blob: 8e88d51073a69e626ca1e39c5d8c0c06c2f3fddc [file] [log] [blame] [edit]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES Utilities
* ------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Reference Rendering Context.
*//*--------------------------------------------------------------------*/
#include "sglrReferenceContext.hpp"
#include "sglrReferenceUtils.hpp"
#include "sglrShaderProgram.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuMatrix.hpp"
#include "tcuMatrixUtil.hpp"
#include "tcuVectorUtil.hpp"
#include "gluDefs.hpp"
#include "gluTextureUtil.hpp"
#include "gluContextInfo.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include "deMemory.h"
#include "rrFragmentOperations.hpp"
#include "rrRenderer.hpp"
#include <cstdint>
namespace sglr
{
using std::map;
using std::vector;
using tcu::IVec2;
using tcu::IVec4;
using tcu::RGBA;
using tcu::Vec2;
using tcu::Vec3;
using tcu::Vec4;
// Reference context implementation
using namespace rc;
using tcu::ConstPixelBufferAccess;
using tcu::PixelBufferAccess;
using tcu::TextureFormat;
// Utilities for ReferenceContext
#define RC_RET_VOID
#define RC_ERROR_RET(ERR, RET) \
do \
{ \
setError(ERR); \
return RET; \
} while (false)
#define RC_IF_ERROR(COND, ERR, RET) \
do \
{ \
if (COND) \
RC_ERROR_RET(ERR, RET); \
} while (false)
static inline tcu::PixelBufferAccess nullAccess(void)
{
return tcu::PixelBufferAccess(TextureFormat(TextureFormat::R, TextureFormat::UNSIGNED_INT8), 0, 0, 0, DE_NULL);
}
static inline bool isEmpty(const tcu::ConstPixelBufferAccess &access)
{
return access.getWidth() == 0 || access.getHeight() == 0 || access.getDepth() == 0;
}
static inline bool isEmpty(const rr::MultisampleConstPixelBufferAccess &access)
{
return access.raw().getWidth() == 0 || access.raw().getHeight() == 0 || access.raw().getDepth() == 0;
}
static inline bool isEmpty(const IVec4 &rect)
{
return rect.z() == 0 || rect.w() == 0;
}
inline int getNumMipLevels1D(int size)
{
return deLog2Floor32(size) + 1;
}
inline int getNumMipLevels2D(int width, int height)
{
return deLog2Floor32(de::max(width, height)) + 1;
}
inline int getNumMipLevels3D(int width, int height, int depth)
{
return deLog2Floor32(de::max(width, de::max(height, depth))) + 1;
}
inline int getMipLevelSize(int baseLevelSize, int levelNdx)
{
return de::max(baseLevelSize >> levelNdx, 1);
}
inline bool isMipmapFilter(const tcu::Sampler::FilterMode mode)
{
return mode != tcu::Sampler::NEAREST && mode != tcu::Sampler::LINEAR;
}
static tcu::CubeFace texTargetToFace(Framebuffer::TexTarget target)
{
switch (target)
{
case Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_X:
return tcu::CUBEFACE_NEGATIVE_X;
case Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_X:
return tcu::CUBEFACE_POSITIVE_X;
case Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_Y:
return tcu::CUBEFACE_NEGATIVE_Y;
case Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_Y:
return tcu::CUBEFACE_POSITIVE_Y;
case Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_Z:
return tcu::CUBEFACE_NEGATIVE_Z;
case Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_Z:
return tcu::CUBEFACE_POSITIVE_Z;
default:
return tcu::CUBEFACE_LAST;
}
}
static Framebuffer::TexTarget texLayeredTypeToTarget(Texture::Type type)
{
switch (type)
{
case Texture::TYPE_2D_ARRAY:
return Framebuffer::TEXTARGET_2D_ARRAY;
case Texture::TYPE_3D:
return Framebuffer::TEXTARGET_3D;
case Texture::TYPE_CUBE_MAP_ARRAY:
return Framebuffer::TEXTARGET_CUBE_MAP_ARRAY;
default:
return Framebuffer::TEXTARGET_LAST;
}
}
static tcu::CubeFace mapGLCubeFace(uint32_t face)
{
switch (face)
{
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
return tcu::CUBEFACE_NEGATIVE_X;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
return tcu::CUBEFACE_POSITIVE_X;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
return tcu::CUBEFACE_NEGATIVE_Y;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
return tcu::CUBEFACE_POSITIVE_Y;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
return tcu::CUBEFACE_NEGATIVE_Z;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
return tcu::CUBEFACE_POSITIVE_Z;
default:
return tcu::CUBEFACE_LAST;
}
}
tcu::TextureFormat toTextureFormat(const tcu::PixelFormat &pixelFmt)
{
static const struct
{
tcu::PixelFormat pixelFmt;
tcu::TextureFormat texFmt;
} pixelFormatMap[] = {
{tcu::PixelFormat(8, 8, 8, 8), tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8)},
{tcu::PixelFormat(8, 8, 8, 0), tcu::TextureFormat(tcu::TextureFormat::RGB, tcu::TextureFormat::UNORM_INT8)},
{tcu::PixelFormat(4, 4, 4, 4),
tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_SHORT_4444)},
{tcu::PixelFormat(5, 5, 5, 1),
tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_SHORT_5551)},
{tcu::PixelFormat(5, 6, 5, 0),
tcu::TextureFormat(tcu::TextureFormat::RGB, tcu::TextureFormat::UNORM_SHORT_565)}};
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(pixelFormatMap); ndx++)
{
if (pixelFormatMap[ndx].pixelFmt == pixelFmt)
return pixelFormatMap[ndx].texFmt;
}
TCU_FAIL("Can't map pixel format to texture format");
}
tcu::TextureFormat toNonSRGBFormat(const tcu::TextureFormat &fmt)
{
switch (fmt.order)
{
case tcu::TextureFormat::sRGB:
return tcu::TextureFormat(tcu::TextureFormat::RGB, fmt.type);
case tcu::TextureFormat::sRGBA:
return tcu::TextureFormat(tcu::TextureFormat::RGBA, fmt.type);
default:
return fmt;
}
}
tcu::TextureFormat getDepthFormat(int depthBits)
{
switch (depthBits)
{
case 8:
return tcu::TextureFormat(tcu::TextureFormat::D, tcu::TextureFormat::UNORM_INT8);
case 16:
return tcu::TextureFormat(tcu::TextureFormat::D, tcu::TextureFormat::UNORM_INT16);
case 24:
return tcu::TextureFormat(tcu::TextureFormat::D, tcu::TextureFormat::UNSIGNED_INT_24_8);
case 32:
return tcu::TextureFormat(tcu::TextureFormat::D, tcu::TextureFormat::FLOAT);
default:
TCU_FAIL("Can't map depth buffer format");
}
}
tcu::TextureFormat getStencilFormat(int stencilBits)
{
switch (stencilBits)
{
case 8:
return tcu::TextureFormat(tcu::TextureFormat::S, tcu::TextureFormat::UNSIGNED_INT8);
case 16:
return tcu::TextureFormat(tcu::TextureFormat::S, tcu::TextureFormat::UNSIGNED_INT16);
case 24:
return tcu::TextureFormat(tcu::TextureFormat::S, tcu::TextureFormat::UNSIGNED_INT_24_8);
case 32:
return tcu::TextureFormat(tcu::TextureFormat::S, tcu::TextureFormat::UNSIGNED_INT32);
default:
TCU_FAIL("Can't map depth buffer format");
}
}
static inline tcu::IVec4 intersect(const tcu::IVec4 &a, const tcu::IVec4 &b)
{
int x0 = de::max(a.x(), b.x());
int y0 = de::max(a.y(), b.y());
int x1 = de::min(a.x() + a.z(), b.x() + b.z());
int y1 = de::min(a.y() + a.w(), b.y() + b.w());
int w = de::max(0, x1 - x0);
int h = de::max(0, y1 - y0);
return tcu::IVec4(x0, y0, w, h);
}
static inline tcu::IVec4 getBufferRect(const rr::MultisampleConstPixelBufferAccess &access)
{
return tcu::IVec4(0, 0, access.raw().getHeight(), access.raw().getDepth());
}
ReferenceContextLimits::ReferenceContextLimits(const glu::RenderContext &renderCtx)
: contextType(renderCtx.getType())
, maxTextureImageUnits(0)
, maxTexture2DSize(0)
, maxTextureCubeSize(0)
, maxTexture2DArrayLayers(0)
, maxTexture3DSize(0)
, maxRenderbufferSize(0)
, maxVertexAttribs(0)
, subpixelBits(0)
{
const glw::Functions &gl = renderCtx.getFunctions();
// When the OpenGL ES's major version bigger than 3, and the expect context version is 3,
// we need query the real GL context version and update the real version to reference context.
if (glu::IsES3Compatible(gl) && isES2Context(contextType))
{
int majorVersion = contextType.getMajorVersion();
int minorVersion = contextType.getMinorVersion();
gl.getIntegerv(GL_MAJOR_VERSION, &majorVersion);
gl.getIntegerv(GL_MINOR_VERSION, &minorVersion);
contextType.setAPI(glu::ApiType::es(majorVersion, minorVersion));
}
gl.getIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureImageUnits);
gl.getIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexture2DSize);
gl.getIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &maxTextureCubeSize);
gl.getIntegerv(GL_MAX_RENDERBUFFER_SIZE, &maxRenderbufferSize);
gl.getIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);
gl.getIntegerv(GL_SUBPIXEL_BITS, &subpixelBits);
if (contextSupports(contextType, glu::ApiType::es(3, 0)) || glu::isContextTypeGLCore(contextType))
{
gl.getIntegerv(GL_MAX_ARRAY_TEXTURE_LAYERS, &maxTexture2DArrayLayers);
gl.getIntegerv(GL_MAX_3D_TEXTURE_SIZE, &maxTexture3DSize);
}
// Limit texture sizes to supported values
maxTexture2DSize = de::min(maxTexture2DSize, (int)MAX_TEXTURE_SIZE);
maxTextureCubeSize = de::min(maxTextureCubeSize, (int)MAX_TEXTURE_SIZE);
maxTexture3DSize = de::min(maxTexture3DSize, (int)MAX_TEXTURE_SIZE);
GLU_EXPECT_NO_ERROR(gl.getError(), GL_NO_ERROR);
// \todo [pyry] Figure out following things:
// + supported fbo configurations
// ...
// \todo [2013-08-01 pyry] Do we want to make these conditional based on renderCtx?
addExtension("GL_EXT_color_buffer_half_float");
addExtension("GL_EXT_color_buffer_float");
addExtension("GL_EXT_texture_format_BGRA8888");
if (contextSupports(contextType, glu::ApiType::es(3, 1)))
addExtension("GL_EXT_texture_cube_map_array");
}
void ReferenceContextLimits::addExtension(const char *extension)
{
extensionList.push_back(extension);
if (!extensionStr.empty())
extensionStr += " ";
extensionStr += extension;
}
ReferenceContextBuffers::ReferenceContextBuffers(const tcu::PixelFormat &colorBits, int depthBits, int stencilBits,
int width, int height, int samples)
{
m_colorbuffer.setStorage(toTextureFormat(colorBits), samples, width, height);
if (depthBits > 0)
m_depthbuffer.setStorage(getDepthFormat(depthBits), samples, width, height);
if (stencilBits > 0)
m_stencilbuffer.setStorage(getStencilFormat(stencilBits), samples, width, height);
}
ReferenceContext::StencilState::StencilState(void)
: func(GL_ALWAYS)
, ref(0)
, opMask(~0u)
, opStencilFail(GL_KEEP)
, opDepthFail(GL_KEEP)
, opDepthPass(GL_KEEP)
, writeMask(~0u)
{
}
ReferenceContext::ReferenceContext(const ReferenceContextLimits &limits,
const rr::MultisamplePixelBufferAccess &colorbuffer,
const rr::MultisamplePixelBufferAccess &depthbuffer,
const rr::MultisamplePixelBufferAccess &stencilbuffer)
: Context(limits.contextType)
, m_limits(limits)
, m_defaultColorbuffer(colorbuffer)
, m_defaultDepthbuffer(depthbuffer)
, m_defaultStencilbuffer(stencilbuffer)
, m_clientVertexArray(0, m_limits.maxVertexAttribs)
, m_viewport(0, 0, colorbuffer.raw().getHeight(), colorbuffer.raw().getDepth())
, m_activeTexture(0)
, m_textureUnits(m_limits.maxTextureImageUnits)
, m_emptyTex1D()
, m_emptyTex2D(isES2Context(limits.contextType))
, m_emptyTexCube(!isES2Context(limits.contextType))
, m_emptyTex2DArray()
, m_emptyTex3D()
, m_emptyTexCubeArray()
, m_pixelUnpackRowLength(0)
, m_pixelUnpackSkipRows(0)
, m_pixelUnpackSkipPixels(0)
, m_pixelUnpackImageHeight(0)
, m_pixelUnpackSkipImages(0)
, m_pixelUnpackAlignment(4)
, m_pixelPackAlignment(4)
, m_readFramebufferBinding(DE_NULL)
, m_drawFramebufferBinding(DE_NULL)
, m_renderbufferBinding(DE_NULL)
, m_vertexArrayBinding(DE_NULL)
, m_currentProgram(DE_NULL)
, m_arrayBufferBinding(DE_NULL)
, m_pixelPackBufferBinding(DE_NULL)
, m_pixelUnpackBufferBinding(DE_NULL)
, m_transformFeedbackBufferBinding(DE_NULL)
, m_uniformBufferBinding(DE_NULL)
, m_copyReadBufferBinding(DE_NULL)
, m_copyWriteBufferBinding(DE_NULL)
, m_drawIndirectBufferBinding(DE_NULL)
, m_clearColor(0.0f, 0.0f, 0.0f, 0.0f)
, m_clearDepth(1.0f)
, m_clearStencil(0)
, m_scissorEnabled(false)
, m_scissorBox(m_viewport)
, m_stencilTestEnabled(false)
, m_depthTestEnabled(false)
, m_depthFunc(GL_LESS)
, m_depthRangeNear(0.0f)
, m_depthRangeFar(1.0f)
, m_polygonOffsetFactor(0.0f)
, m_polygonOffsetUnits(0.0f)
, m_polygonOffsetFillEnabled(false)
, m_provokingFirstVertexConvention(false)
, m_blendEnabled(false)
, m_blendModeRGB(GL_FUNC_ADD)
, m_blendModeAlpha(GL_FUNC_ADD)
, m_blendFactorSrcRGB(GL_ONE)
, m_blendFactorDstRGB(GL_ZERO)
, m_blendFactorSrcAlpha(GL_ONE)
, m_blendFactorDstAlpha(GL_ZERO)
, m_blendColor(0.0f, 0.0f, 0.0f, 0.0f)
, m_sRGBUpdateEnabled(true)
, m_depthClampEnabled(false)
, m_colorMask(true, true, true, true)
, m_depthMask(true)
, m_currentAttribs(m_limits.maxVertexAttribs, rr::GenericVec4(tcu::Vec4(0, 0, 0, 1)))
, m_lineWidth(1.0f)
, m_primitiveRestartFixedIndex(false)
, m_primitiveRestartSettableIndex(false)
, m_primitiveRestartIndex(0)
, m_lastError(GL_NO_ERROR)
{
// Create empty textures to be used when texture objects are incomplete.
