32_t)((coord + ((1ll << bits) - (fillEdge ? 0 : 1))) >> bits);
else
return (int32_t)((coord + (fillEdge ? 1 : 0)) >> bits);
}
inline int32_t floorSubpixelToPixelCoord(int64_t coord, int bits, bool fillEdge)
{
if (coord >= 0)
return (int32_t)((coord - (fillEdge ? 1 : 0)) >> bits);
else
return (int32_t)((coord - ((1ll << bits) - (fillEdge ? 0 : 1))) >> bits);
}
static inline void initEdgeCCW(EdgeFunction &edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill,
const int64_t x0, const int64_t y0, const int64_t x1, const int64_t y1)
{
// \note See EdgeFunction documentation for details.
const int64_t xd = x1 - x0;
const int64_t yd = y1 - y0;
bool inclusive = false; //!< Inclusive in CCW orientation.
if (yd == 0)
inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0;
else
inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0;
edge.a = (y0 - y1);
edge.b = (x1 - x0);
edge.c = x0 * y1 - y0 * x1;
edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles
}
static inline void reverseEdge(EdgeFunction &edge)
{
edge.a = -edge.a;
edge.b = -edge.b;
edge.c = -edge.c;
edge.inclusive = !edge.inclusive;
}
static inline int64_t evaluateEdge(const EdgeFunction &edge, const int64_t x, const int64_t y)
{
return edge.a * x + edge.b * y + edge.c;
}
static inline bool isInsideCCW(const EdgeFunction &edge, const int64_t edgeVal)
{
return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0);
}
namespace LineRasterUtil
{
struct SubpixelLineSegment
{
const tcu::Vector<int64_t, 2> m_v0;
const tcu::Vector<int64_t, 2> m_v1;
SubpixelLineSegment(const tcu::Vector<int64_t, 2> &v0, const tcu::Vector<int64_t, 2> &v1) : m_v0(v0), m_v1(v1)
{
}
tcu::Vector<int64_t, 2> direction(void) const
{
return m_v1 - m_v0;
}
};
enum LINE_SIDE
{
LINE_SIDE_INTERSECT = 0,
LINE_SIDE_LEFT,
LINE_SIDE_RIGHT
};
static tcu::Vector<int64_t, 2> toSubpixelVector(const tcu::Vec2 &v, int bits)
{
return tcu::Vector<int64_t, 2>(toSubpixelCoord(v.x(), bits), toSubpixelCoord(v.y(), bits));
}
static tcu::Vector<int64_t, 2> toSubpixelVector(const tcu::IVec2 &v, int bits)
{
return tcu::Vector<int64_t, 2>(toSubpixelCoord(v.x(), bits), toSubpixelCoord(v.y(), bits));
}
#if defined(DE_DEBUG)
static bool isTheCenterOfTheFragment(const tcu::Vector<int64_t, 2> &a, int bits)
{
const uint64_t pixelSize = 1ll << bits;
const uint64_t halfPixel = 1ll << (bits - 1);
return ((a.x() & (pixelSize - 1)) == halfPixel && (a.y() & (pixelSize - 1)) == halfPixel);
}
static bool inViewport(const tcu::IVec2 &p, const tcu::IVec4 &viewport)
{
return p.x() >= viewport.x() && p.y() >= viewport.y() && p.x() < viewport.x() + viewport.z() &&
p.y() < viewport.y() + viewport.w();
}
#endif // DE_DEBUG
// returns true if vertex is on the left side of the line
static bool vertexOnLeftSideOfLine(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
{
const tcu::Vector<int64_t, 2> u = l.direction();
const tcu::Vector<int64_t, 2> v = (p - l.m_v0);
const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
return crossProduct < 0;
}
// returns true if vertex is on the right side of the line
static bool vertexOnRightSideOfLine(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
{
const tcu::Vector<int64_t, 2> u = l.direction();
const tcu::Vector<int64_t, 2> v = (p - l.m_v0);
const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
return crossProduct > 0;
}
// returns true if vertex is on the line
static bool vertexOnLine(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
{
const tcu::Vector<int64_t, 2> u = l.direction();
const tcu::Vector<int64_t, 2> v = (p - l.m_v0);
const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
return crossProduct == 0; // cross product == 0
}
// returns true if vertex is on the line segment
static bool vertexOnLineSegment(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
{
if (!vertexOnLine(p, l))
return false;
const tcu::Vector<int64_t, 2> v = l.direction();
const tcu::Vector<int64_t, 2> u1 = (p - l.m_v0);
const tcu::Vector<int64_t, 2> u2 = (p - l.m_v1);
if (v.x() == 0 && v.y() == 0)
return false;
return tcu::dot(v, u1) >= 0 && tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0
}
static LINE_SIDE getVertexSide(const tcu::Vector<int64_t, 2> &v, const SubpixelLineSegment &l)