m_emptyTex1D.getSampler().wrapS = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex1D.getSampler().wrapT = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex1D.getSampler().minFilter = tcu::Sampler::NEAREST;
m_emptyTex1D.getSampler().magFilter = tcu::Sampler::NEAREST;
m_emptyTex1D.allocLevel(0, tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), 1);
m_emptyTex1D.getLevel(0).setPixel(Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0, 0);
m_emptyTex1D.updateView(tcu::Sampler::MODE_LAST);
m_emptyTex2D.getSampler().wrapS = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex2D.getSampler().wrapT = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex2D.getSampler().minFilter = tcu::Sampler::NEAREST;
m_emptyTex2D.getSampler().magFilter = tcu::Sampler::NEAREST;
m_emptyTex2D.allocLevel(0, tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), 1, 1);
m_emptyTex2D.getLevel(0).setPixel(Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0, 0);
m_emptyTex2D.updateView(tcu::Sampler::MODE_LAST);
m_emptyTexCube.getSampler().wrapS = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTexCube.getSampler().wrapT = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTexCube.getSampler().minFilter = tcu::Sampler::NEAREST;
m_emptyTexCube.getSampler().magFilter = tcu::Sampler::NEAREST;
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
m_emptyTexCube.allocFace(0, (tcu::CubeFace)face,
tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), 1, 1);
m_emptyTexCube.getFace(0, (tcu::CubeFace)face).setPixel(Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0, 0);
}
m_emptyTexCube.updateView(tcu::Sampler::MODE_LAST);
m_emptyTex2DArray.getSampler().wrapS = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex2DArray.getSampler().wrapT = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex2DArray.getSampler().minFilter = tcu::Sampler::NEAREST;
m_emptyTex2DArray.getSampler().magFilter = tcu::Sampler::NEAREST;
m_emptyTex2DArray.allocLevel(0, tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), 1, 1,
1);
m_emptyTex2DArray.getLevel(0).setPixel(Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0, 0);
m_emptyTex2DArray.updateView(tcu::Sampler::MODE_LAST);
m_emptyTex3D.getSampler().wrapS = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex3D.getSampler().wrapT = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex3D.getSampler().wrapR = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTex3D.getSampler().minFilter = tcu::Sampler::NEAREST;
m_emptyTex3D.getSampler().magFilter = tcu::Sampler::NEAREST;
m_emptyTex3D.allocLevel(0, tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), 1, 1, 1);
m_emptyTex3D.getLevel(0).setPixel(Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0, 0);
m_emptyTex3D.updateView(tcu::Sampler::MODE_LAST);
m_emptyTexCubeArray.getSampler().wrapS = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTexCubeArray.getSampler().wrapT = tcu::Sampler::CLAMP_TO_EDGE;
m_emptyTexCubeArray.getSampler().minFilter = tcu::Sampler::NEAREST;
m_emptyTexCubeArray.getSampler().magFilter = tcu::Sampler::NEAREST;
m_emptyTexCubeArray.allocLevel(0, tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), 1,
1, 6);
for (int faceNdx = 0; faceNdx < 6; faceNdx++)
m_emptyTexCubeArray.getLevel(0).setPixel(Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0, 0, faceNdx);
m_emptyTexCubeArray.updateView(tcu::Sampler::MODE_LAST);
for (int unitNdx = 0; unitNdx < m_limits.maxTextureImageUnits; unitNdx++)
m_textureUnits[unitNdx].defaultCubeTex.getSampler().seamlessCubeMap = !isES2Context(limits.contextType);
if (glu::isContextTypeGLCore(getType()))
m_sRGBUpdateEnabled = false;
}
ReferenceContext::~ReferenceContext(void)
{
// Destroy all objects -- verifies that ref counting works
{
vector<VertexArray *> vertexArrays;
m_vertexArrays.getAll(vertexArrays);
for (vector<VertexArray *>::iterator i = vertexArrays.begin(); i != vertexArrays.end(); i++)
deleteVertexArray(*i);
DE_ASSERT(m_clientVertexArray.getRefCount() == 1);
}
{
vector<Texture *> textures;
m_textures.getAll(textures);
for (vector<Texture *>::iterator i = textures.begin(); i != textures.end(); i++)
deleteTexture(*i);
}
{
vector<Framebuffer *> framebuffers;
m_framebuffers.getAll(framebuffers);
for (vector<Framebuffer *>::iterator i = framebuffers.begin(); i != framebuffers.end(); i++)
deleteFramebuffer(*i);
}
{
vector<Renderbuffer *> renderbuffers;
m_renderbuffers.getAll(renderbuffers);
for (vector<Renderbuffer *>::iterator i = renderbuffers.begin(); i != renderbuffers.end(); i++)
deleteRenderbuffer(*i);
}
{
vector<DataBuffer *> buffers;
m_buffers.getAll(buffers);
for (vector<DataBuffer *>::iterator i = buffers.begin(); i != buffers.end(); i++)
deleteBuffer(*i);
}
{
vector<ShaderProgramObjectContainer *> programs;
m_programs.getAll(programs);
for (vector<ShaderProgramObjectContainer *>::iterator i = programs.begin(); i != programs.end(); i++)
deleteProgramObject(*i);
}
}
void ReferenceContext::activeTexture(uint32_t texture)
{
if (deInBounds32(texture, GL_TEXTURE0, GL_TEXTURE0 + (uint32_t)m_textureUnits.size()))
m_activeTexture = texture - GL_TEXTURE0;
else
setError(GL_INVALID_ENUM);
}
void ReferenceContext::setTex1DBinding(int unitNdx, Texture1D *texture)
{
if (m_textureUnits[unitNdx].tex1DBinding)
{
m_textures.releaseReference(m_textureUnits[unitNdx].tex1DBinding);
m_textureUnits[unitNdx].tex1DBinding = DE_NULL;
}
if (texture)
{
m_textures.acquireReference(texture);
m_textureUnits[unitNdx].tex1DBinding = texture;
}
}
void ReferenceContext::setTex2DBinding(int unitNdx, Texture2D *texture)
{
if (m_textureUnits[unitNdx].tex2DBinding)
{
m_textures.releaseReference(m_textureUnits[unitNdx].tex2DBinding);
m_textureUnits[unitNdx].tex2DBinding = DE_NULL;
}
if (texture)
{
m_textures.acquireReference(texture);
m_textureUnits[unitNdx].tex2DBinding = texture;
}
}
void ReferenceContext::setTexCubeBinding(int unitNdx, TextureCube *texture)
{
if (m_textureUnits[unitNdx].texCubeBinding)
{
m_textures.releaseReference(m_textureUnits[unitNdx].texCubeBinding);
m_textureUnits[unitNdx].texCubeBinding = DE_NULL;
}
if (texture)
{
m_textures.acquireReference(texture);
m_textureUnits[unitNdx].texCubeBinding = texture;
}
}
void ReferenceContext::setTex2DArrayBinding(int unitNdx, Texture2DArray *texture)
{
if (m_textureUnits[unitNdx].tex2DArrayBinding)
{
m_textures.releaseReference(m_textureUnits[unitNdx].tex2DArrayBinding);
m_textureUnits[unitNdx].tex2DArrayBinding = DE_NULL;
}
if (texture)
{
m_textures.acquireReference(texture);
m_textureUnits[unitNdx].tex2DArrayBinding = texture;
}
}
void ReferenceContext::setTex3DBinding(int unitNdx, Texture3D *texture)
{
if (m_textureUnits[unitNdx].tex3DBinding)
{
m_textures.releaseReference(m_textureUnits[unitNdx].tex3DBinding);
m_textureUnits[unitNdx].tex3DBinding = DE_NULL;
}
if (texture)
{
m_textures.acquireReference(texture);
m_textureUnits[unitNdx].tex3DBinding = texture;
}
}
void ReferenceContext::setTexCubeArrayBinding(int unitNdx, TextureCubeArray *texture)
{
if (m_textureUnits[unitNdx].texCubeArrayBinding)
{
m_textures.releaseReference(m_textureUnits[unitNdx].texCubeArrayBinding);
m_textureUnits[unitNdx].texCubeArrayBinding = DE_NULL;
}
if (texture)
{
m_textures.acquireReference(texture);
m_textureUnits[unitNdx].texCubeArrayBinding = texture;
}
}
void ReferenceContext::bindTexture(uint32_t target, uint32_t texture)
{
int unitNdx = m_activeTexture;
RC_IF_ERROR(target != GL_TEXTURE_1D && target != GL_TEXTURE_2D && target != GL_TEXTURE_CUBE_MAP &&
target != GL_TEXTURE_2D_ARRAY && target != GL_TEXTURE_3D && target != GL_TEXTURE_CUBE_MAP_ARRAY,
GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(glu::isContextTypeES(m_limits.contextType) && (target == GL_TEXTURE_1D), GL_INVALID_ENUM, RC_RET_VOID);
if (texture == 0)
{
// Clear binding.
switch (target)
{
case GL_TEXTURE_1D:
setTex1DBinding(unitNdx, DE_NULL);
break;
case GL_TEXTURE_2D:
setTex2DBinding(unitNdx, DE_NULL);
break;
case GL_TEXTURE_CUBE_MAP:
setTexCubeBinding(unitNdx, DE_NULL);
break;
case GL_TEXTURE_2D_ARRAY:
setTex2DArrayBinding(unitNdx, DE_NULL);
break;
case GL_TEXTURE_3D:
setTex3DBinding(unitNdx, DE_NULL);
break;
case GL_TEXTURE_CUBE_MAP_ARRAY:
setTexCubeArrayBinding(unitNdx, DE_NULL);
break;
default:
DE_ASSERT(false);
}
}
else
{
Texture *texObj = m_textures.find(texture);
if (texObj)
{
// Validate type.
Texture::Type expectedType = Texture::TYPE_LAST;
switch (target)
{
case GL_TEXTURE_1D:
expectedType = Texture::TYPE_1D;
break;
case GL_TEXTURE_2D:
expectedType = Texture::TYPE_2D;
break;
case GL_TEXTURE_CUBE_MAP:
expectedType = Texture::TYPE_CUBE_MAP;
break;
case GL_TEXTURE_2D_ARRAY:
expectedType = Texture::TYPE_2D_ARRAY;
break;
case GL_TEXTURE_3D:
expectedType = Texture::TYPE_3D;
break;
case GL_TEXTURE_CUBE_MAP_ARRAY:
expectedType = Texture::TYPE_CUBE_MAP_ARRAY;
break;
default:
DE_ASSERT(false);
}
RC_IF_ERROR(texObj->getType() != expectedType, GL_INVALID_OPERATION, RC_RET_VOID);
}
else
{
// New texture object.
bool seamlessCubeMap = !isES2Context(m_limits.contextType);
switch (target)
{
case GL_TEXTURE_1D:
texObj = new Texture1D(texture);
break;
case GL_TEXTURE_2D:
texObj = new Texture2D(texture);
break;
case GL_TEXTURE_CUBE_MAP:
texObj = new TextureCube(texture, seamlessCubeMap);
break;
case GL_TEXTURE_2D_ARRAY:
texObj = new Texture2DArray(texture);
break;
case GL_TEXTURE_3D:
texObj = new Texture3D(texture);
break;
case GL_TEXTURE_CUBE_MAP_ARRAY:
texObj = new TextureCubeArray(texture);
break;
default:
DE_ASSERT(false);
}
m_textures.insert(texObj);
}
switch (target)
{
case GL_TEXTURE_1D:
setTex1DBinding(unitNdx, static_cast<Texture1D *>(texObj));
break;
case GL_TEXTURE_2D:
setTex2DBinding(unitNdx, static_cast<Texture2D *>(texObj));
break;
case GL_TEXTURE_CUBE_MAP:
setTexCubeBinding(unitNdx, static_cast<TextureCube *>(texObj));
break;
case GL_TEXTURE_2D_ARRAY:
setTex2DArrayBinding(unitNdx, static_cast<Texture2DArray *>(texObj));
break;
case GL_TEXTURE_3D:
setTex3DBinding(unitNdx, static_cast<Texture3D *>(texObj));
break;
case GL_TEXTURE_CUBE_MAP_ARRAY:
setTexCubeArrayBinding(unitNdx, static_cast<TextureCubeArray *>(texObj));
break;
default:
DE_ASSERT(false);
}
}
}
void ReferenceContext::genTextures(int numTextures, uint32_t *textures)
{
while (numTextures--)
*textures++ = m_textures.allocateName();
}
void ReferenceContext::deleteTextures(int numTextures, const uint32_t *textures)
{
for (int i = 0; i < numTextures; i++)
{
uint32_t name = textures[i];
Texture *texture = name ? m_textures.find(name) : DE_NULL;
if (texture)
deleteTexture(texture);
}
}
void ReferenceContext::deleteTexture(Texture *texture)
{
// Unbind from context
for (int unitNdx = 0; unitNdx < (int)m_textureUnits.size(); unitNdx++)
{
if (m_textureUnits[unitNdx].tex1DBinding == texture)
setTex1DBinding(unitNdx, DE_NULL);
else if (m_textureUnits[unitNdx].tex2DBinding == texture)
setTex2DBinding(unitNdx, DE_NULL);
else if (m_textureUnits[unitNdx].texCubeBinding == texture)
setTexCubeBinding(unitNdx, DE_NULL);
else if (m_textureUnits[unitNdx].tex2DArrayBinding == texture)
setTex2DArrayBinding(unitNdx, DE_NULL);
else if (m_textureUnits[unitNdx].tex3DBinding == texture)
setTex3DBinding(unitNdx, DE_NULL);
else if (m_textureUnits[unitNdx].texCubeArrayBinding == texture)
setTexCubeArrayBinding(unitNdx, DE_NULL);
}
// Unbind from currently bound framebuffers
for (int ndx = 0; ndx < 2; ndx++)
{
rc::Framebuffer *framebufferBinding = ndx ? m_drawFramebufferBinding : m_readFramebufferBinding;
if (framebufferBinding)
{
int releaseRefCount = (framebufferBinding == m_drawFramebufferBinding ? 1 : 0) +
(framebufferBinding == m_readFramebufferBinding ? 1 : 0);
for (int point = 0; point < Framebuffer::ATTACHMENTPOINT_LAST; point++)
{
Framebuffer::Attachment &attachment =
framebufferBinding->getAttachment((Framebuffer::AttachmentPoint)point);
if (attachment.name == texture->getName())
{
for (int refNdx = 0; refNdx < releaseRefCount; refNdx++)
releaseFboAttachmentReference(attachment);
attachment = Framebuffer::Attachment();
}
}
}
}
DE_ASSERT(texture->getRefCount() == 1);
m_textures.releaseReference(texture);
}
void ReferenceContext::bindFramebuffer(uint32_t target, uint32_t name)
{
Framebuffer *fbo = DE_NULL;
RC_IF_ERROR(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER && target != GL_READ_FRAMEBUFFER,
GL_INVALID_ENUM, RC_RET_VOID);
if (name != 0)
{
// Find or create framebuffer object.
fbo = m_framebuffers.find(name);
if (!fbo)
{
fbo = new Framebuffer(name);
m_framebuffers.insert(fbo);
}
}
for (int ndx = 0; ndx < 2; ndx++)
{
uint32_t bindingTarget = ndx ? GL_DRAW_FRAMEBUFFER : GL_READ_FRAMEBUFFER;
rc::Framebuffer *&binding = ndx ? m_drawFramebufferBinding : m_readFramebufferBinding;
if (target != GL_FRAMEBUFFER && target != bindingTarget)
continue; // Doesn't match this target.
// Remove old references
if (binding)
{
// Clear all attachment point references
for (int point = 0; point < Framebuffer::ATTACHMENTPOINT_LAST; point++)
releaseFboAttachmentReference(binding->getAttachment((Framebuffer::AttachmentPoint)point));
m_framebuffers.releaseReference(binding);
}
// Create new references
if (fbo)
{
m_framebuffers.acquireReference(fbo);
for (int point = 0; point < Framebuffer::ATTACHMENTPOINT_LAST; point++)
acquireFboAttachmentReference(fbo->getAttachment((Framebuffer::AttachmentPoint)point));
}
binding = fbo;
}
}
void ReferenceContext::genFramebuffers(int numFramebuffers, uint32_t *framebuffers)
{
while (numFramebuffers--)
*framebuffers++ = m_framebuffers.allocateName();
}
void ReferenceContext::deleteFramebuffer(Framebuffer *framebuffer)
{
// Remove bindings.
if (m_drawFramebufferBinding == framebuffer)
bindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
if (m_readFramebufferBinding == framebuffer)
bindFramebuffer(GL_READ_FRAMEBUFFER, 0);
DE_ASSERT(framebuffer->getRefCount() == 1);
m_framebuffers.releaseReference(framebuffer);
}
void ReferenceContext::deleteFramebuffers(int numFramebuffers, const uint32_t *framebuffers)
{
for (int i = 0; i < numFramebuffers; i++)
{
uint32_t name = framebuffers[i];
Framebuffer *framebuffer = name ? m_framebuffers.find(name) : DE_NULL;
if (framebuffer)
deleteFramebuffer(framebuffer);
}
}
void ReferenceContext::bindRenderbuffer(uint32_t target, uint32_t name)
{
Renderbuffer *rbo = DE_NULL;
RC_IF_ERROR(target != GL_RENDERBUFFER, GL_INVALID_ENUM, RC_RET_VOID);
if (name != 0)
{
rbo = m_renderbuffers.find(name);
if (!rbo)
{
rbo = new Renderbuffer(name);
m_renderbuffers.insert(rbo);
}
}
// Remove old reference
if (m_renderbufferBinding)
m_renderbuffers.releaseReference(m_renderbufferBinding);
// Create new reference
if (rbo)
m_renderbuffers.acquireReference(rbo);
m_renderbufferBinding = rbo;
}
void ReferenceContext::genRenderbuffers(int numRenderbuffers, uint32_t *renderbuffers)
{
while (numRenderbuffers--)
*renderbuffers++ = m_renderbuffers.allocateName();
}
void ReferenceContext::deleteRenderbuffer(Renderbuffer *renderbuffer)
{
if (m_renderbufferBinding == renderbuffer)
bindRenderbuffer(GL_RENDERBUFFER, 0);
// Unbind from currently bound framebuffers
for (int ndx = 0; ndx < 2; ndx++)
{
rc::Framebuffer *framebufferBinding = ndx ? m_drawFramebufferBinding : m_readFramebufferBinding;
if (framebufferBinding)
{
int releaseRefCount = (framebufferBinding == m_drawFramebufferBinding ? 1 : 0) +
(framebufferBinding == m_readFramebufferBinding ? 1 : 0);
for (int point = 0; point < Framebuffer::ATTACHMENTPOINT_LAST; point++)
{
Framebuffer::Attachment &attachment =
framebufferBinding->getAttachment((Framebuffer::AttachmentPoint)point);
if (attachment.name == renderbuffer->getName())
{
for (int refNdx = 0; refNdx < releaseRefCount; refNdx++)
releaseFboAttachmentReference(attachment);
attachment = Framebuffer::Attachment();
}
}
}
}
DE_ASSERT(renderbuffer->getRefCount() == 1);
m_renderbuffers.releaseReference(renderbuffer);
}
void ReferenceContext::deleteRenderbuffers(int numRenderbuffers, const uint32_t *renderbuffers)
{
for (int i = 0; i < numRenderbuffers; i++)
{
uint32_t name = renderbuffers[i];
Renderbuffer *renderbuffer = name ? m_renderbuffers.find(name) : DE_NULL;
if (renderbuffer)
deleteRenderbuffer(renderbuffer);
}
}
void ReferenceContext::pixelStorei(uint32_t pname, int param)
{
switch (pname)
{
case GL_UNPACK_ALIGNMENT:
RC_IF_ERROR(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelUnpackAlignment = param;
break;
case GL_PACK_ALIGNMENT:
RC_IF_ERROR(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelPackAlignment = param;
break;
case GL_UNPACK_ROW_LENGTH:
RC_IF_ERROR(param < 0, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelUnpackRowLength = param;
break;
case GL_UNPACK_SKIP_ROWS:
RC_IF_ERROR(param < 0, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelUnpackSkipRows = param;
break;
case GL_UNPACK_SKIP_PIXELS:
RC_IF_ERROR(param < 0, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelUnpackSkipPixels = param;
break;
case GL_UNPACK_IMAGE_HEIGHT:
RC_IF_ERROR(param < 0, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelUnpackImageHeight = param;
break;
case GL_UNPACK_SKIP_IMAGES:
RC_IF_ERROR(param < 0, GL_INVALID_VALUE, RC_RET_VOID);
m_pixelUnpackSkipImages = param;
break;
default:
setError(GL_INVALID_ENUM);
}
}
tcu::ConstPixelBufferAccess ReferenceContext::getUnpack2DAccess(const tcu::TextureFormat &format, int width, int height,
const void *data)
{
int pixelSize = format.getPixelSize();
int rowLen = m_pixelUnpackRowLength > 0 ? m_pixelUnpackRowLength : width;
int rowPitch = deAlign32(rowLen * pixelSize, m_pixelUnpackAlignment);
const uint8_t *ptr = (const uint8_t *)data + m_pixelUnpackSkipRows * rowPitch + m_pixelUnpackSkipPixels * pixelSize;
return tcu::ConstPixelBufferAccess(format, width, height, 1, rowPitch, 0, ptr);
}
tcu::ConstPixelBufferAccess ReferenceContext::getUnpack3DAccess(const tcu::TextureFormat &format, int width, int height,
int depth, const void *data)
{
int pixelSize = format.getPixelSize();
int rowLen = m_pixelUnpackRowLength > 0 ? m_pixelUnpackRowLength : width;
int imageHeight = m_pixelUnpackImageHeight > 0 ? m_pixelUnpackImageHeight : height;
int rowPitch = deAlign32(rowLen * pixelSize, m_pixelUnpackAlignment);
int slicePitch = imageHeight * rowPitch;
const uint8_t *ptr = (const uint8_t *)data + m_pixelUnpackSkipImages * slicePitch +
m_pixelUnpackSkipRows * rowPitch + m_pixelUnpackSkipPixels * pixelSize;
return tcu::ConstPixelBufferAccess(format, width, height, depth, rowPitch, slicePitch, ptr);
}
static tcu::TextureFormat mapInternalFormat(uint32_t internalFormat)
{
switch (internalFormat)
{
case GL_ALPHA:
return TextureFormat(TextureFormat::A, TextureFormat::UNORM_INT8);
case GL_LUMINANCE:
return TextureFormat(TextureFormat::L, TextureFormat::UNORM_INT8);
case GL_LUMINANCE_ALPHA:
return TextureFormat(TextureFormat::LA, TextureFormat::UNORM_INT8);
case GL_RGB:
return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8);
case GL_RGBA:
return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8);
default:
return glu::mapGLInternalFormat(internalFormat);
}
}
static void depthValueFloatClampCopy(const PixelBufferAccess &dst, const ConstPixelBufferAccess &src)
{
int width = dst.getWidth();
int height = dst.getHeight();
int depth = dst.getDepth();
DE_ASSERT(src.getWidth() == width && src.getHeight() == height && src.getDepth() == depth);
// clamping copy
if (src.getFormat().order == tcu::TextureFormat::DS && dst.getFormat().order == tcu::TextureFormat::DS)
{
// copy only depth and stencil
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
dst.setPixDepth(de::clamp(src.getPixDepth(x, y, z), 0.0f, 1.0f), x, y, z);
dst.setPixStencil(src.getPixStencil(x, y, z), x, y, z);
}
}
else
{
// copy only depth
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
dst.setPixDepth(de::clamp(src.getPixDepth(x, y, z), 0.0f, 1.0f), x, y, z);
}
}
void ReferenceContext::texImage1D(uint32_t target, int level, uint32_t internalFormat, int width, int border,
uint32_t format, uint32_t type, const void *data)
{
texImage2D(target, level, internalFormat, width, 1, border, format, type, data);
}
void ReferenceContext::texImage2D(uint32_t target, int level, uint32_t internalFormat, int width, int height,
int border, uint32_t format, uint32_t type, const void *data)
{
texImage3D(target, level, internalFormat, width, height, 1, border, format, type, data);
}
static void clearToTextureInitialValue(PixelBufferAccess access)
{
const bool hasDepth =
access.getFormat().order == tcu::TextureFormat::D || access.getFormat().order == tcu::TextureFormat::DS;
const bool hasStencil =
access.getFormat().order == tcu::TextureFormat::S || access.getFormat().order == tcu::TextureFormat::DS;
const bool hasColor = !hasDepth && !hasStencil;
if (hasDepth)
tcu::clearDepth(access, 0.0f);
if (hasStencil)
tcu::clearStencil(access, 0u);
if (hasColor)
tcu::clear(access, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
}
void ReferenceContext::texImage3D(uint32_t target, int level, uint32_t internalFormat, int width, int height, int depth,
int border, uint32_t format, uint32_t type, const void *data)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
const void *unpackPtr = getPixelUnpackPtr(data);
const bool isDstFloatDepthFormat =
(internalFormat == GL_DEPTH_COMPONENT32F ||
internalFormat == GL_DEPTH32F_STENCIL8); // depth components are limited to [0,1] range
TextureFormat storageFmt;
TextureFormat transferFmt;
RC_IF_ERROR(border != 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0 || height < 0 || depth < 0 || level < 0, GL_INVALID_VALUE, RC_RET_VOID);
// Map storage format.
storageFmt = mapInternalFormat(internalFormat);
RC_IF_ERROR(storageFmt.order == TextureFormat::CHANNELORDER_LAST ||
storageFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
// Map transfer format.
transferFmt = glu::mapGLTransferFormat(format, type);
RC_IF_ERROR(transferFmt.order == TextureFormat::CHANNELORDER_LAST ||
transferFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
if (target == GL_TEXTURE_1D && glu::isContextTypeGLCore(m_limits.contextType))
{
// Validate size and level.
RC_IF_ERROR(width > m_limits.maxTexture2DSize || height != 1 || depth != 1, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture2DSize), GL_INVALID_VALUE, RC_RET_VOID);
Texture1D *texture = unit.tex1DBinding ? unit.tex1DBinding : &unit.default1DTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth(), GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width);
if (unpackPtr)
{
ConstPixelBufferAccess src = getUnpack2DAccess(transferFmt, width, 1, unpackPtr);
PixelBufferAccess dst(texture->getLevel(level));
if (isDstFloatDepthFormat)
depthValueFloatClampCopy(dst, src);
else
tcu::copy(dst, src);
}
else
{
// No data supplied, clear to initial
clearToTextureInitialValue(texture->getLevel(level));
}
}
else if (target == GL_TEXTURE_2D)
{
// Validate size and level.
RC_IF_ERROR(width > m_limits.maxTexture2DSize || height > m_limits.maxTexture2DSize || depth != 1,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture2DSize), GL_INVALID_VALUE, RC_RET_VOID);
Texture2D *texture = unit.tex2DBinding ? unit.tex2DBinding : &unit.default2DTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width, height);
if (unpackPtr)
{
ConstPixelBufferAccess src = getUnpack2DAccess(transferFmt, width, height, unpackPtr);
PixelBufferAccess dst(texture->getLevel(level));
if (isDstFloatDepthFormat)
depthValueFloatClampCopy(dst, src);
else
tcu::copy(dst, src);
}
else
{
// No data supplied, clear to initial
clearToTextureInitialValue(texture->getLevel(level));
}
}
else if (target == GL_TEXTURE_CUBE_MAP_NEGATIVE_X || target == GL_TEXTURE_CUBE_MAP_POSITIVE_X ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Y || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Y ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Z || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Z)
{
// Validate size and level.
RC_IF_ERROR(width != height || width > m_limits.maxTextureCubeSize || depth != 1, GL_INVALID_VALUE,
RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTextureCubeSize), GL_INVALID_VALUE, RC_RET_VOID);
TextureCube *texture = unit.texCubeBinding ? unit.texCubeBinding : &unit.defaultCubeTex;
tcu::CubeFace face = mapGLCubeFace(target);
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasFace(level, face), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getFace(level, face));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocFace(level, face, storageFmt, width, height);
if (unpackPtr)
{
ConstPixelBufferAccess src = getUnpack2DAccess(transferFmt, width, height, unpackPtr);
PixelBufferAccess dst(texture->getFace(level, face));
if (isDstFloatDepthFormat)
depthValueFloatClampCopy(dst, src);
else
tcu::copy(dst, src);
}
else
{
// No data supplied, clear to initial
clearToTextureInitialValue(texture->getFace(level, face));
}
}
else if (target == GL_TEXTURE_2D_ARRAY)
{
// Validate size and level.
RC_IF_ERROR(width > m_limits.maxTexture2DSize || height > m_limits.maxTexture2DSize ||
depth > m_limits.maxTexture2DArrayLayers,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture2DSize), GL_INVALID_VALUE, RC_RET_VOID);
Texture2DArray *texture = unit.tex2DArrayBinding ? unit.tex2DArrayBinding : &unit.default2DArrayTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight() ||
depth != dst.getDepth(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width, height, depth);
if (unpackPtr)
{
ConstPixelBufferAccess src = getUnpack3DAccess(transferFmt, width, height, depth, unpackPtr);
PixelBufferAccess dst(texture->getLevel(level));
if (isDstFloatDepthFormat)
depthValueFloatClampCopy(dst, src);
else
tcu::copy(dst, src);
}
else
{
// No data supplied, clear to initial
clearToTextureInitialValue(texture->getLevel(level));
}
}
else if (target == GL_TEXTURE_3D)
{
// Validate size and level.
RC_IF_ERROR(width > m_limits.maxTexture3DSize || height > m_limits.maxTexture3DSize ||
depth > m_limits.maxTexture3DSize,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture3DSize), GL_INVALID_VALUE, RC_RET_VOID);
Texture3D *texture = unit.tex3DBinding ? unit.tex3DBinding : &unit.default3DTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight() ||
depth != dst.getDepth(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width, height, depth);
if (unpackPtr)
{
ConstPixelBufferAccess src = getUnpack3DAccess(transferFmt, width, height, depth, unpackPtr);
PixelBufferAccess dst(texture->getLevel(level));
if (isDstFloatDepthFormat)
depthValueFloatClampCopy(dst, src);
else
tcu::copy(dst, src);
}
else
{
// No data supplied, clear to initial
clearToTextureInitialValue(texture->getLevel(level));
}
}
else if (target == GL_TEXTURE_CUBE_MAP_ARRAY)
{
// Validate size and level.
RC_IF_ERROR(width != height || width > m_limits.maxTexture2DSize || depth % 6 != 0 ||
depth > m_limits.maxTexture2DArrayLayers,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture2DSize), GL_INVALID_VALUE, RC_RET_VOID);
TextureCubeArray *texture = unit.texCubeArrayBinding ? unit.texCubeArrayBinding : &unit.defaultCubeArrayTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight() ||
depth != dst.getDepth(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width, height, depth);
if (unpackPtr)
{
ConstPixelBufferAccess src = getUnpack3DAccess(transferFmt, width, height, depth, unpackPtr);
PixelBufferAccess dst(texture->getLevel(level));
if (isDstFloatDepthFormat)
depthValueFloatClampCopy(dst, src);
else
tcu::copy(dst, src);
}
else
{
// No data supplied, clear to initial
clearToTextureInitialValue(texture->getLevel(level));
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::texSubImage1D(uint32_t target, int level, int xoffset, int width, uint32_t format, uint32_t type,
const void *data)
{
texSubImage2D(target, level, xoffset, 0, width, 1, format, type, data);
}
void ReferenceContext::texSubImage2D(uint32_t target, int level, int xoffset, int yoffset, int width, int height,
uint32_t format, uint32_t type, const void *data)
{
texSubImage3D(target, level, xoffset, yoffset, 0, width, height, 1, format, type, data);
}
void ReferenceContext::texSubImage3D(uint32_t target, int level, int xoffset, int yoffset, int zoffset, int width,
int height, int depth, uint32_t format, uint32_t type, const void *data)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
RC_IF_ERROR(xoffset < 0 || yoffset < 0 || zoffset < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0 || height < 0 || depth < 0, GL_INVALID_VALUE, RC_RET_VOID);
TextureFormat transferFmt = glu::mapGLTransferFormat(format, type);
RC_IF_ERROR(transferFmt.order == TextureFormat::CHANNELORDER_LAST ||
transferFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
ConstPixelBufferAccess src = getUnpack3DAccess(transferFmt, width, height, depth, getPixelUnpackPtr(data));
if (target == GL_TEXTURE_1D && glu::isContextTypeGLCore(m_limits.contextType))
{
Texture1D &texture = unit.tex1DBinding ? *unit.tex1DBinding : unit.default1DTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight() ||
zoffset + depth > dst.getDepth(),
GL_INVALID_VALUE, RC_RET_VOID);
// depth components are limited to [0,1] range
if (dst.getFormat().order == tcu::TextureFormat::D || dst.getFormat().order == tcu::TextureFormat::DS)
depthValueFloatClampCopy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
else
tcu::copy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
}
else if (target == GL_TEXTURE_2D)
{
Texture2D &texture = unit.tex2DBinding ? *unit.tex2DBinding : unit.default2DTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight() ||
zoffset + depth > dst.getDepth(),
GL_INVALID_VALUE, RC_RET_VOID);
// depth components are limited to [0,1] range
if (dst.getFormat().order == tcu::TextureFormat::D || dst.getFormat().order == tcu::TextureFormat::DS)
depthValueFloatClampCopy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
else
tcu::copy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
}
else if (target == GL_TEXTURE_CUBE_MAP_NEGATIVE_X || target == GL_TEXTURE_CUBE_MAP_POSITIVE_X ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Y || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Y ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Z || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Z)
{
TextureCube &texture = unit.texCubeBinding ? *unit.texCubeBinding : unit.defaultCubeTex;
tcu::CubeFace face = mapGLCubeFace(target);
RC_IF_ERROR(!texture.hasFace(level, face), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getFace(level, face);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight() ||
zoffset + depth > dst.getDepth(),
GL_INVALID_VALUE, RC_RET_VOID);
// depth components are limited to [0,1] range
if (dst.getFormat().order == tcu::TextureFormat::D || dst.getFormat().order == tcu::TextureFormat::DS)
depthValueFloatClampCopy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
else
tcu::copy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
}
else if (target == GL_TEXTURE_3D)
{
Texture3D &texture = unit.tex3DBinding ? *unit.tex3DBinding : unit.default3DTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight() ||
zoffset + depth > dst.getDepth(),
GL_INVALID_VALUE, RC_RET_VOID);
// depth components are limited to [0,1] range
if (dst.getFormat().order == tcu::TextureFormat::D || dst.getFormat().order == tcu::TextureFormat::DS)
depthValueFloatClampCopy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
else
tcu::copy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
}
else if (target == GL_TEXTURE_2D_ARRAY)
{
Texture2DArray &texture = unit.tex2DArrayBinding ? *unit.tex2DArrayBinding : unit.default2DArrayTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight() ||
zoffset + depth > dst.getDepth(),
GL_INVALID_VALUE, RC_RET_VOID);
// depth components are limited to [0,1] range
if (dst.getFormat().order == tcu::TextureFormat::D || dst.getFormat().order == tcu::TextureFormat::DS)
depthValueFloatClampCopy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
else
tcu::copy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
}
else if (target == GL_TEXTURE_CUBE_MAP_ARRAY)
{
TextureCubeArray &texture = unit.texCubeArrayBinding ? *unit.texCubeArrayBinding : unit.defaultCubeArrayTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight() ||
zoffset + depth > dst.getDepth(),
GL_INVALID_VALUE, RC_RET_VOID);
// depth components are limited to [0,1] range
if (dst.getFormat().order == tcu::TextureFormat::D || dst.getFormat().order == tcu::TextureFormat::DS)
depthValueFloatClampCopy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
else
tcu::copy(tcu::getSubregion(dst, xoffset, yoffset, zoffset, width, height, depth), src);
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::copyTexImage1D(uint32_t target, int level, uint32_t internalFormat, int x, int y, int width,
int border)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
TextureFormat storageFmt;
rr::MultisampleConstPixelBufferAccess src = getReadColorbuffer();
RC_IF_ERROR(border != 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0 || level < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(isEmpty(src), GL_INVALID_OPERATION, RC_RET_VOID);
// Map storage format.