{
if (vertexOnLeftSideOfLine(v, l))
return LINE_SIDE_LEFT;
else if (vertexOnRightSideOfLine(v, l))
return LINE_SIDE_RIGHT;
else if (vertexOnLine(v, l))
return LINE_SIDE_INTERSECT;
else
{
DE_ASSERT(false);
return LINE_SIDE_INTERSECT;
}
}
// returns true if angle between line and given cornerExitNormal is in range (-45, 45)
bool lineInCornerAngleRange(const SubpixelLineSegment &line, const tcu::Vector<int64_t, 2> &cornerExitNormal)
{
// v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45)
const tcu::Vector<int64_t, 2> v = line.direction();
const int64_t dotProduct = dot(v, cornerExitNormal);
// dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2)
if (dotProduct < 0)
return false;
return 2 * dotProduct * dotProduct > tcu::lengthSquared(v) * tcu::lengthSquared(cornerExitNormal);
}
// returns true if angle between line and given cornerExitNormal is in range (-135, 135)
bool lineInCornerOutsideAngleRange(const SubpixelLineSegment &line, const tcu::Vector<int64_t, 2> &cornerExitNormal)
{
// v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135)
const tcu::Vector<int64_t, 2> v = line.direction();
const int64_t dotProduct = dot(v, cornerExitNormal);
// dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2)
if (dotProduct >= 0)
return true;
return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v) * tcu::lengthSquared(cornerExitNormal);
}
bool doesLineSegmentExitDiamond(const SubpixelLineSegment &line, const tcu::Vector<int64_t, 2> &diamondCenter, int bits)
{
DE_ASSERT(isTheCenterOfTheFragment(diamondCenter, bits));
// Diamond Center is at diamondCenter in subpixel coords
const int64_t halfPixel = 1ll << (bits - 1);
// Reject distant diamonds early
{
const tcu::Vector<int64_t, 2> u = line.direction();
const tcu::Vector<int64_t, 2> v = (diamondCenter - line.m_v0);
const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
// crossProduct = |p| |l| sin(theta)
// distanceFromLine = |p| sin(theta)
// => distanceFromLine = crossProduct / |l|
//
// |distanceFromLine| > C
// => distanceFromLine^2 > C^2
// => crossProduct^2 / |l|^2 > C^2
// => crossProduct^2 > |l|^2 * C^2
const int64_t floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64))
const int64_t broadRejectDistance = 2 * halfPixel;
const int64_t broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance;
const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64);
const int64_t crossProductSquared =
(crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow
const int64_t lineLengthSquared = tcu::lengthSquared(u);
const bool limitValueCouldOverflow =
((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63;
const int64_t limitValue =
(limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow
// only cross overflows
if (crossProductOverflows && !limitValueCouldOverflow)
return false;
// both representable
if (!crossProductOverflows && !limitValueCouldOverflow)
{
if (crossProductSquared > limitValue)
return false;
}
}
const struct DiamondBound
{
tcu::Vector<int64_t, 2> p0;
tcu::Vector<int64_t, 2> p1;
bool edgeInclusive; // would a point on the bound be inside of the region
} bounds[] = {
{diamondCenter + tcu::Vector<int64_t, 2>(0, -halfPixel), diamondCenter + tcu::Vector<int64_t, 2>(-halfPixel, 0),
false},
{diamondCenter + tcu::Vector<int64_t, 2>(-halfPixel, 0), diamondCenter + tcu::Vector<int64_t, 2>(0, halfPixel),
false},
{diamondCenter + tcu::Vector<int64_t, 2>(0, halfPixel), diamondCenter + tcu::Vector<int64_t, 2>(halfPixel, 0),
true},
{diamondCenter + tcu::Vector<int64_t, 2>(halfPixel, 0), diamondCenter + tcu::Vector<int64_t, 2>(0, -halfPixel),
true},
};
const struct DiamondCorners
{
enum CORNER_EDGE_CASE_BEHAVIOR
{
CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting
CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit
CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside)
CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside)
};
enum CORNER_START_CASE_BEHAVIOR
{
CORNER_START_CASE_NONE, // the line starting point is outside, no exiting
CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside)
CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side.
CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side.
};
enum CORNER_END_CASE_BEHAVIOR
{
CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside)
CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside)
CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside)
CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside)
};
tcu::Vector<int64_t, 2> dp;
bool pointInclusive; // would a point in this corner intersect with the region
CORNER_EDGE_CASE_BEHAVIOR
lineBehavior; // would a line segment going through this corner intersect with the region
CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner
CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner
} corners[] = {
{tcu::Vector<int64_t, 2>(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER,
DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER},
{tcu::Vector<int64_t, 2>(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE,
DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION},
{tcu::Vector<int64_t, 2>(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER,
DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER},
{tcu::Vector<int64_t, 2>(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT,
DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE},
};
// Corner cases at the corners
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx)
{
const tcu::Vector<int64_t, 2> p = diamondCenter + corners[ndx].dp;
const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line);
if (!intersectsAtCorner)
continue;
// line segment body intersects with the corner
if (p != line.m_v0 && p != line.m_v1)
{
if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT)
return true;
// endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0
if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER &&
(line.direction().x() * line.direction().y()) <= 0)
return true;
// endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0
if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER &&
(line.direction().x() * line.direction().y()) > 0)
return true;
}
// line exits the area at the corner
if (lineInCornerAngleRange(line, corners[ndx].dp))
{
const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0;
const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1;
// starting point is inside the region and end endpoint is outside
if (startIsInside && endIsOutside)
return true;
}
// line end is at the corner
if (p == line.m_v1)
{
if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION ||
corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER ||
corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER)
{
// did the line intersect the region
if (lineInCornerAngleRange(line, corners[ndx].dp))
return true;
}
// due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair
if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER &&
line.direction().x() < 0 && line.direction().y() > 0)
return true;
if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER &&
line.direction().x() > 0 && line.direction().y() > 0)
return true;
}
// line start is at the corner
if (p == line.m_v0)
{
if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE)
{
// if the line is not going inside, it will exit
if (lineInCornerOutsideAngleRange(line, corners[ndx].dp))
return true;
}
// exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side.
if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 &&
line.direction().x() > 0 && line.direction().y() > 0 && line.direction().y() <= line.direction().x())
return true;
// exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side.
if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 &&
line.direction().x() > 0 && line.direction().y() <= 0 && -line.direction().y() <= line.direction().x())
return true;
}
}
// Does the line intersect boundary at the left == exits the diamond
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx)
{
const bool startVertexInside =
LineRasterUtil::vertexOnLeftSideOfLine(
line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
(bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine(line.m_v0, LineRasterUtil::SubpixelLineSegment(
bounds[ndx].p0, bounds[ndx].p1)));
const bool endVertexInside =
LineRasterUtil::vertexOnLeftSideOfLine(
line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
(bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine(line.m_v1, LineRasterUtil::SubpixelLineSegment(
bounds[ndx].p0, bounds[ndx].p1)));
// start must be on inside this half space (left or at the inclusive boundary)
if (!startVertexInside)
continue;
// end must be outside of this half-space (right or at non-inclusive boundary)
if (endVertexInside)
continue;
// Does the line via v0 and v1 intersect the line segment p0-p1
// <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line.
// Corners are not allowed, they are checked already
LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line);
LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line);
if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT && sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT &&
sideP0 != sideP1)
return true;
}
return false;
}
} // namespace LineRasterUtil
TriangleRasterizer::TriangleRasterizer(const tcu::IVec4 &viewport, const int numSamples,
const RasterizationState &state, const int subpixelBits)
: m_viewport(viewport)
, m_numSamples(numSamples)
, m_winding(state.winding)
, m_horizontalFill(state.horizontalFill)
, m_verticalFill(state.verticalFill)
, m_subpixelBits(subpixelBits)
, m_face(FACETYPE_LAST)
, m_viewportOrientation(state.viewportOrientation)
{
}
/*--------------------------------------------------------------------*//*!
* \brief Initialize triangle rasterization
* \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0.
* \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1.
* \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2.
*//*--------------------------------------------------------------------*/
void TriangleRasterizer::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1, const tcu::Vec4 &v2)
{
m_v0 = v0;
m_v1 = v1;
m_v2 = v2;
// Positions in fixed-point coordinates.
const int64_t x0 = toSubpixelCoord(v0.x(), m_subpixelBits);
const int64_t y0 = toSubpixelCoord(v0.y(), m_subpixelBits);
const int64_t x1 = toSubpixelCoord(v1.x(), m_subpixelBits);
const int64_t y1 = toSubpixelCoord(v1.y(), m_subpixelBits);
const int64_t x2 = toSubpixelCoord(v2.x(), m_subpixelBits);
const int64_t y2 = toSubpixelCoord(v2.y(), m_subpixelBits);
// Initialize edge functions.
if (m_winding == WINDING_CCW)
{
initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1);
initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2);
initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0);
}
else
{
// Reverse edges
initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0);
initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1);
initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2);
}
// Determine face.