storageFmt = mapInternalFormat(internalFormat);
RC_IF_ERROR(storageFmt.order == TextureFormat::CHANNELORDER_LAST ||
storageFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
if (target == GL_TEXTURE_1D)
{
// Validate size and level.
RC_IF_ERROR(width > m_limits.maxTexture2DSize, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture2DSize), GL_INVALID_VALUE, RC_RET_VOID);
Texture1D *texture = unit.tex1DBinding ? unit.tex1DBinding : &unit.default1DTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth(), GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width);
// Copy from current framebuffer.
PixelBufferAccess dst = texture->getLevel(level);
for (int xo = 0; xo < width; xo++)
{
if (!de::inBounds(x + xo, 0, src.raw().getHeight()))
continue; // Undefined pixel.
dst.setPixel(rr::resolveMultisamplePixel(src, x + xo, y), xo, 0);
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::copyTexImage2D(uint32_t target, int level, uint32_t internalFormat, int x, int y, int width,
int height, int border)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
TextureFormat storageFmt;
rr::MultisampleConstPixelBufferAccess src = getReadColorbuffer();
RC_IF_ERROR(border != 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0 || height < 0 || level < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(isEmpty(src), GL_INVALID_OPERATION, RC_RET_VOID);
// Map storage format.
storageFmt = mapInternalFormat(internalFormat);
RC_IF_ERROR(storageFmt.order == TextureFormat::CHANNELORDER_LAST ||
storageFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
if (target == GL_TEXTURE_2D)
{
// Validate size and level.
RC_IF_ERROR(width > m_limits.maxTexture2DSize || height > m_limits.maxTexture2DSize, GL_INVALID_VALUE,
RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTexture2DSize), GL_INVALID_VALUE, RC_RET_VOID);
Texture2D *texture = unit.tex2DBinding ? unit.tex2DBinding : &unit.default2DTex;
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasLevel(level), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getLevel(level));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocLevel(level, storageFmt, width, height);
// Copy from current framebuffer.
PixelBufferAccess dst = texture->getLevel(level);
for (int yo = 0; yo < height; yo++)
for (int xo = 0; xo < width; xo++)
{
if (!de::inBounds(x + xo, 0, src.raw().getHeight()) || !de::inBounds(y + yo, 0, src.raw().getDepth()))
continue; // Undefined pixel.
dst.setPixel(rr::resolveMultisamplePixel(src, x + xo, y + yo), xo, yo);
}
}
else if (target == GL_TEXTURE_CUBE_MAP_NEGATIVE_X || target == GL_TEXTURE_CUBE_MAP_POSITIVE_X ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Y || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Y ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Z || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Z)
{
// Validate size and level.
RC_IF_ERROR(width != height || width > m_limits.maxTextureCubeSize, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(level > deLog2Floor32(m_limits.maxTextureCubeSize), GL_INVALID_VALUE, RC_RET_VOID);
TextureCube *texture = unit.texCubeBinding ? unit.texCubeBinding : &unit.defaultCubeTex;
tcu::CubeFace face = mapGLCubeFace(target);
if (texture->isImmutable())
{
RC_IF_ERROR(!texture->hasFace(level, face), GL_INVALID_OPERATION, RC_RET_VOID);
ConstPixelBufferAccess dst(texture->getFace(level, face));
RC_IF_ERROR(storageFmt != dst.getFormat() || width != dst.getWidth() || height != dst.getHeight(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
else
texture->allocFace(level, face, storageFmt, width, height);
// Copy from current framebuffer.
PixelBufferAccess dst = texture->getFace(level, face);
for (int yo = 0; yo < height; yo++)
for (int xo = 0; xo < width; xo++)
{
if (!de::inBounds(x + xo, 0, src.raw().getHeight()) || !de::inBounds(y + yo, 0, src.raw().getDepth()))
continue; // Undefined pixel.
dst.setPixel(rr::resolveMultisamplePixel(src, x + xo, y + yo), xo, yo);
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::copyTexSubImage1D(uint32_t target, int level, int xoffset, int x, int y, int width)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
rr::MultisampleConstPixelBufferAccess src = getReadColorbuffer();
RC_IF_ERROR(xoffset < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(isEmpty(src), GL_INVALID_OPERATION, RC_RET_VOID);
if (target == GL_TEXTURE_1D)
{
Texture1D &texture = unit.tex1DBinding ? *unit.tex1DBinding : unit.default1DTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth(), GL_INVALID_VALUE, RC_RET_VOID);
for (int xo = 0; xo < width; xo++)
{
if (!de::inBounds(x + xo, 0, src.raw().getHeight()))
continue;
dst.setPixel(rr::resolveMultisamplePixel(src, x + xo, y), xo + xoffset, 0);
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::copyTexSubImage2D(uint32_t target, int level, int xoffset, int yoffset, int x, int y, int width,
int height)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
rr::MultisampleConstPixelBufferAccess src = getReadColorbuffer();
RC_IF_ERROR(xoffset < 0 || yoffset < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0 || height < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(isEmpty(src), GL_INVALID_OPERATION, RC_RET_VOID);
if (target == GL_TEXTURE_2D)
{
Texture2D &texture = unit.tex2DBinding ? *unit.tex2DBinding : unit.default2DTex;
RC_IF_ERROR(!texture.hasLevel(level), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getLevel(level);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight(), GL_INVALID_VALUE,
RC_RET_VOID);
for (int yo = 0; yo < height; yo++)
for (int xo = 0; xo < width; xo++)
{
if (!de::inBounds(x + xo, 0, src.raw().getHeight()) || !de::inBounds(y + yo, 0, src.raw().getDepth()))
continue;
dst.setPixel(rr::resolveMultisamplePixel(src, x + xo, y + yo), xo + xoffset, yo + yoffset);
}
}
else if (target == GL_TEXTURE_CUBE_MAP_NEGATIVE_X || target == GL_TEXTURE_CUBE_MAP_POSITIVE_X ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Y || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Y ||
target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Z || target == GL_TEXTURE_CUBE_MAP_POSITIVE_Z)
{
TextureCube &texture = unit.texCubeBinding ? *unit.texCubeBinding : unit.defaultCubeTex;
tcu::CubeFace face = mapGLCubeFace(target);
RC_IF_ERROR(!texture.hasFace(level, face), GL_INVALID_VALUE, RC_RET_VOID);
PixelBufferAccess dst = texture.getFace(level, face);
RC_IF_ERROR(xoffset + width > dst.getWidth() || yoffset + height > dst.getHeight(), GL_INVALID_VALUE,
RC_RET_VOID);
for (int yo = 0; yo < height; yo++)
for (int xo = 0; xo < width; xo++)
{
if (!de::inBounds(x + xo, 0, src.raw().getHeight()) || !de::inBounds(y + yo, 0, src.raw().getDepth()))
continue;
dst.setPixel(rr::resolveMultisamplePixel(src, x + xo, y + yo), xo + xoffset, yo + yoffset);
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::copyTexSubImage3D(uint32_t target, int level, int xoffset, int yoffset, int zoffset, int x,
int y, int width, int height)
{
DE_UNREF(target && level && xoffset && yoffset && zoffset && x && y && width && height);
DE_ASSERT(false);
}
void ReferenceContext::texStorage2D(uint32_t target, int levels, uint32_t internalFormat, int width, int height)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
TextureFormat storageFmt;
RC_IF_ERROR(width <= 0 || height <= 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(!de::inRange(levels, 1, (int)deLog2Floor32(de::max(width, height)) + 1), GL_INVALID_VALUE, RC_RET_VOID);
// Map storage format.
storageFmt = mapInternalFormat(internalFormat);
RC_IF_ERROR(storageFmt.order == TextureFormat::CHANNELORDER_LAST ||
storageFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
if (target == GL_TEXTURE_2D)
{
Texture2D &texture = unit.tex2DBinding ? *unit.tex2DBinding : unit.default2DTex;
RC_IF_ERROR(width > m_limits.maxTexture2DSize || height >= m_limits.maxTexture2DSize, GL_INVALID_VALUE,
RC_RET_VOID);
RC_IF_ERROR(texture.isImmutable(), GL_INVALID_OPERATION, RC_RET_VOID);
texture.clearLevels();
texture.setImmutable();
for (int level = 0; level < levels; level++)
{
int levelW = de::max(1, width >> level);
int levelH = de::max(1, height >> level);
texture.allocLevel(level, storageFmt, levelW, levelH);
}
}
else if (target == GL_TEXTURE_CUBE_MAP)
{
TextureCube &texture = unit.texCubeBinding ? *unit.texCubeBinding : unit.defaultCubeTex;
RC_IF_ERROR(width > m_limits.maxTextureCubeSize || height > m_limits.maxTextureCubeSize, GL_INVALID_VALUE,
RC_RET_VOID);
RC_IF_ERROR(texture.isImmutable(), GL_INVALID_OPERATION, RC_RET_VOID);
texture.clearLevels();
texture.setImmutable();
for (int level = 0; level < levels; level++)
{
int levelW = de::max(1, width >> level);
int levelH = de::max(1, height >> level);
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
texture.allocFace(level, (tcu::CubeFace)face, storageFmt, levelW, levelH);
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
void ReferenceContext::texStorage3D(uint32_t target, int levels, uint32_t internalFormat, int width, int height,
int depth)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
TextureFormat storageFmt;
RC_IF_ERROR(width <= 0 || height <= 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(!de::inRange(levels, 1, (int)deLog2Floor32(de::max(width, height)) + 1), GL_INVALID_VALUE, RC_RET_VOID);
// Map storage format.