const int64_t s = evaluateEdge(m_edge01, x2, y2);
const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0);
if (m_viewportOrientation == VIEWPORTORIENTATION_UPPER_LEFT)
m_face = positiveArea ? FACETYPE_BACK : FACETYPE_FRONT;
else
m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK;
if (!positiveArea)
{
// Reverse edges so that we can use CCW area tests & interpolation
reverseEdge(m_edge01);
reverseEdge(m_edge12);
reverseEdge(m_edge20);
}
// Bounding box
const int64_t xMin = de::min(de::min(x0, x1), x2);
const int64_t xMax = de::max(de::max(x0, x1), x2);
const int64_t yMin = de::min(de::min(y0, y1), y2);
const int64_t yMax = de::max(de::max(y0, y1), y2);
m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, m_subpixelBits, m_horizontalFill == FILL_LEFT);
m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, m_subpixelBits, m_verticalFill == FILL_BOTTOM);
m_bboxMax.x() = ceilSubpixelToPixelCoord(xMax, m_subpixelBits, m_horizontalFill == FILL_RIGHT);
m_bboxMax.y() = ceilSubpixelToPixelCoord(yMax, m_subpixelBits, m_verticalFill == FILL_TOP);
// Clamp to viewport
const int wX0 = m_viewport.x();
const int wY0 = m_viewport.y();
const int wX1 = wX0 + m_viewport.z() - 1;
const int wY1 = wY0 + m_viewport.w() - 1;
m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1);
m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1);
m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1);
m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1);
m_curPos = m_bboxMin;
}
void TriangleRasterizer::rasterizeSingleSample(FragmentPacket *const fragmentPackets, float *const depthValues,
const int maxFragmentPackets, int &numPacketsRasterized)
{
DE_ASSERT(maxFragmentPackets > 0);
const uint64_t halfPixel = 1ll << (m_subpixelBits - 1);
int packetNdx = 0;
// For depth interpolation; given barycentrics A, B, C = (1 - A - B)
// we can reformulate the usual z = z0*A + z1*B + z2*C into more
// stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2.
const float za = m_v0.z() - m_v2.z();
const float zb = m_v1.z() - m_v2.z();
const float zc = m_v2.z();
while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
{
const int x0 = m_curPos.x();
const int y0 = m_curPos.y();
// Subpixel coords
const int64_t sx0 = toSubpixelCoord(x0, m_subpixelBits) + halfPixel;
const int64_t sx1 = toSubpixelCoord(x0 + 1, m_subpixelBits) + halfPixel;
const int64_t sy0 = toSubpixelCoord(y0, m_subpixelBits) + halfPixel;
const int64_t sy1 = toSubpixelCoord(y0 + 1, m_subpixelBits) + halfPixel;
const int64_t sx[4] = {sx0, sx1, sx0, sx1};
const int64_t sy[4] = {sy0, sy0, sy1, sy1};
// Viewport test
const bool outX1 = x0 + 1 == m_viewport.x() + m_viewport.z();
const bool outY1 = y0 + 1 == m_viewport.y() + m_viewport.w();
DE_ASSERT(x0 < m_viewport.x() + m_viewport.z());
DE_ASSERT(y0 < m_viewport.y() + m_viewport.w());
// Edge values
tcu::Vector<int64_t, 4> e01;
tcu::Vector<int64_t, 4> e12;
tcu::Vector<int64_t, 4> e20;
// Coverage
uint64_t coverage = 0;
// Evaluate edge values
for (int i = 0; i < 4; i++)
{
e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]);
e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]);
e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]);
}
// Compute coverage mask
coverage = setCoverageValue(coverage, 1, 0, 0, 0,
isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) &&
isInsideCCW(m_edge20, e20[0]));
coverage = setCoverageValue(coverage, 1, 1, 0, 0,
!outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) &&
isInsideCCW(m_edge20, e20[1]));
coverage = setCoverageValue(coverage, 1, 0, 1, 0,
!outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) &&
isInsideCCW(m_edge20, e20[2]));
coverage = setCoverageValue(coverage, 1, 1, 1, 0,
!outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) &&
isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3]));
// Advance to next location
m_curPos.x() += 2;
if (m_curPos.x() > m_bboxMax.x())
{
m_curPos.y() += 2;
m_curPos.x() = m_bboxMin.x();
}
if (coverage == 0)
continue; // Discard.
// Floating-point edge values for barycentrics etc.
const tcu::Vec4 e01f = e01.asFloat();
const tcu::Vec4 e12f = e12.asFloat();
const tcu::Vec4 e20f = e20.asFloat();
// Compute depth values.
if (depthValues)
{
const tcu::Vec4 edgeSum = e01f + e12f + e20f;
const tcu::Vec4 z0 = e12f / edgeSum;
const tcu::Vec4 z1 = e20f / edgeSum;
depthValues[packetNdx * 4 + 0] = z0[0] * za + z1[0] * zb + zc;
depthValues[packetNdx * 4 + 1] = z0[1] * za + z1[1] * zb + zc;
depthValues[packetNdx * 4 + 2] = z0[2] * za + z1[2] * zb + zc;
depthValues[packetNdx * 4 + 3] = z0[3] * za + z1[3] * zb + zc;
}
// Compute barycentrics and write out fragment packet
{
FragmentPacket &packet = fragmentPackets[packetNdx];
const tcu::Vec4 b0 = e12f * m_v0.w();
const tcu::Vec4 b1 = e20f * m_v1.w();
const tcu::Vec4 b2 = e01f * m_v2.w();
const tcu::Vec4 bSum = b0 + b1 + b2;
packet.position = tcu::IVec2(x0, y0);
packet.coverage = coverage;
packet.barycentric[0] = b0 / bSum;
packet.barycentric[1] = b1 / bSum;
packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1];
packetNdx += 1;
}
}
DE_ASSERT(packetNdx <= maxFragmentPackets);
numPacketsRasterized = packetNdx;
}
// Sample positions - ordered as (x, y) list.
static const float s_samplePts2[] = {0.3f, 0.3f, 0.7f, 0.7f};
static const float s_samplePts4[] = {0.25f, 0.25f, 0.75f, 0.25f, 0.25f, 0.75f, 0.75f, 0.75f};
static const float s_samplePts8[] = {7.f / 16.f, 9.f / 16.f, 9.f / 16.f, 13.f / 16.f, 11.f / 16.f, 3.f / 16.f,
13.f / 16.f, 11.f / 16.f, 1.f / 16.f, 7.f / 16.f, 5.f / 16.f, 1.f / 16.f,
15.f / 16.f, 5.f / 16.f, 3.f / 16.f, 15.f / 16.f};
static const float s_samplePts16[] = {1.f / 8.f, 1.f / 8.f, 3.f / 8.f, 1.f / 8.f, 5.f / 8.f, 1.f / 8.f, 7.f / 8.f,
1.f / 8.f, 1.f / 8.f, 3.f / 8.f, 3.f / 8.f, 3.f / 8.f, 5.f / 8.f, 3.f / 8.f,
7.f / 8.f, 3.f / 8.f, 1.f / 8.f, 5.f / 8.f, 3.f / 8.f, 5.f / 8.f, 5.f / 8.f,
5.f / 8.f, 7.f / 8.f, 5.f / 8.f, 1.f / 8.f, 7.f / 8.f, 3.f / 8.f, 7.f / 8.f,
5.f / 8.f, 7.f / 8.f, 7.f / 8.f, 7.f / 8.f};
template <int NumSamples>
void TriangleRasterizer::rasterizeMultiSample(FragmentPacket *const fragmentPackets, float *const depthValues,
const int maxFragmentPackets, int &numPacketsRasterized)
{
DE_ASSERT(maxFragmentPackets > 0);
// Big enough to hold maximum multisample count
int64_t samplePos[DE_LENGTH_OF_ARRAY(s_samplePts16)];
const float *samplePts = DE_NULL;
const uint64_t halfPixel = 1ll << (m_subpixelBits - 1);
int packetNdx = 0;
// For depth interpolation, see rasterizeSingleSample
const float za = m_v0.z() - m_v2.z();
const float zb = m_v1.z() - m_v2.z();
const float zc = m_v2.z();
switch (NumSamples)
{
case 2:
samplePts = s_samplePts2;
break;
case 4:
samplePts = s_samplePts4;
break;
case 8:
samplePts = s_samplePts8;
break;
case 16:
samplePts = s_samplePts16;
break;
default:
DE_ASSERT(false);
}
for (int c = 0; c < NumSamples * 2; ++c)
samplePos[c] = toSubpixelCoord(samplePts[c], m_subpixelBits);
while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
{
const int x0 = m_curPos.x();
const int y0 = m_curPos.y();
// Base subpixel coords
const int64_t sx0 = toSubpixelCoord(x0, m_subpixelBits);
const int64_t sx1 = toSubpixelCoord(x0 + 1, m_subpixelBits);
const int64_t sy0 = toSubpixelCoord(y0, m_subpixelBits);
const int64_t sy1 = toSubpixelCoord(y0 + 1, m_subpixelBits);
const int64_t sx[4] = {sx0, sx1, sx0, sx1};
const int64_t sy[4] = {sy0, sy0, sy1, sy1};
// Viewport test
const bool outX1 = x0 + 1 == m_viewport.x() + m_viewport.z();
const bool outY1 = y0 + 1 == m_viewport.y() + m_viewport.w();
DE_ASSERT(x0 < m_viewport.x() + m_viewport.z());
DE_ASSERT(y0 < m_viewport.y() + m_viewport.w());
// Edge values
tcu::Vector<int64_t, 4> e01[NumSamples];
tcu::Vector<int64_t, 4> e12[NumSamples];
tcu::Vector<int64_t, 4> e20[NumSamples];
// Coverage
uint64_t coverage = 0;
// Evaluate edge values at sample positions
for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
{
const int64_t ox = samplePos[sampleNdx * 2 + 0];
const int64_t oy = samplePos[sampleNdx * 2 + 1];
for (int fragNdx = 0; fragNdx < 4; fragNdx++)
{
e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy);
e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy);
e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy);
}
}
// Compute coverage mask
for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
{
coverage =
setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx,
isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) &&
isInsideCCW(m_edge20, e20[sampleNdx][0]));
coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx,
!outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) &&
isInsideCCW(m_edge12, e12[sampleNdx][1]) &&
isInsideCCW(m_edge20, e20[sampleNdx][1]));
coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx,
!outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) &&
isInsideCCW(m_edge12, e12[sampleNdx][2]) &&
isInsideCCW(m_edge20, e20[sampleNdx][2]));
coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx,
!outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) &&
isInsideCCW(m_edge12, e12[sampleNdx][3]) &&
isInsideCCW(m_edge20, e20[sampleNdx][3]));
}
// Advance to next location
m_curPos.x() += 2;
if (m_curPos.x() > m_bboxMax.x())
{
m_curPos.y() += 2;
m_curPos.x() = m_bboxMin.x();
}
if (coverage == 0)
continue; // Discard.