storageFmt = mapInternalFormat(internalFormat);
RC_IF_ERROR(storageFmt.order == TextureFormat::CHANNELORDER_LAST ||
storageFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
if (target == GL_TEXTURE_2D_ARRAY)
{
Texture2DArray &texture = unit.tex2DArrayBinding ? *unit.tex2DArrayBinding : unit.default2DArrayTex;
RC_IF_ERROR(width > m_limits.maxTexture2DSize || height >= m_limits.maxTexture2DSize ||
depth >= m_limits.maxTexture2DArrayLayers,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(texture.isImmutable(), GL_INVALID_OPERATION, RC_RET_VOID);
texture.clearLevels();
texture.setImmutable();
for (int level = 0; level < levels; level++)
{
int levelW = de::max(1, width >> level);
int levelH = de::max(1, height >> level);
texture.allocLevel(level, storageFmt, levelW, levelH, depth);
}
}
else if (target == GL_TEXTURE_3D)
{
Texture3D &texture = unit.tex3DBinding ? *unit.tex3DBinding : unit.default3DTex;
RC_IF_ERROR(width > m_limits.maxTexture3DSize || height > m_limits.maxTexture3DSize ||
depth > m_limits.maxTexture3DSize,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(texture.isImmutable(), GL_INVALID_OPERATION, RC_RET_VOID);
texture.clearLevels();
texture.setImmutable();
for (int level = 0; level < levels; level++)
{
int levelW = de::max(1, width >> level);
int levelH = de::max(1, height >> level);
int levelD = de::max(1, depth >> level);
texture.allocLevel(level, storageFmt, levelW, levelH, levelD);
}
}
else if (target == GL_TEXTURE_CUBE_MAP_ARRAY)
{
TextureCubeArray &texture = unit.texCubeArrayBinding ? *unit.texCubeArrayBinding : unit.defaultCubeArrayTex;
RC_IF_ERROR(width != height || depth % 6 != 0 || width > m_limits.maxTexture2DSize ||
depth >= m_limits.maxTexture2DArrayLayers,
GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(texture.isImmutable(), GL_INVALID_OPERATION, RC_RET_VOID);
texture.clearLevels();
texture.setImmutable();
for (int level = 0; level < levels; level++)
{
int levelW = de::max(1, width >> level);
int levelH = de::max(1, height >> level);
texture.allocLevel(level, storageFmt, levelW, levelH, depth);
}
}
else
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
// \todo [2014-02-19 pyry] Duplicated with code in gluTextureUtil.hpp
static inline tcu::Sampler::WrapMode mapGLWrapMode(int value)
{
switch (value)
{
case GL_CLAMP_TO_EDGE:
return tcu::Sampler::CLAMP_TO_EDGE;
case GL_REPEAT:
return tcu::Sampler::REPEAT_GL;
case GL_MIRRORED_REPEAT:
return tcu::Sampler::MIRRORED_REPEAT_GL;
default:
return tcu::Sampler::WRAPMODE_LAST;
}
}
static inline tcu::Sampler::FilterMode mapGLFilterMode(int value)
{
switch (value)
{
case GL_NEAREST:
return tcu::Sampler::NEAREST;
case GL_LINEAR:
return tcu::Sampler::LINEAR;
case GL_NEAREST_MIPMAP_NEAREST:
return tcu::Sampler::NEAREST_MIPMAP_NEAREST;
case GL_NEAREST_MIPMAP_LINEAR:
return tcu::Sampler::NEAREST_MIPMAP_LINEAR;
case GL_LINEAR_MIPMAP_NEAREST:
return tcu::Sampler::LINEAR_MIPMAP_NEAREST;
case GL_LINEAR_MIPMAP_LINEAR:
return tcu::Sampler::LINEAR_MIPMAP_LINEAR;
default:
return tcu::Sampler::FILTERMODE_LAST;
}
}
void ReferenceContext::texParameteri(uint32_t target, uint32_t pname, int value)
{
TextureUnit &unit = m_textureUnits[m_activeTexture];
Texture *texture = DE_NULL;
switch (target)
{
case GL_TEXTURE_1D:
texture = unit.tex1DBinding ? unit.tex1DBinding : &unit.default1DTex;
break;
case GL_TEXTURE_2D:
texture = unit.tex2DBinding ? unit.tex2DBinding : &unit.default2DTex;
break;
case GL_TEXTURE_CUBE_MAP:
texture = unit.texCubeBinding ? unit.texCubeBinding : &unit.defaultCubeTex;
break;
case GL_TEXTURE_2D_ARRAY:
texture = unit.tex2DArrayBinding ? unit.tex2DArrayBinding : &unit.default2DArrayTex;
break;
case GL_TEXTURE_3D:
texture = unit.tex3DBinding ? unit.tex3DBinding : &unit.default3DTex;
break;
case GL_TEXTURE_CUBE_MAP_ARRAY:
texture = unit.texCubeArrayBinding ? unit.texCubeArrayBinding : &unit.defaultCubeArrayTex;
break;
default:
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
switch (pname)
{
case GL_TEXTURE_WRAP_S:
{
tcu::Sampler::WrapMode wrapS = mapGLWrapMode(value);
RC_IF_ERROR(wrapS == tcu::Sampler::WRAPMODE_LAST, GL_INVALID_VALUE, RC_RET_VOID);
texture->getSampler().wrapS = wrapS;
break;
}
case GL_TEXTURE_WRAP_T:
{
tcu::Sampler::WrapMode wrapT = mapGLWrapMode(value);
RC_IF_ERROR(wrapT == tcu::Sampler::WRAPMODE_LAST, GL_INVALID_VALUE, RC_RET_VOID);
texture->getSampler().wrapT = wrapT;
break;
}
case GL_TEXTURE_WRAP_R:
{
tcu::Sampler::WrapMode wrapR = mapGLWrapMode(value);
RC_IF_ERROR(wrapR == tcu::Sampler::WRAPMODE_LAST, GL_INVALID_VALUE, RC_RET_VOID);
texture->getSampler().wrapR = wrapR;
break;
}
case GL_TEXTURE_MIN_FILTER:
{
tcu::Sampler::FilterMode minMode = mapGLFilterMode(value);
RC_IF_ERROR(minMode == tcu::Sampler::FILTERMODE_LAST, GL_INVALID_VALUE, RC_RET_VOID);
texture->getSampler().minFilter = minMode;
break;
}
case GL_TEXTURE_MAG_FILTER:
{
tcu::Sampler::FilterMode magMode = mapGLFilterMode(value);
RC_IF_ERROR(magMode != tcu::Sampler::LINEAR && magMode != tcu::Sampler::NEAREST, GL_INVALID_VALUE, RC_RET_VOID);
texture->getSampler().magFilter = magMode;
break;
}
case GL_TEXTURE_MAX_LEVEL:
{
RC_IF_ERROR(value < 0, GL_INVALID_VALUE, RC_RET_VOID);
texture->setMaxLevel(value);
break;
}
default:
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
}
static inline Framebuffer::AttachmentPoint mapGLAttachmentPoint(uint32_t attachment)
{
switch (attachment)
{
case GL_COLOR_ATTACHMENT0:
return Framebuffer::ATTACHMENTPOINT_COLOR0;
case GL_DEPTH_ATTACHMENT:
return Framebuffer::ATTACHMENTPOINT_DEPTH;
case GL_STENCIL_ATTACHMENT:
return Framebuffer::ATTACHMENTPOINT_STENCIL;
default:
return Framebuffer::ATTACHMENTPOINT_LAST;
}
}
static inline Framebuffer::TexTarget mapGLFboTexTarget(uint32_t target)
{
switch (target)
{
case GL_TEXTURE_2D:
return Framebuffer::TEXTARGET_2D;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
return Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_X;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
return Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_Y;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
return Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_Z;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
return Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_X;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
return Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_Y;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
return Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_Z;
default:
return Framebuffer::TEXTARGET_LAST;
}
}
void ReferenceContext::acquireFboAttachmentReference(const Framebuffer::Attachment &attachment)
{
switch (attachment.type)
{
case Framebuffer::ATTACHMENTTYPE_TEXTURE:
{
TCU_CHECK(attachment.name != 0);
Texture *texture = m_textures.find(attachment.name);
TCU_CHECK(texture);
m_textures.acquireReference(texture);
break;
}
case Framebuffer::ATTACHMENTTYPE_RENDERBUFFER:
{
TCU_CHECK(attachment.name != 0);
Renderbuffer *rbo = m_renderbuffers.find(attachment.name);
TCU_CHECK(rbo);
m_renderbuffers.acquireReference(rbo);
break;
}
default:
break; // Silently ignore
}
}
void ReferenceContext::releaseFboAttachmentReference(const Framebuffer::Attachment &attachment)
{
switch (attachment.type)
{
case Framebuffer::ATTACHMENTTYPE_TEXTURE:
{
TCU_CHECK(attachment.name != 0);
Texture *texture = m_textures.find(attachment.name);
TCU_CHECK(texture);
m_textures.releaseReference(texture);
break;
}
case Framebuffer::ATTACHMENTTYPE_RENDERBUFFER:
{
TCU_CHECK(attachment.name != 0);
Renderbuffer *rbo = m_renderbuffers.find(attachment.name);
TCU_CHECK(rbo);
m_renderbuffers.releaseReference(rbo);
break;
}
default:
break; // Silently ignore
}
}
void ReferenceContext::framebufferTexture2D(uint32_t target, uint32_t attachment, uint32_t textarget, uint32_t texture,
int level)
{
if (attachment == GL_DEPTH_STENCIL_ATTACHMENT)
{
// Attach to both depth and stencil.
framebufferTexture2D(target, GL_DEPTH_ATTACHMENT, textarget, texture, level);
framebufferTexture2D(target, GL_STENCIL_ATTACHMENT, textarget, texture, level);
}
else
{
Framebuffer::AttachmentPoint point = mapGLAttachmentPoint(attachment);
Texture *texObj = DE_NULL;
Framebuffer::TexTarget fboTexTarget = mapGLFboTexTarget(textarget);
RC_IF_ERROR(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER && target != GL_READ_FRAMEBUFFER,
GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(point == Framebuffer::ATTACHMENTPOINT_LAST, GL_INVALID_ENUM, RC_RET_VOID);
// Select binding point.
rc::Framebuffer *framebufferBinding = (target == GL_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER) ?
m_drawFramebufferBinding :
m_readFramebufferBinding;
RC_IF_ERROR(!framebufferBinding, GL_INVALID_OPERATION, RC_RET_VOID);
// If framebuffer object is bound for both reading and writing then we need to acquire/release multiple references.
int bindingRefCount = (framebufferBinding == m_drawFramebufferBinding ? 1 : 0) +
(framebufferBinding == m_readFramebufferBinding ? 1 : 0);
if (texture != 0)
{
texObj = m_textures.find(texture);
RC_IF_ERROR(!texObj, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(level != 0, GL_INVALID_VALUE,
RC_RET_VOID); // \todo [2012-03-19 pyry] We should allow other levels as well.
if (texObj->getType() == Texture::TYPE_2D)
RC_IF_ERROR(fboTexTarget != Framebuffer::TEXTARGET_2D, GL_INVALID_OPERATION, RC_RET_VOID);
else
{
TCU_CHECK(texObj->getType() == Texture::TYPE_CUBE_MAP);
if (!deInRange32(fboTexTarget, Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_X,
Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_Z))
RC_ERROR_RET(GL_INVALID_OPERATION, RC_RET_VOID);
}
}
Framebuffer::Attachment &fboAttachment = framebufferBinding->getAttachment(point);
for (int ndx = 0; ndx < bindingRefCount; ndx++)
releaseFboAttachmentReference(fboAttachment);
fboAttachment = Framebuffer::Attachment();
if (texObj)
{
fboAttachment.type = Framebuffer::ATTACHMENTTYPE_TEXTURE;
fboAttachment.name = texObj->getName();
fboAttachment.texTarget = fboTexTarget;
fboAttachment.level = level;
for (int ndx = 0; ndx < bindingRefCount; ndx++)
acquireFboAttachmentReference(fboAttachment);
}
}
}
void ReferenceContext::framebufferTextureLayer(uint32_t target, uint32_t attachment, uint32_t texture, int level,
int layer)
{
if (attachment == GL_DEPTH_STENCIL_ATTACHMENT)
{
// Attach to both depth and stencil.
framebufferTextureLayer(target, GL_DEPTH_ATTACHMENT, texture, level, layer);
framebufferTextureLayer(target, GL_STENCIL_ATTACHMENT, texture, level, layer);
}
else
{
Framebuffer::AttachmentPoint point = mapGLAttachmentPoint(attachment);
Texture *texObj = DE_NULL;
RC_IF_ERROR(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER && target != GL_READ_FRAMEBUFFER,
GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(point == Framebuffer::ATTACHMENTPOINT_LAST, GL_INVALID_ENUM, RC_RET_VOID);
// Select binding point.
rc::Framebuffer *framebufferBinding = (target == GL_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER) ?
m_drawFramebufferBinding :
m_readFramebufferBinding;
RC_IF_ERROR(!framebufferBinding, GL_INVALID_OPERATION, RC_RET_VOID);
// If framebuffer object is bound for both reading and writing then we need to acquire/release multiple references.
int bindingRefCount = (framebufferBinding == m_drawFramebufferBinding ? 1 : 0) +
(framebufferBinding == m_readFramebufferBinding ? 1 : 0);
if (texture != 0)
{
texObj = m_textures.find(texture);
RC_IF_ERROR(!texObj, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(level != 0, GL_INVALID_VALUE,
RC_RET_VOID); // \todo [2012-03-19 pyry] We should allow other levels as well.
RC_IF_ERROR(texObj->getType() != Texture::TYPE_2D_ARRAY && texObj->getType() != Texture::TYPE_3D &&
texObj->getType() != Texture::TYPE_CUBE_MAP_ARRAY,
GL_INVALID_OPERATION, RC_RET_VOID);
if (texObj->getType() == Texture::TYPE_2D_ARRAY || texObj->getType() == Texture::TYPE_CUBE_MAP_ARRAY)
{
RC_IF_ERROR((layer < 0) || (layer >= GL_MAX_ARRAY_TEXTURE_LAYERS), GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR((level < 0) || (level > deLog2Floor32(GL_MAX_TEXTURE_SIZE)), GL_INVALID_VALUE, RC_RET_VOID);
}
else if (texObj->getType() == Texture::TYPE_3D)
{
RC_IF_ERROR((layer < 0) || (layer >= GL_MAX_3D_TEXTURE_SIZE), GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR((level < 0) || (level > deLog2Floor32(GL_MAX_3D_TEXTURE_SIZE)), GL_INVALID_VALUE,
RC_RET_VOID);
}
}
Framebuffer::Attachment &fboAttachment = framebufferBinding->getAttachment(point);
for (int ndx = 0; ndx < bindingRefCount; ndx++)
releaseFboAttachmentReference(fboAttachment);
fboAttachment = Framebuffer::Attachment();
if (texObj)
{
fboAttachment.type = Framebuffer::ATTACHMENTTYPE_TEXTURE;
fboAttachment.name = texObj->getName();
fboAttachment.texTarget = texLayeredTypeToTarget(texObj->getType());
fboAttachment.level = level;
fboAttachment.layer = layer;
DE_ASSERT(fboAttachment.texTarget != Framebuffer::TEXTARGET_LAST);
for (int ndx = 0; ndx < bindingRefCount; ndx++)
acquireFboAttachmentReference(fboAttachment);
}
}
}
void ReferenceContext::framebufferRenderbuffer(uint32_t target, uint32_t attachment, uint32_t renderbuffertarget,
uint32_t renderbuffer)
{
if (attachment == GL_DEPTH_STENCIL_ATTACHMENT)
{
// Attach both to depth and stencil.
framebufferRenderbuffer(target, GL_DEPTH_ATTACHMENT, renderbuffertarget, renderbuffer);
framebufferRenderbuffer(target, GL_STENCIL_ATTACHMENT, renderbuffertarget, renderbuffer);
}
else
{
Framebuffer::AttachmentPoint point = mapGLAttachmentPoint(attachment);
Renderbuffer *rbo = DE_NULL;
RC_IF_ERROR(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER && target != GL_READ_FRAMEBUFFER,
GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(point == Framebuffer::ATTACHMENTPOINT_LAST, GL_INVALID_ENUM, RC_RET_VOID);
// Select binding point.
rc::Framebuffer *framebufferBinding = (target == GL_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER) ?
m_drawFramebufferBinding :
m_readFramebufferBinding;
RC_IF_ERROR(!framebufferBinding, GL_INVALID_OPERATION, RC_RET_VOID);
// If framebuffer object is bound for both reading and writing then we need to acquire/release multiple references.
int bindingRefCount = (framebufferBinding == m_drawFramebufferBinding ? 1 : 0) +
(framebufferBinding == m_readFramebufferBinding ? 1 : 0);
if (renderbuffer != 0)
{
rbo = m_renderbuffers.find(renderbuffer);
RC_IF_ERROR(renderbuffertarget != GL_RENDERBUFFER, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(!rbo, GL_INVALID_OPERATION, RC_RET_VOID);
}
Framebuffer::Attachment &fboAttachment = framebufferBinding->getAttachment(point);
for (int ndx = 0; ndx < bindingRefCount; ndx++)
releaseFboAttachmentReference(fboAttachment);
fboAttachment = Framebuffer::Attachment();
if (rbo)
{
fboAttachment.type = Framebuffer::ATTACHMENTTYPE_RENDERBUFFER;
fboAttachment.name = rbo->getName();
for (int ndx = 0; ndx < bindingRefCount; ndx++)
acquireFboAttachmentReference(fboAttachment);
}
}
}
uint32_t ReferenceContext::checkFramebufferStatus(uint32_t target)
{
RC_IF_ERROR(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER && target != GL_READ_FRAMEBUFFER,
GL_INVALID_ENUM, 0);
// Select binding point.
rc::Framebuffer *framebufferBinding = (target == GL_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER) ?
m_drawFramebufferBinding :
m_readFramebufferBinding;
// Default framebuffer is always complete.
if (!framebufferBinding)
return GL_FRAMEBUFFER_COMPLETE;
int width = -1;
int height = -1;
bool hasAttachment = false;
bool attachmentComplete = true;
bool dimensionsOk = true;
for (int point = 0; point < Framebuffer::ATTACHMENTPOINT_LAST; point++)
{
const Framebuffer::Attachment &attachment =
framebufferBinding->getAttachment((Framebuffer::AttachmentPoint)point);
int attachmentWidth = 0;
int attachmentHeight = 0;
tcu::TextureFormat attachmentFormat;
if (attachment.type == Framebuffer::ATTACHMENTTYPE_TEXTURE)
{
const Texture *texture = m_textures.find(attachment.name);
tcu::ConstPixelBufferAccess level;
TCU_CHECK(texture);
if (attachment.texTarget == Framebuffer::TEXTARGET_2D)
{
DE_ASSERT(texture->getType() == Texture::TYPE_2D);
const Texture2D *tex2D = static_cast<const Texture2D *>(texture);
if (tex2D->hasLevel(attachment.level))
level = tex2D->getLevel(attachment.level);
}
else if (deInRange32(attachment.texTarget, Framebuffer::TEXTARGET_CUBE_MAP_POSITIVE_X,
Framebuffer::TEXTARGET_CUBE_MAP_NEGATIVE_Z))
{
DE_ASSERT(texture->getType() == Texture::TYPE_CUBE_MAP);
const TextureCube *texCube = static_cast<const TextureCube *>(texture);
const tcu::CubeFace face = texTargetToFace(attachment.texTarget);
TCU_CHECK(de::inBounds<int>(face, 0, tcu::CUBEFACE_LAST));
if (texCube->hasFace(attachment.level, face))
level = texCube->getFace(attachment.level, face);
}
else if (attachment.texTarget == Framebuffer::TEXTARGET_2D_ARRAY)
{
DE_ASSERT(texture->getType() == Texture::TYPE_2D_ARRAY);
const Texture2DArray *tex2DArr = static_cast<const Texture2DArray *>(texture);
if (tex2DArr->hasLevel(attachment.level))
level = tex2DArr->getLevel(attachment.level); // \note Slice doesn't matter here.
}
else if (attachment.texTarget == Framebuffer::TEXTARGET_3D)
{
DE_ASSERT(texture->getType() == Texture::TYPE_3D);
const Texture3D *tex3D = static_cast<const Texture3D *>(texture);
if (tex3D->hasLevel(attachment.level))
level = tex3D->getLevel(attachment.level); // \note Slice doesn't matter here.