// Compute depth values.
if (depthValues)
{
for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
{
// Floating-point edge values at sample coordinates.
const tcu::Vec4 &e01f = e01[sampleNdx].asFloat();
const tcu::Vec4 &e12f = e12[sampleNdx].asFloat();
const tcu::Vec4 &e20f = e20[sampleNdx].asFloat();
const tcu::Vec4 edgeSum = e01f + e12f + e20f;
const tcu::Vec4 z0 = e12f / edgeSum;
const tcu::Vec4 z1 = e20f / edgeSum;
depthValues[(packetNdx * 4 + 0) * NumSamples + sampleNdx] = z0[0] * za + z1[0] * zb + zc;
depthValues[(packetNdx * 4 + 1) * NumSamples + sampleNdx] = z0[1] * za + z1[1] * zb + zc;
depthValues[(packetNdx * 4 + 2) * NumSamples + sampleNdx] = z0[2] * za + z1[2] * zb + zc;
depthValues[(packetNdx * 4 + 3) * NumSamples + sampleNdx] = z0[3] * za + z1[3] * zb + zc;
}
}
// Compute barycentrics and write out fragment packet
{
FragmentPacket &packet = fragmentPackets[packetNdx];
// Floating-point edge values at pixel center.
tcu::Vec4 e01f;
tcu::Vec4 e12f;
tcu::Vec4 e20f;
for (int i = 0; i < 4; i++)
{
e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel));
e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel));
e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel));
}
// Barycentrics & scale.
const tcu::Vec4 b0 = e12f * m_v0.w();
const tcu::Vec4 b1 = e20f * m_v1.w();
const tcu::Vec4 b2 = e01f * m_v2.w();
const tcu::Vec4 bSum = b0 + b1 + b2;
packet.position = tcu::IVec2(x0, y0);
packet.coverage = coverage;
packet.barycentric[0] = b0 / bSum;
packet.barycentric[1] = b1 / bSum;
packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1];
packetNdx += 1;
}
}
DE_ASSERT(packetNdx <= maxFragmentPackets);
numPacketsRasterized = packetNdx;
}
void TriangleRasterizer::rasterize(FragmentPacket *const fragmentPackets, float *const depthValues,
const int maxFragmentPackets, int &numPacketsRasterized)
{
DE_ASSERT(maxFragmentPackets > 0);
switch (m_numSamples)
{
case 1:
rasterizeSingleSample(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
break;
case 2:
rasterizeMultiSample<2>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
break;
case 4:
rasterizeMultiSample<4>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
break;
case 8:
rasterizeMultiSample<8>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
break;
case 16:
rasterizeMultiSample<16>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
break;
default:
DE_ASSERT(false);
}
}
SingleSampleLineRasterizer::SingleSampleLineRasterizer(const tcu::IVec4 &viewport, const int subpixelBits)
: m_viewport(viewport)
, m_subpixelBits(subpixelBits)
, m_curRowFragment(0)
, m_lineWidth(0.0f)
, m_stippleCounter(0)
{
}
SingleSampleLineRasterizer::~SingleSampleLineRasterizer(void)
{
}
void SingleSampleLineRasterizer::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1, float lineWidth, uint32_t stippleFactor,
uint16_t stipplePattern)
{
const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y());
// Bounding box \note: with wide lines, the line is actually moved as in the spec
const int32_t lineWidthPixels = (lineWidth > 1.0f) ? (int32_t)floor(lineWidth + 0.5f) : 1;
const tcu::Vector<int64_t, 2> widthOffset =
(isXMajor ? tcu::Vector<int64_t, 2>(0, -1) : tcu::Vector<int64_t, 2>(-1, 0)) *
(toSubpixelCoord(lineWidthPixels - 1, m_subpixelBits) / 2);
const int64_t x0 = toSubpixelCoord(v0.x(), m_subpixelBits) + widthOffset.x();
const int64_t y0 = toSubpixelCoord(v0.y(), m_subpixelBits) + widthOffset.y();
const int64_t x1 = toSubpixelCoord(v1.x(), m_subpixelBits) + widthOffset.x();
const int64_t y1 = toSubpixelCoord(v1.y(), m_subpixelBits) + widthOffset.y();
// line endpoints might be perturbed, add some margin
const int64_t xMin = de::min(x0, x1) - toSubpixelCoord(1, m_subpixelBits);
const int64_t xMax = de::max(x0, x1) + toSubpixelCoord(1, m_subpixelBits);
const int64_t yMin = de::min(y0, y1) - toSubpixelCoord(1, m_subpixelBits);
const int64_t yMax = de::max(y0, y1) + toSubpixelCoord(1, m_subpixelBits);
// Remove invisible area
if (isXMajor)
{
// clamp to viewport in major direction
m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, m_subpixelBits, true), m_viewport.x(),
m_viewport.x() + m_viewport.z() - 1);
m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord(xMax, m_subpixelBits, true), m_viewport.x(),
m_viewport.x() + m_viewport.z() - 1);
// clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, m_subpixelBits, true),
m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord(yMax, m_subpixelBits, true),
m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
}
else
{
// clamp to viewport in major direction
m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, m_subpixelBits, true), m_viewport.y(),
m_viewport.y() + m_viewport.w() - 1);
m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord(yMax, m_subpixelBits, true), m_viewport.y(),
m_viewport.y() + m_viewport.w() - 1);
// clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, m_subpixelBits, true),
m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord(xMax, m_subpixelBits, true),
m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
}
m_lineWidth = lineWidth;
m_v0 = v0;
m_v1 = v1;
// Choose direction of traversal and whether to start at bbox min or max. Direction matters
// for the stipple counter.