}
else if (attachment.texTarget == Framebuffer::TEXTARGET_CUBE_MAP_ARRAY)
{
DE_ASSERT(texture->getType() == Texture::TYPE_CUBE_MAP_ARRAY);
const TextureCubeArray *texCubeArr = static_cast<const TextureCubeArray *>(texture);
if (texCubeArr->hasLevel(attachment.level))
level = texCubeArr->getLevel(attachment.level); // \note Slice doesn't matter here.
}
else
TCU_FAIL("Framebuffer attached to a texture but no valid target specified");
attachmentWidth = level.getWidth();
attachmentHeight = level.getHeight();
attachmentFormat = level.getFormat();
}
else if (attachment.type == Framebuffer::ATTACHMENTTYPE_RENDERBUFFER)
{
const Renderbuffer *renderbuffer = m_renderbuffers.find(attachment.name);
TCU_CHECK(renderbuffer);
attachmentWidth = renderbuffer->getWidth();
attachmentHeight = renderbuffer->getHeight();
attachmentFormat = renderbuffer->getFormat();
}
else
{
TCU_CHECK(attachment.type == Framebuffer::ATTACHMENTTYPE_LAST);
continue; // Skip rest of checks.
}
if (!hasAttachment && attachmentWidth > 0 && attachmentHeight > 0)
{
width = attachmentWidth;
height = attachmentHeight;
hasAttachment = true;
}
else if (attachmentWidth != width || attachmentHeight != height)
dimensionsOk = false;
// Validate attachment point compatibility.
switch (attachmentFormat.order)
{
case TextureFormat::R:
case TextureFormat::RG:
case TextureFormat::RGB:
case TextureFormat::RGBA:
case TextureFormat::sRGB:
case TextureFormat::sRGBA:
case TextureFormat::BGRA:
if (point != Framebuffer::ATTACHMENTPOINT_COLOR0)
attachmentComplete = false;
break;
case TextureFormat::D:
if (point != Framebuffer::ATTACHMENTPOINT_DEPTH)
attachmentComplete = false;
break;
case TextureFormat::S:
if (point != Framebuffer::ATTACHMENTPOINT_STENCIL)
attachmentComplete = false;
break;
case TextureFormat::DS:
if (point != Framebuffer::ATTACHMENTPOINT_DEPTH && point != Framebuffer::ATTACHMENTPOINT_STENCIL)
attachmentComplete = false;
break;
default:
TCU_FAIL("Unsupported attachment channel order");
}
}
if (!attachmentComplete)
return GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT;
else if (!hasAttachment)
return GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT;
else if (!dimensionsOk)
return GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS;
else
return GL_FRAMEBUFFER_COMPLETE;
}
void ReferenceContext::getFramebufferAttachmentParameteriv(uint32_t target, uint32_t attachment, uint32_t pname,
int *params)
{
DE_UNREF(target && attachment && pname && params);
TCU_CHECK(false); // \todo [pyry] Implement
}
void ReferenceContext::renderbufferStorage(uint32_t target, uint32_t internalformat, int width, int height)
{
TextureFormat format = glu::mapGLInternalFormat(internalformat);
RC_IF_ERROR(target != GL_RENDERBUFFER, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(!m_renderbufferBinding, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(!deInRange32(width, 0, m_limits.maxRenderbufferSize) ||
!deInRange32(height, 0, m_limits.maxRenderbufferSize),
GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(format.order == TextureFormat::CHANNELORDER_LAST || format.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
m_renderbufferBinding->setStorage(format, (int)width, (int)height);
}
void ReferenceContext::renderbufferStorageMultisample(uint32_t target, int samples, uint32_t internalFormat, int width,
int height)
{
// \todo [2012-04-07 pyry] Implement MSAA support.
DE_UNREF(samples);
renderbufferStorage(target, internalFormat, width, height);
}
tcu::PixelBufferAccess ReferenceContext::getFboAttachment(const rc::Framebuffer &framebuffer,
rc::Framebuffer::AttachmentPoint point)
{
const Framebuffer::Attachment &attachment = framebuffer.getAttachment(point);
switch (attachment.type)
{
case Framebuffer::ATTACHMENTTYPE_TEXTURE:
{
Texture *texture = m_textures.find(attachment.name);
TCU_CHECK(texture);
if (texture->getType() == Texture::TYPE_2D)
{
if (Texture2D *texture2D = dynamic_cast<Texture2D *>(texture))
return texture2D->getLevel(attachment.level);
else
return nullAccess();
}
else if (texture->getType() == Texture::TYPE_CUBE_MAP)
{
if (TextureCube *cubeMap = dynamic_cast<TextureCube *>(texture))
return cubeMap->getFace(attachment.level, texTargetToFace(attachment.texTarget));
else
return nullAccess();
}
else if (texture->getType() == Texture::TYPE_2D_ARRAY || texture->getType() == Texture::TYPE_3D ||
texture->getType() == Texture::TYPE_CUBE_MAP_ARRAY)
{
tcu::PixelBufferAccess level;
if (texture->getType() == Texture::TYPE_2D_ARRAY)
{
if (Texture2DArray *texture2DArray = dynamic_cast<Texture2DArray *>(texture))
level = texture2DArray->getLevel(attachment.level);
}
else if (texture->getType() == Texture::TYPE_3D)
{
if (Texture3D *texture3D = dynamic_cast<Texture3D *>(texture))
level = texture3D->getLevel(attachment.level);
}
else if (texture->getType() == Texture::TYPE_CUBE_MAP_ARRAY)
{
if (TextureCubeArray *cubeArray = dynamic_cast<TextureCubeArray *>(texture))
level = cubeArray->getLevel(attachment.level);
}
void *layerData = static_cast<uint8_t *>(level.getDataPtr()) + level.getSlicePitch() * attachment.layer;
return tcu::PixelBufferAccess(level.getFormat(), level.getWidth(), level.getHeight(), 1,
level.getRowPitch(), 0, layerData);
}
else
return nullAccess();
}
case Framebuffer::ATTACHMENTTYPE_RENDERBUFFER:
{
Renderbuffer *rbo = m_renderbuffers.find(attachment.name);
TCU_CHECK(rbo);
return rbo->getAccess();
}
default:
return nullAccess();
}
}
const Texture2D &ReferenceContext::getTexture2D(int unitNdx) const
{
const TextureUnit &unit = m_textureUnits[unitNdx];
return unit.tex2DBinding ? *unit.tex2DBinding : unit.default2DTex;
}
const TextureCube &ReferenceContext::getTextureCube(int unitNdx) const
{
const TextureUnit &unit = m_textureUnits[unitNdx];
return unit.texCubeBinding ? *unit.texCubeBinding : unit.defaultCubeTex;
}
static bool isValidBufferTarget(uint32_t target)
{
switch (target)
{
case GL_ARRAY_BUFFER:
case GL_COPY_READ_BUFFER:
case GL_COPY_WRITE_BUFFER:
case GL_DRAW_INDIRECT_BUFFER:
case GL_ELEMENT_ARRAY_BUFFER:
case GL_PIXEL_PACK_BUFFER:
case GL_PIXEL_UNPACK_BUFFER:
case GL_TRANSFORM_FEEDBACK_BUFFER:
case GL_UNIFORM_BUFFER:
return true;
default:
return false;
}
}
void ReferenceContext::setBufferBinding(uint32_t target, DataBuffer *buffer)
{
DataBuffer **bindingPoint = DE_NULL;
VertexArray *vertexArrayObject = (m_vertexArrayBinding) ? (m_vertexArrayBinding) : (&m_clientVertexArray);
switch (target)
{
case GL_ARRAY_BUFFER:
bindingPoint = &m_arrayBufferBinding;
break;
case GL_COPY_READ_BUFFER:
bindingPoint = &m_copyReadBufferBinding;
break;
case GL_COPY_WRITE_BUFFER:
bindingPoint = &m_copyWriteBufferBinding;
break;
case GL_DRAW_INDIRECT_BUFFER:
bindingPoint = &m_drawIndirectBufferBinding;
break;
case GL_ELEMENT_ARRAY_BUFFER:
bindingPoint = &vertexArrayObject->m_elementArrayBufferBinding;
break;
case GL_PIXEL_PACK_BUFFER:
bindingPoint = &m_pixelPackBufferBinding;
break;
case GL_PIXEL_UNPACK_BUFFER:
bindingPoint = &m_pixelUnpackBufferBinding;
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
bindingPoint = &m_transformFeedbackBufferBinding;
break;
case GL_UNIFORM_BUFFER:
bindingPoint = &m_uniformBufferBinding;
break;
default:
DE_ASSERT(false);
return;
}
if (*bindingPoint)
{
m_buffers.releaseReference(*bindingPoint);
*bindingPoint = DE_NULL;
}
if (buffer)
m_buffers.acquireReference(buffer);
*bindingPoint = buffer;
}
DataBuffer *ReferenceContext::getBufferBinding(uint32_t target) const
{
const VertexArray *vertexArrayObject = (m_vertexArrayBinding) ? (m_vertexArrayBinding) : (&m_clientVertexArray);
switch (target)
{
case GL_ARRAY_BUFFER:
return m_arrayBufferBinding;
case GL_COPY_READ_BUFFER:
return m_copyReadBufferBinding;
case GL_COPY_WRITE_BUFFER:
return m_copyWriteBufferBinding;
case GL_DRAW_INDIRECT_BUFFER:
return m_drawIndirectBufferBinding;
case GL_ELEMENT_ARRAY_BUFFER:
return vertexArrayObject->m_elementArrayBufferBinding;
case GL_PIXEL_PACK_BUFFER:
return m_pixelPackBufferBinding;
case GL_PIXEL_UNPACK_BUFFER:
return m_pixelUnpackBufferBinding;
case GL_TRANSFORM_FEEDBACK_BUFFER:
return m_transformFeedbackBufferBinding;
case GL_UNIFORM_BUFFER:
return m_uniformBufferBinding;
default:
DE_ASSERT(false);
return DE_NULL;
}
}
void ReferenceContext::bindBuffer(uint32_t target, uint32_t buffer)
{
RC_IF_ERROR(!isValidBufferTarget(target), GL_INVALID_ENUM, RC_RET_VOID);
rc::DataBuffer *bufObj = DE_NULL;
if (buffer != 0)
{
bufObj = m_buffers.find(buffer);
if (!bufObj)
{
bufObj = new DataBuffer(buffer);
m_buffers.insert(bufObj);
}
}
setBufferBinding(target, bufObj);
}
void ReferenceContext::genBuffers(int numBuffers, uint32_t *buffers)
{
RC_IF_ERROR(!buffers, GL_INVALID_VALUE, RC_RET_VOID);
for (int ndx = 0; ndx < numBuffers; ndx++)
buffers[ndx] = m_buffers.allocateName();
}
void ReferenceContext::deleteBuffers(int numBuffers, const uint32_t *buffers)
{
RC_IF_ERROR(numBuffers < 0, GL_INVALID_VALUE, RC_RET_VOID);
for (int ndx = 0; ndx < numBuffers; ndx++)
{
uint32_t buffer = buffers[ndx];
DataBuffer *bufObj = DE_NULL;
if (buffer == 0)
continue;
bufObj = m_buffers.find(buffer);
if (bufObj)
deleteBuffer(bufObj);
}
}
void ReferenceContext::deleteBuffer(DataBuffer *buffer)
{
static const uint32_t bindingPoints[] = {
GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_DRAW_INDIRECT_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER,
GL_PIXEL_UNPACK_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, GL_UNIFORM_BUFFER};
for (int bindingNdx = 0; bindingNdx < DE_LENGTH_OF_ARRAY(bindingPoints); bindingNdx++)
{
if (getBufferBinding(bindingPoints[bindingNdx]) == buffer)
setBufferBinding(bindingPoints[bindingNdx], DE_NULL);
}
{
vector<VertexArray *> vertexArrays;
m_vertexArrays.getAll(vertexArrays);
vertexArrays.push_back(&m_clientVertexArray);
for (vector<VertexArray *>::iterator i = vertexArrays.begin(); i != vertexArrays.end(); i++)
{
if ((*i)->m_elementArrayBufferBinding == buffer)
{
m_buffers.releaseReference(buffer);
(*i)->m_elementArrayBufferBinding = DE_NULL;
}
for (size_t vertexAttribNdx = 0; vertexAttribNdx < (*i)->m_arrays.size(); ++vertexAttribNdx)
{
if ((*i)->m_arrays[vertexAttribNdx].bufferBinding == buffer)
{
m_buffers.releaseReference(buffer);
(*i)->m_arrays[vertexAttribNdx].bufferDeleted = true;
(*i)->m_arrays[vertexAttribNdx].bufferBinding = DE_NULL;
}
}
}
}
DE_ASSERT(buffer->getRefCount() == 1);
m_buffers.releaseReference(buffer);
}
void ReferenceContext::bufferData(uint32_t target, intptr_t size, const void *data, uint32_t usage)
{
RC_IF_ERROR(!isValidBufferTarget(target), GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(size < 0, GL_INVALID_VALUE, RC_RET_VOID);
DE_UNREF(usage);
DataBuffer *buffer = getBufferBinding(target);
RC_IF_ERROR(!buffer, GL_INVALID_OPERATION, RC_RET_VOID);
DE_ASSERT((intptr_t)(int)size == size);
buffer->setStorage((int)size);
if (data)
deMemcpy(buffer->getData(), data, (int)size);
}
void ReferenceContext::bufferSubData(uint32_t target, intptr_t offset, intptr_t size, const void *data)
{
RC_IF_ERROR(!isValidBufferTarget(target), GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(offset < 0 || size < 0, GL_INVALID_VALUE, RC_RET_VOID);
DataBuffer *buffer = getBufferBinding(target);
RC_IF_ERROR(!buffer, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR((int)(offset + size) > buffer->getSize(), GL_INVALID_VALUE, RC_RET_VOID);
deMemcpy(buffer->getData() + offset, data, (int)size);
}
void ReferenceContext::clearColor(float red, float green, float blue, float alpha)
{
m_clearColor = Vec4(de::clamp(red, 0.0f, 1.0f), de::clamp(green, 0.0f, 1.0f), de::clamp(blue, 0.0f, 1.0f),
de::clamp(alpha, 0.0f, 1.0f));
}
void ReferenceContext::clearDepthf(float depth)
{
m_clearDepth = de::clamp(depth, 0.0f, 1.0f);
}
void ReferenceContext::clearStencil(int stencil)
{
m_clearStencil = stencil;
}
void ReferenceContext::scissor(int x, int y, int width, int height)
{
RC_IF_ERROR(width < 0 || height < 0, GL_INVALID_VALUE, RC_RET_VOID);
m_scissorBox = IVec4(x, y, width, height);
}
void ReferenceContext::enable(uint32_t cap)
{
switch (cap)
{
case GL_BLEND:
m_blendEnabled = true;
break;
case GL_SCISSOR_TEST:
m_scissorEnabled = true;
break;
case GL_DEPTH_TEST:
m_depthTestEnabled = true;
break;
case GL_STENCIL_TEST:
m_stencilTestEnabled = true;
break;
case GL_POLYGON_OFFSET_FILL:
m_polygonOffsetFillEnabled = true;
break;
case GL_FRAMEBUFFER_SRGB:
if (glu::isContextTypeGLCore(getType()))
{
m_sRGBUpdateEnabled = true;
break;
}
setError(GL_INVALID_ENUM);
break;
case GL_DEPTH_CLAMP:
if (glu::isContextTypeGLCore(getType()))
{
m_depthClampEnabled = true;
break;
}
setError(GL_INVALID_ENUM);
break;
case GL_DITHER:
// Not implemented - just ignored.