int xDelta = (m_v1 - m_v0).x() > 0 ? 1 : -1;
int yDelta = (m_v1 - m_v0).y() > 0 ? 1 : -1;
m_curPos.x() = xDelta > 0 ? m_bboxMin.x() : m_bboxMax.x();
m_curPos.y() = yDelta > 0 ? m_bboxMin.y() : m_bboxMax.y();
m_curRowFragment = 0;
m_stippleFactor = stippleFactor;
m_stipplePattern = stipplePattern;
}
void SingleSampleLineRasterizer::rasterize(FragmentPacket *const fragmentPackets, float *const depthValues,
const int maxFragmentPackets, int &numPacketsRasterized)
{
DE_ASSERT(maxFragmentPackets > 0);
const int64_t halfPixel = 1ll << (m_subpixelBits - 1);
const int32_t lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1;
const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y());
const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x());
const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z());
const tcu::Vector<int64_t, 2> widthOffset =
-minorDirection.cast<int64_t>() * (toSubpixelCoord(lineWidth - 1, m_subpixelBits) / 2);
const tcu::Vector<int64_t, 2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy(), m_subpixelBits) + widthOffset;
const tcu::Vector<int64_t, 2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy(), m_subpixelBits) + widthOffset;
const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb);
int packetNdx = 0;
int xDelta = (m_v1 - m_v0).x() > 0 ? 1 : -1;
int yDelta = (m_v1 - m_v0).y() > 0 ? 1 : -1;
while (m_curPos.y() <= m_bboxMax.y() && m_curPos.y() >= m_bboxMin.y() && packetNdx < maxFragmentPackets)
{
const tcu::Vector<int64_t, 2> diamondPosition =
LineRasterUtil::toSubpixelVector(m_curPos, m_subpixelBits) + tcu::Vector<int64_t, 2>(halfPixel, halfPixel);
// Should current fragment be drawn? == does the segment exit this diamond?
if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition, m_subpixelBits))
{
const tcu::Vector<int64_t, 2> pr = diamondPosition;
const float t =
tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat());
// Rasterize on only fragments that are would end up in the viewport (i.e. visible)
const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x());
const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation);
const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth);
int stippleBit = (m_stippleCounter / m_stippleFactor) % 16;
bool stipplePass = (m_stipplePattern & (1 << stippleBit)) != 0;
m_stippleCounter++;
if (stipplePass)
{
// Wide lines require multiple fragments.
for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++)
{
const int replicationId = rowFragBegin + m_curRowFragment;
const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId;
// We only rasterize visible area
DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport));
// Compute depth values.
if (depthValues)
{
const float za = m_v0.z();
const float zb = m_v1.z();
depthValues[packetNdx * 4 + 0] = (1 - t) * za + t * zb;
depthValues[packetNdx * 4 + 1] = 0;
depthValues[packetNdx * 4 + 2] = 0;
depthValues[packetNdx * 4 + 3] = 0;
}
{
// output this fragment
// \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates
FragmentPacket &packet = fragmentPackets[packetNdx];
const tcu::Vec4 b0 = tcu::Vec4(1 - t);
const tcu::Vec4 b1 = tcu::Vec4(t);
const tcu::Vec4 ooSum = 1.0f / (b0 + b1);
packet.position = fragmentPos;
packet.coverage = getCoverageBit(1, 0, 0, 0);
packet.barycentric[0] = b0 * ooSum;
packet.barycentric[1] = b1 * ooSum;
packet.barycentric[2] = tcu::Vec4(0.0f);
packetNdx += 1;
}
if (packetNdx == maxFragmentPackets)
{
m_curRowFragment++; // don't redraw this fragment again next time
m_stippleCounter--; // reuse same stipple counter next time
numPacketsRasterized = packetNdx;
return;
}
}
m_curRowFragment = 0;
}
}
m_curPos.x() += xDelta;
if (m_curPos.x() > m_bboxMax.x() || m_curPos.x() < m_bboxMin.x())
{
m_curPos.y() += yDelta;
m_curPos.x() = xDelta > 0 ? m_bboxMin.x() : m_bboxMax.x();
}
}
DE_ASSERT(packetNdx <= maxFragmentPackets);
numPacketsRasterized = packetNdx;
}
MultiSampleLineRasterizer::MultiSampleLineRasterizer(const int numSamples, const tcu::IVec4 &viewport,
const int subpixelBits)
: m_numSamples(numSamples)
, m_triangleRasterizer0(viewport, m_numSamples, RasterizationState(), subpixelBits)
, m_triangleRasterizer1(viewport, m_numSamples, RasterizationState(), subpixelBits)
{
}
MultiSampleLineRasterizer::~MultiSampleLineRasterizer()
{
}
void MultiSampleLineRasterizer::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1, float lineWidth)