break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX:
if (!glu::isContextTypeGLCore(getType()))
{
m_primitiveRestartFixedIndex = true;
break;
}
setError(GL_INVALID_ENUM);
break;
case GL_PRIMITIVE_RESTART:
if (glu::isContextTypeGLCore(getType()))
{
m_primitiveRestartSettableIndex = true;
break;
}
setError(GL_INVALID_ENUM);
break;
default:
setError(GL_INVALID_ENUM);
break;
}
}
void ReferenceContext::disable(uint32_t cap)
{
switch (cap)
{
case GL_BLEND:
m_blendEnabled = false;
break;
case GL_SCISSOR_TEST:
m_scissorEnabled = false;
break;
case GL_DEPTH_TEST:
m_depthTestEnabled = false;
break;
case GL_STENCIL_TEST:
m_stencilTestEnabled = false;
break;
case GL_POLYGON_OFFSET_FILL:
m_polygonOffsetFillEnabled = false;
break;
case GL_FRAMEBUFFER_SRGB:
if (glu::isContextTypeGLCore(getType()))
{
m_sRGBUpdateEnabled = false;
break;
}
setError(GL_INVALID_ENUM);
break;
case GL_DEPTH_CLAMP:
if (glu::isContextTypeGLCore(getType()))
{
m_depthClampEnabled = false;
break;
}
setError(GL_INVALID_ENUM);
break;
case GL_DITHER:
break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX:
if (!glu::isContextTypeGLCore(getType()))
{
m_primitiveRestartFixedIndex = false;
break;
}
setError(GL_INVALID_ENUM);
break;
case GL_PRIMITIVE_RESTART:
if (glu::isContextTypeGLCore(getType()))
{
m_primitiveRestartSettableIndex = false;
break;
}
setError(GL_INVALID_ENUM);
break;
default:
setError(GL_INVALID_ENUM);
break;
}
}
static bool isValidCompareFunc(uint32_t func)
{
switch (func)
{
case GL_NEVER:
case GL_LESS:
case GL_LEQUAL:
case GL_GREATER:
case GL_GEQUAL:
case GL_EQUAL:
case GL_NOTEQUAL:
case GL_ALWAYS:
return true;
default:
return false;
}
}
static bool isValidStencilOp(uint32_t op)
{
switch (op)
{
case GL_KEEP:
case GL_ZERO:
case GL_REPLACE:
case GL_INCR:
case GL_INCR_WRAP:
case GL_DECR:
case GL_DECR_WRAP:
case GL_INVERT:
return true;
default:
return false;
}
}
void ReferenceContext::stencilFunc(uint32_t func, int ref, uint32_t mask)
{
stencilFuncSeparate(GL_FRONT_AND_BACK, func, ref, mask);
}
void ReferenceContext::stencilFuncSeparate(uint32_t face, uint32_t func, int ref, uint32_t mask)
{
const bool setFront = face == GL_FRONT || face == GL_FRONT_AND_BACK;
const bool setBack = face == GL_BACK || face == GL_FRONT_AND_BACK;
RC_IF_ERROR(!isValidCompareFunc(func), GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(!setFront && !setBack, GL_INVALID_ENUM, RC_RET_VOID);
for (int type = 0; type < rr::FACETYPE_LAST; ++type)
{
if ((type == rr::FACETYPE_FRONT && setFront) || (type == rr::FACETYPE_BACK && setBack))
{
m_stencil[type].func = func;
m_stencil[type].ref = ref;
m_stencil[type].opMask = mask;
}
}
}
void ReferenceContext::stencilOp(uint32_t sfail, uint32_t dpfail, uint32_t dppass)
{
stencilOpSeparate(GL_FRONT_AND_BACK, sfail, dpfail, dppass);
}
void ReferenceContext::stencilOpSeparate(uint32_t face, uint32_t sfail, uint32_t dpfail, uint32_t dppass)
{
const bool setFront = face == GL_FRONT || face == GL_FRONT_AND_BACK;
const bool setBack = face == GL_BACK || face == GL_FRONT_AND_BACK;
RC_IF_ERROR(!isValidStencilOp(sfail) || !isValidStencilOp(dpfail) || !isValidStencilOp(dppass), GL_INVALID_ENUM,
RC_RET_VOID);
RC_IF_ERROR(!setFront && !setBack, GL_INVALID_ENUM, RC_RET_VOID);
for (int type = 0; type < rr::FACETYPE_LAST; ++type)
{
if ((type == rr::FACETYPE_FRONT && setFront) || (type == rr::FACETYPE_BACK && setBack))
{
m_stencil[type].opStencilFail = sfail;
m_stencil[type].opDepthFail = dpfail;
m_stencil[type].opDepthPass = dppass;
}
}
}
void ReferenceContext::depthFunc(uint32_t func)
{
RC_IF_ERROR(!isValidCompareFunc(func), GL_INVALID_ENUM, RC_RET_VOID);
m_depthFunc = func;
}
void ReferenceContext::depthRangef(float n, float f)
{
m_depthRangeNear = de::clamp(n, 0.0f, 1.0f);
m_depthRangeFar = de::clamp(f, 0.0f, 1.0f);
}
void ReferenceContext::depthRange(double n, double f)
{
depthRangef((float)n, (float)f);
}
void ReferenceContext::polygonOffset(float factor, float units)
{
m_polygonOffsetFactor = factor;
m_polygonOffsetUnits = units;
}
void ReferenceContext::provokingVertex(uint32_t convention)
{
// only in core
DE_ASSERT(glu::isContextTypeGLCore(getType()));
switch (convention)
{
case GL_FIRST_VERTEX_CONVENTION:
m_provokingFirstVertexConvention = true;
break;
case GL_LAST_VERTEX_CONVENTION:
m_provokingFirstVertexConvention = false;
break;
default:
RC_ERROR_RET(GL_INVALID_ENUM, RC_RET_VOID);
}
}
void ReferenceContext::primitiveRestartIndex(uint32_t index)
{
// only in core
DE_ASSERT(glu::isContextTypeGLCore(getType()));
m_primitiveRestartIndex = index;
}
static inline bool isValidBlendEquation(uint32_t mode)
{
return mode == GL_FUNC_ADD || mode == GL_FUNC_SUBTRACT || mode == GL_FUNC_REVERSE_SUBTRACT || mode == GL_MIN ||
mode == GL_MAX;
}
static bool isValidBlendFactor(uint32_t factor)
{
switch (factor)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
case GL_SRC_ALPHA_SATURATE:
return true;
default:
return false;
}
}
void ReferenceContext::blendEquation(uint32_t mode)
{
RC_IF_ERROR(!isValidBlendEquation(mode), GL_INVALID_ENUM, RC_RET_VOID);
m_blendModeRGB = mode;
m_blendModeAlpha = mode;
}
void ReferenceContext::blendEquationSeparate(uint32_t modeRGB, uint32_t modeAlpha)
{
RC_IF_ERROR(!isValidBlendEquation(modeRGB) || !isValidBlendEquation(modeAlpha), GL_INVALID_ENUM, RC_RET_VOID);
m_blendModeRGB = modeRGB;
m_blendModeAlpha = modeAlpha;
}
void ReferenceContext::blendFunc(uint32_t src, uint32_t dst)
{
RC_IF_ERROR(!isValidBlendFactor(src) || !isValidBlendFactor(dst), GL_INVALID_ENUM, RC_RET_VOID);
m_blendFactorSrcRGB = src;
m_blendFactorSrcAlpha = src;
m_blendFactorDstRGB = dst;
m_blendFactorDstAlpha = dst;
}
void ReferenceContext::blendFuncSeparate(uint32_t srcRGB, uint32_t dstRGB, uint32_t srcAlpha, uint32_t dstAlpha)
{
RC_IF_ERROR(!isValidBlendFactor(srcRGB) || !isValidBlendFactor(dstRGB) || !isValidBlendFactor(srcAlpha) ||
!isValidBlendFactor(dstAlpha),
GL_INVALID_ENUM, RC_RET_VOID);
m_blendFactorSrcRGB = srcRGB;
m_blendFactorSrcAlpha = srcAlpha;
m_blendFactorDstRGB = dstRGB;
m_blendFactorDstAlpha = dstAlpha;
}
void ReferenceContext::blendColor(float red, float green, float blue, float alpha)
{
m_blendColor = Vec4(de::clamp(red, 0.0f, 1.0f), de::clamp(green, 0.0f, 1.0f), de::clamp(blue, 0.0f, 1.0f),
de::clamp(alpha, 0.0f, 1.0f));
}
void ReferenceContext::colorMask(bool r, bool g, bool b, bool a)
{
m_colorMask = tcu::BVec4(!!r, !!g, !!b, !!a);
}
void ReferenceContext::depthMask(bool mask)
{
m_depthMask = !!mask;
}
void ReferenceContext::stencilMask(uint32_t mask)
{
stencilMaskSeparate(GL_FRONT_AND_BACK, mask);
}
void ReferenceContext::stencilMaskSeparate(uint32_t face, uint32_t mask)
{
const bool setFront = face == GL_FRONT || face == GL_FRONT_AND_BACK;
const bool setBack = face == GL_BACK || face == GL_FRONT_AND_BACK;
RC_IF_ERROR(!setFront && !setBack, GL_INVALID_ENUM, RC_RET_VOID);
if (setFront)
m_stencil[rr::FACETYPE_FRONT].writeMask = mask;
if (setBack)
m_stencil[rr::FACETYPE_BACK].writeMask = mask;
}
static int getNumStencilBits(const tcu::TextureFormat &format)
{
switch (format.order)
{
case tcu::TextureFormat::S:
switch (format.type)
{
case tcu::TextureFormat::UNSIGNED_INT8:
return 8;
case tcu::TextureFormat::UNSIGNED_INT16:
return 16;
case tcu::TextureFormat::UNSIGNED_INT32:
return 32;
default:
DE_ASSERT(false);
return 0;
}
case tcu::TextureFormat::DS:
switch (format.type)
{
case tcu::TextureFormat::UNSIGNED_INT_24_8:
return 8;
case tcu::TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
return 8;
default:
DE_ASSERT(false);
return 0;
}
default:
DE_ASSERT(false);
return 0;
}
}
static inline uint32_t maskStencil(int numBits, uint32_t s)
{
return s & deBitMask32(0, numBits);
}
static inline void writeMaskedStencil(const rr::MultisamplePixelBufferAccess &access, int s, int x, int y,
uint32_t stencil, uint32_t writeMask)
{
DE_ASSERT(access.raw().getFormat().order == tcu::TextureFormat::S);
const uint32_t oldVal = access.raw().getPixelUint(s, x, y).x();
const uint32_t newVal = (oldVal & ~writeMask) | (stencil & writeMask);
access.raw().setPixel(tcu::UVec4(newVal, 0u, 0u, 0u), s, x, y);
}
static inline void writeDepthOnly(const rr::MultisamplePixelBufferAccess &access, int s, int x, int y, float depth)
{
access.raw().setPixDepth(depth, s, x, y);
}
static rr::MultisamplePixelBufferAccess getDepthMultisampleAccess(
const rr::MultisamplePixelBufferAccess &combinedDSaccess)
{
return rr::MultisamplePixelBufferAccess::fromMultisampleAccess(
tcu::getEffectiveDepthStencilAccess(combinedDSaccess.raw(), tcu::Sampler::MODE_DEPTH));
}
static rr::MultisamplePixelBufferAccess getStencilMultisampleAccess(
const rr::MultisamplePixelBufferAccess &combinedDSaccess)
{
return rr::MultisamplePixelBufferAccess::fromMultisampleAccess(
tcu::getEffectiveDepthStencilAccess(combinedDSaccess.raw(), tcu::Sampler::MODE_STENCIL));
}
uint32_t ReferenceContext::blitResolveMultisampleFramebuffer(uint32_t mask, const IVec4 &srcRect, const IVec4 &dstRect,
bool flipX, bool flipY)
{
if (mask & GL_COLOR_BUFFER_BIT)
{
rr::MultisampleConstPixelBufferAccess src =
rr::getSubregion(getReadColorbuffer(), srcRect.x(), srcRect.y(), srcRect.z(), srcRect.w());
tcu::PixelBufferAccess dst = tcu::getSubregion(getDrawColorbuffer().toSinglesampleAccess(), dstRect.x(),
dstRect.y(), dstRect.z(), dstRect.w());
tcu::TextureChannelClass dstClass = tcu::getTextureChannelClass(dst.getFormat().type);
bool dstIsFloat = dstClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT ||
dstClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ||
dstClass == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
bool srcIsSRGB = tcu::isSRGB(src.raw().getFormat());
bool dstIsSRGB = tcu::isSRGB(dst.getFormat());
const bool convertSRGB = m_sRGBUpdateEnabled && glu::isContextTypeES(getType());
if (!convertSRGB)
{
tcu::ConstPixelBufferAccess srcRaw = src.raw();
tcu::TextureFormat srcFmt = toNonSRGBFormat(srcRaw.getFormat());
srcRaw = tcu::ConstPixelBufferAccess(srcFmt, srcRaw.getWidth(), srcRaw.getHeight(), srcRaw.getDepth(),
srcRaw.getRowPitch(), srcRaw.getSlicePitch(), srcRaw.getDataPtr());
src = rr::MultisampleConstPixelBufferAccess::fromMultisampleAccess(srcRaw);
dst = tcu::PixelBufferAccess(toNonSRGBFormat(dst.getFormat()), dst.getWidth(), dst.getHeight(),
dst.getDepth(), dst.getRowPitch(), dst.getSlicePitch(), dst.getDataPtr());
}
for (int x = 0; x < dstRect.z(); ++x)
for (int y = 0; y < dstRect.w(); ++y)
{
int srcX = (flipX) ? (srcRect.z() - x - 1) : (x);
int srcY = (flipY) ? (srcRect.z() - y - 1) : (y);
if (dstIsFloat || srcIsSRGB)
{
Vec4 p = src.raw().getPixel(0, srcX, srcY);
dst.setPixel((dstIsSRGB && convertSRGB) ? tcu::linearToSRGB(p) : p, x, y);
}
else
dst.setPixel(src.raw().getPixelInt(0, srcX, srcY), x, y);
}
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
rr::MultisampleConstPixelBufferAccess src =
rr::getSubregion(getReadDepthbuffer(), srcRect.x(), srcRect.y(), srcRect.z(), srcRect.w());
rr::MultisamplePixelBufferAccess dst =
rr::getSubregion(getDrawDepthbuffer(), dstRect.x(), dstRect.y(), dstRect.z(), dstRect.w());
for (int x = 0; x < dstRect.z(); ++x)
for (int y = 0; y < dstRect.w(); ++y)
{
int srcX = (flipX) ? (srcRect.z() - x - 1) : (x);
int srcY = (flipY) ? (srcRect.z() - y - 1) : (y);
writeDepthOnly(dst, 0, x, y, src.raw().getPixel(0, srcX, srcY).x());
}
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
rr::MultisampleConstPixelBufferAccess src = getStencilMultisampleAccess(
rr::getSubregion(getReadStencilbuffer(), srcRect.x(), srcRect.y(), srcRect.z(), srcRect.w()));
rr::MultisamplePixelBufferAccess dst = getStencilMultisampleAccess(
rr::getSubregion(getDrawStencilbuffer(), dstRect.x(), dstRect.y(), dstRect.z(), dstRect.w()));
for (int x = 0; x < dstRect.z(); ++x)
for (int y = 0; y < dstRect.w(); ++y)
{
int srcX = (flipX) ? (srcRect.z() - x - 1) : (x);
int srcY = (flipY) ? (srcRect.z() - y - 1) : (y);
uint32_t srcStencil = src.raw().getPixelUint(0, srcX, srcY).x();
writeMaskedStencil(dst, 0, x, y, srcStencil, m_stencil[rr::FACETYPE_FRONT].writeMask);
}
}
return GL_NO_ERROR;
}
void ReferenceContext::blitFramebuffer(int srcX0, int srcY0, int srcX1, int srcY1, int dstX0, int dstY0, int dstX1,
int dstY1, uint32_t mask, uint32_t filter)
{
// p0 in inclusive, p1 exclusive.
// Negative width/height means swap.
bool swapSrcX = srcX1 < srcX0;
bool swapSrcY = srcY1 < srcY0;
bool swapDstX = dstX1 < dstX0;
bool swapDstY = dstY1 < dstY0;
int srcW = de::abs(srcX1 - srcX0);
int srcH = de::abs(srcY1 - srcY0);
int dstW = de::abs(dstX1 - dstX0);
int dstH = de::abs(dstY1 - dstY0);
bool scale = srcW != dstW || srcH != dstH;
int srcOriginX = swapSrcX ? srcX1 : srcX0;
int srcOriginY = swapSrcY ? srcY1 : srcY0;
int dstOriginX = swapDstX ? dstX1 : dstX0;
int dstOriginY = swapDstY ? dstY1 : dstY0;
IVec4 srcRect = IVec4(srcOriginX, srcOriginY, srcW, srcH);
IVec4 dstRect = IVec4(dstOriginX, dstOriginY, dstW, dstH);
RC_IF_ERROR(filter != GL_NEAREST && filter != GL_LINEAR, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR((mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) != 0 && filter != GL_NEAREST,
GL_INVALID_OPERATION, RC_RET_VOID);
// Validate that both targets are complete.