{
// allow creation of single sampled rasterizer objects but do not allow using them
DE_ASSERT(m_numSamples > 1);
const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy());
const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0]));
const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0);
const float offset = lineWidth / 2.0f;
const tcu::Vec4 p0 = v0 + normal4 * offset;
const tcu::Vec4 p1 = v0 - normal4 * offset;
const tcu::Vec4 p2 = v1 - normal4 * offset;
const tcu::Vec4 p3 = v1 + normal4 * offset;
// Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line
m_triangleRasterizer0.init(p0, p3, p2);
m_triangleRasterizer1.init(p2, p1, p0);
}
void MultiSampleLineRasterizer::rasterize(FragmentPacket *const fragmentPackets, float *const depthValues,
const int maxFragmentPackets, int &numPacketsRasterized)
{
DE_ASSERT(maxFragmentPackets > 0);
m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
// Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2
for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx)
for (int fragNdx = 0; fragNdx < 4; fragNdx++)
{
float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx];
fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
}
// rasterizer 0 filled the whole buffer?
if (numPacketsRasterized == maxFragmentPackets)
return;
{
FragmentPacket *const nextFragmentPackets = fragmentPackets + numPacketsRasterized;
float *nextDepthValues = (depthValues) ? (depthValues + 4 * numPacketsRasterized * m_numSamples) : (DE_NULL);
int numPacketsRasterized2 = 0;
m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized,
numPacketsRasterized2);
numPacketsRasterized += numPacketsRasterized2;
// Fix swapped barycentrics in the second triangle
for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx)
for (int fragNdx = 0; fragNdx < 4; fragNdx++)
{
float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx];
nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
// edge has reversed direction
std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx],
nextFragmentPackets[packNdx].barycentric[1][fragNdx]);
}
}
}
LineExitDiamondGenerator::LineExitDiamondGenerator(const int subpixelBits) : m_subpixelBits(subpixelBits)
{
}
LineExitDiamondGenerator::~LineExitDiamondGenerator(void)
{
}
void LineExitDiamondGenerator::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1)
{
const int64_t x0 = toSubpixelCoord(v0.x(), m_subpixelBits);
const int64_t y0 = toSubpixelCoord(v0.y(), m_subpixelBits);
const int64_t x1 = toSubpixelCoord(v1.x(), m_subpixelBits);
const int64_t y1 = toSubpixelCoord(v1.y(), m_subpixelBits);
// line endpoints might be perturbed, add some margin
const int64_t xMin = de::min(x0, x1) - toSubpixelCoord(1, m_subpixelBits);
const int64_t xMax = de::max(x0, x1) + toSubpixelCoord(1, m_subpixelBits);
const int64_t yMin = de::min(y0, y1) - toSubpixelCoord(1, m_subpixelBits);
const int64_t yMax = de::max(y0, y1) + toSubpixelCoord(1, m_subpixelBits);
m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, m_subpixelBits, true);
m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, m_subpixelBits, true);
m_bboxMax.x() = ceilSubpixelToPixelCoord(xMax, m_subpixelBits, true);
m_bboxMax.y() = ceilSubpixelToPixelCoord(yMax, m_subpixelBits, true);
m_v0 = v0;
m_v1 = v1;
m_curPos = m_bboxMin;
}
void LineExitDiamondGenerator::rasterize(LineExitDiamond *const lineDiamonds, const int maxDiamonds, int &numWritten)
{
DE_ASSERT(maxDiamonds > 0);
const int64_t halfPixel = 1ll << (m_subpixelBits - 1);
const tcu::Vector<int64_t, 2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy(), m_subpixelBits);
const tcu::Vector<int64_t, 2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy(), m_subpixelBits);
const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb);
int diamondNdx = 0;
while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds)
{
const tcu::Vector<int64_t, 2> diamondPosition =
LineRasterUtil::toSubpixelVector(m_curPos, m_subpixelBits) + tcu::Vector<int64_t, 2>(halfPixel, halfPixel);
if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition, m_subpixelBits))
{
LineExitDiamond &packet = lineDiamonds[diamondNdx];
packet.position = m_curPos;
++diamondNdx;
}
++m_curPos.x();
if (m_curPos.x() > m_bboxMax.x())
{
++m_curPos.y();
m_curPos.x() = m_bboxMin.x();
}
}
DE_ASSERT(diamondNdx <= maxDiamonds);
numWritten = diamondNdx;
}
} // namespace rr