RC_IF_ERROR(checkFramebufferStatus(GL_DRAW_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE ||
checkFramebufferStatus(GL_READ_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE,
GL_INVALID_OPERATION, RC_RET_VOID);
// Check samples count is valid
RC_IF_ERROR(getDrawColorbuffer().getNumSamples() != 1, GL_INVALID_OPERATION, RC_RET_VOID);
// Check size restrictions of multisampled case
if (getReadColorbuffer().getNumSamples() != 1)
{
// Src and Dst rect dimensions must be the same
RC_IF_ERROR(srcW != dstW || srcH != dstH, GL_INVALID_OPERATION, RC_RET_VOID);
// Framebuffer formats must match
if (mask & GL_COLOR_BUFFER_BIT)
RC_IF_ERROR(getReadColorbuffer().raw().getFormat() != getDrawColorbuffer().raw().getFormat(),
GL_INVALID_OPERATION, RC_RET_VOID);
if (mask & GL_DEPTH_BUFFER_BIT)
RC_IF_ERROR(getReadDepthbuffer().raw().getFormat() != getDrawDepthbuffer().raw().getFormat(),
GL_INVALID_OPERATION, RC_RET_VOID);
if (mask & GL_STENCIL_BUFFER_BIT)
RC_IF_ERROR(getReadStencilbuffer().raw().getFormat() != getDrawStencilbuffer().raw().getFormat(),
GL_INVALID_OPERATION, RC_RET_VOID);
}
// Compute actual source rect.
srcRect = (mask & GL_COLOR_BUFFER_BIT) ? intersect(srcRect, getBufferRect(getReadColorbuffer())) : srcRect;
srcRect = (mask & GL_DEPTH_BUFFER_BIT) ? intersect(srcRect, getBufferRect(getReadDepthbuffer())) : srcRect;
srcRect = (mask & GL_STENCIL_BUFFER_BIT) ? intersect(srcRect, getBufferRect(getReadStencilbuffer())) : srcRect;
// Compute destination rect.
dstRect = (mask & GL_COLOR_BUFFER_BIT) ? intersect(dstRect, getBufferRect(getDrawColorbuffer())) : dstRect;
dstRect = (mask & GL_DEPTH_BUFFER_BIT) ? intersect(dstRect, getBufferRect(getDrawDepthbuffer())) : dstRect;
dstRect = (mask & GL_STENCIL_BUFFER_BIT) ? intersect(dstRect, getBufferRect(getDrawStencilbuffer())) : dstRect;
dstRect = m_scissorEnabled ? intersect(dstRect, m_scissorBox) : dstRect;
if (isEmpty(srcRect) || isEmpty(dstRect))
return; // Don't attempt copy.
// Multisampled read buffer is a special case
if (getReadColorbuffer().getNumSamples() != 1)
{
uint32_t error =
blitResolveMultisampleFramebuffer(mask, srcRect, dstRect, swapSrcX ^ swapDstX, swapSrcY ^ swapDstY);
if (error != GL_NO_ERROR)
setError(error);
return;
}
// \note Multisample pixel buffers can now be accessed like non-multisampled because multisample read buffer case is already handled. => sample count must be 1
// Coordinate transformation:
// Dst offset space -> dst rectangle space -> src rectangle space -> src offset space.
tcu::Mat3 transform = tcu::translationMatrix(Vec2((float)(srcX0 - srcRect.x()), (float)(srcY0 - srcRect.y()))) *
tcu::Mat3(Vec3((float)(srcX1 - srcX0) / (float)(dstX1 - dstX0),
(float)(srcY1 - srcY0) / (float)(dstY1 - dstY0), 1.0f)) *
tcu::translationMatrix(Vec2((float)(dstRect.x() - dstX0), (float)(dstRect.y() - dstY0)));
if (mask & GL_COLOR_BUFFER_BIT)
{
tcu::ConstPixelBufferAccess src = tcu::getSubregion(getReadColorbuffer().toSinglesampleAccess(), srcRect.x(),
srcRect.y(), srcRect.z(), srcRect.w());
tcu::PixelBufferAccess dst = tcu::getSubregion(getDrawColorbuffer().toSinglesampleAccess(), dstRect.x(),
dstRect.y(), dstRect.z(), dstRect.w());
tcu::TextureChannelClass dstClass = tcu::getTextureChannelClass(dst.getFormat().type);
bool dstIsFloat = dstClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT ||
dstClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ||
dstClass == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
tcu::Sampler::FilterMode sFilter =
(scale && filter == GL_LINEAR) ? tcu::Sampler::LINEAR : tcu::Sampler::NEAREST;
tcu::Sampler sampler(tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE,
sFilter, sFilter, 0.0f /* lod threshold */, false /* non-normalized coords */);
bool srcIsSRGB = tcu::isSRGB(src.getFormat());
bool dstIsSRGB = tcu::isSRGB(dst.getFormat());
const bool convertSRGB = m_sRGBUpdateEnabled && glu::isContextTypeES(getType());
if (!convertSRGB)
{
src = tcu::ConstPixelBufferAccess(toNonSRGBFormat(src.getFormat()), src.getWidth(), src.getHeight(),
src.getDepth(), src.getRowPitch(), src.getSlicePitch(), src.getDataPtr());
dst = tcu::PixelBufferAccess(toNonSRGBFormat(dst.getFormat()), dst.getWidth(), dst.getHeight(),
dst.getDepth(), dst.getRowPitch(), dst.getSlicePitch(), dst.getDataPtr());
}
// \note We don't check for unsupported conversions, unlike spec requires.
for (int yo = 0; yo < dstRect.w(); yo++)
{
for (int xo = 0; xo < dstRect.z(); xo++)
{
float dX = (float)xo + 0.5f;
float dY = (float)yo + 0.5f;
// \note Only affine part is used.
float sX = transform(0, 0) * dX + transform(0, 1) * dY + transform(0, 2);
float sY = transform(1, 0) * dX + transform(1, 1) * dY + transform(1, 2);
// do not copy pixels outside the modified source region (modified by buffer intersection)
if (sX < 0.0f || sX >= (float)srcRect.z() || sY < 0.0f || sY >= (float)srcRect.w())
continue;
if (dstIsFloat || srcIsSRGB || filter == tcu::Sampler::LINEAR)
{
Vec4 p = src.sample2D(sampler, sampler.minFilter, sX, sY, 0);
dst.setPixel((dstIsSRGB && convertSRGB) ? tcu::linearToSRGB(p) : p, xo, yo);
}
else
dst.setPixel(src.getPixelInt(deFloorFloatToInt32(sX), deFloorFloatToInt32(sY)), xo, yo);
}
}
}
if ((mask & GL_DEPTH_BUFFER_BIT) && m_depthMask)
{
rr::MultisampleConstPixelBufferAccess src = getDepthMultisampleAccess(
rr::getSubregion(getReadDepthbuffer(), srcRect.x(), srcRect.y(), srcRect.z(), srcRect.w()));
rr::MultisamplePixelBufferAccess dst = getDepthMultisampleAccess(
rr::getSubregion(getDrawDepthbuffer(), dstRect.x(), dstRect.y(), dstRect.z(), dstRect.w()));
for (int yo = 0; yo < dstRect.w(); yo++)
{
for (int xo = 0; xo < dstRect.z(); xo++)
{
const int sampleNdx = 0; // multisample read buffer case is already handled
float dX = (float)xo + 0.5f;
float dY = (float)yo + 0.5f;
float sX = transform(0, 0) * dX + transform(0, 1) * dY + transform(0, 2);
float sY = transform(1, 0) * dX + transform(1, 1) * dY + transform(1, 2);
writeDepthOnly(dst, sampleNdx, xo, yo,
src.raw().getPixDepth(sampleNdx, deFloorFloatToInt32(sX), deFloorFloatToInt32(sY)));
}
}
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
rr::MultisampleConstPixelBufferAccess src = getStencilMultisampleAccess(
rr::getSubregion(getReadStencilbuffer(), srcRect.x(), srcRect.y(), srcRect.z(), srcRect.w()));
rr::MultisamplePixelBufferAccess dst = getStencilMultisampleAccess(
rr::getSubregion(getDrawStencilbuffer(), dstRect.x(), dstRect.y(), dstRect.z(), dstRect.w()));
for (int yo = 0; yo < dstRect.w(); yo++)
{
for (int xo = 0; xo < dstRect.z(); xo++)
{
const int sampleNdx = 0; // multisample read buffer case is already handled
float dX = (float)xo + 0.5f;
float dY = (float)yo + 0.5f;
float sX = transform(0, 0) * dX + transform(0, 1) * dY + transform(0, 2);
float sY = transform(1, 0) * dX + transform(1, 1) * dY + transform(1, 2);
uint32_t srcStencil =
src.raw().getPixelUint(sampleNdx, deFloorFloatToInt32(sX), deFloorFloatToInt32(sY)).x();
writeMaskedStencil(dst, sampleNdx, xo, yo, srcStencil, m_stencil[rr::FACETYPE_FRONT].writeMask);
}
}
}
}
void ReferenceContext::invalidateSubFramebuffer(uint32_t target, int numAttachments, const uint32_t *attachments, int x,
int y, int width, int height)
{
RC_IF_ERROR(target != GL_FRAMEBUFFER, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR((numAttachments < 0) || (numAttachments > 1 && attachments == DE_NULL), GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(width < 0 || height < 0, GL_INVALID_VALUE, RC_RET_VOID);
// \todo [2012-07-17 pyry] Support multiple color attachments.
const Vec4 colorClearValue(0.0f);
const float depthClearValue = 1.0f;
const int stencilClearValue = 0;
bool isFboBound = m_drawFramebufferBinding != DE_NULL;
bool discardBuffers[3] = {false, false, false}; // Color, depth, stencil
for (int attNdx = 0; attNdx < numAttachments; attNdx++)
{
bool isColor = attachments[attNdx] == (isFboBound ? GL_COLOR_ATTACHMENT0 : GL_COLOR);
bool isDepth = attachments[attNdx] == (isFboBound ? GL_DEPTH_ATTACHMENT : GL_DEPTH);
bool isStencil = attachments[attNdx] == (isFboBound ? GL_STENCIL_ATTACHMENT : GL_STENCIL);
bool isDepthStencil = isFboBound && attachments[attNdx] == GL_DEPTH_STENCIL_ATTACHMENT;
RC_IF_ERROR(!isColor && !isDepth && !isStencil && !isDepthStencil, GL_INVALID_VALUE, RC_RET_VOID);
if (isColor)
discardBuffers[0] = true;
if (isDepth || isDepthStencil)
discardBuffers[1] = true;
if (isStencil || isDepthStencil)
discardBuffers[2] = true;
}
for (int ndx = 0; ndx < 3; ndx++)
{
if (!discardBuffers[ndx])
continue;
bool isColor = ndx == 0;
bool isDepth = ndx == 1;
bool isStencil = ndx == 2;
rr::MultisamplePixelBufferAccess buf = isColor ? getDrawColorbuffer() :
isDepth ? getDepthMultisampleAccess(getDrawDepthbuffer()) :
getStencilMultisampleAccess(getDrawStencilbuffer());
if (isEmpty(buf))
continue;
tcu::IVec4 area =
intersect(tcu::IVec4(0, 0, buf.raw().getHeight(), buf.raw().getDepth()), tcu::IVec4(x, y, width, height));
rr::MultisamplePixelBufferAccess access = rr::getSubregion(buf, area.x(), area.y(), area.z(), area.w());
if (isColor)
rr::clear(access, colorClearValue);
else if (isDepth)
rr::clear(access, tcu::Vec4(depthClearValue));
else if (isStencil)
rr::clear(access, tcu::IVec4(stencilClearValue));
}
}
void ReferenceContext::invalidateFramebuffer(uint32_t target, int numAttachments, const uint32_t *attachments)
{
// \todo [2012-07-17 pyry] Support multiple color attachments.
rr::MultisampleConstPixelBufferAccess colorBuf0 = getDrawColorbuffer();
rr::MultisampleConstPixelBufferAccess depthBuf = getDrawDepthbuffer();
rr::MultisampleConstPixelBufferAccess stencilBuf = getDrawStencilbuffer();
int width = 0;
int height = 0;
width = de::max(width, colorBuf0.raw().getHeight());
width = de::max(width, depthBuf.raw().getHeight());
width = de::max(width, stencilBuf.raw().getHeight());
height = de::max(height, colorBuf0.raw().getDepth());
height = de::max(height, depthBuf.raw().getDepth());
height = de::max(height, stencilBuf.raw().getDepth());
invalidateSubFramebuffer(target, numAttachments, attachments, 0, 0, width, height);
}
void ReferenceContext::clear(uint32_t buffers)
{
RC_IF_ERROR((buffers & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) != 0, GL_INVALID_VALUE,
RC_RET_VOID);
rr::MultisamplePixelBufferAccess colorBuf0 = getDrawColorbuffer();
rr::MultisamplePixelBufferAccess depthBuf = getDrawDepthbuffer();
rr::MultisamplePixelBufferAccess stencilBuf = getDrawStencilbuffer();
IVec4 baseArea = m_scissorEnabled ? m_scissorBox : IVec4(0, 0, 0x7fffffff, 0x7fffffff);
IVec4 colorArea = intersect(baseArea, getBufferRect(colorBuf0));
IVec4 depthArea = intersect(baseArea, getBufferRect(depthBuf));
IVec4 stencilArea = intersect(baseArea, getBufferRect(stencilBuf));
bool hasColor0 = !isEmpty(colorArea);
bool hasDepth = !isEmpty(depthArea);
bool hasStencil = !isEmpty(stencilArea);
if (hasColor0 && (buffers & GL_COLOR_BUFFER_BIT) != 0)
{
rr::MultisamplePixelBufferAccess access =
rr::getSubregion(colorBuf0, colorArea.x(), colorArea.y(), colorArea.z(), colorArea.w());
bool isSRGB = tcu::isSRGB(colorBuf0.raw().getFormat());
Vec4 c = (isSRGB && m_sRGBUpdateEnabled) ? tcu::linearToSRGB(m_clearColor) : m_clearColor;
bool maskUsed = !m_colorMask[0] || !m_colorMask[1] || !m_colorMask[2] || !m_colorMask[3];
bool maskZero = !m_colorMask[0] && !m_colorMask[1] && !m_colorMask[2] && !m_colorMask[3];
if (!maskUsed)
rr::clear(access, c);
else if (!maskZero)
{
for (int y = 0; y < access.raw().getDepth(); y++)
for (int x = 0; x < access.raw().getHeight(); x++)
for (int s = 0; s < access.getNumSamples(); s++)
access.raw().setPixel(tcu::select(c, access.raw().getPixel(s, x, y), m_colorMask), s, x, y);
}
// else all channels masked out
}
if (hasDepth && (buffers & GL_DEPTH_BUFFER_BIT) != 0 && m_depthMask)
{
rr::MultisamplePixelBufferAccess access = getDepthMultisampleAccess(
rr::getSubregion(depthBuf, depthArea.x(), depthArea.y(), depthArea.z(), depthArea.w()));
rr::clearDepth(access, m_clearDepth);
}
if (hasStencil && (buffers & GL_STENCIL_BUFFER_BIT) != 0)
{
rr::MultisamplePixelBufferAccess access = getStencilMultisampleAccess(
rr::getSubregion(stencilBuf, stencilArea.x(), stencilArea.y(), stencilArea.z(), stencilArea.w()));
int stencilBits = getNumStencilBits(stencilBuf.raw().getFormat());
int stencil = maskStencil(stencilBits, m_clearStencil);
if ((m_stencil[rr::FACETYPE_FRONT].writeMask & ((1u << stencilBits) - 1u)) != ((1u << stencilBits) - 1u))
{
// Slow path where depth or stencil is masked out in write.
for (int y = 0; y < access.raw().getDepth(); y++)
for (int x = 0; x < access.raw().getHeight(); x++)
for (int s = 0; s < access.getNumSamples(); s++)
writeMaskedStencil(access, s, x, y, stencil, m_stencil[rr::FACETYPE_FRONT].writeMask);
}
else
rr::clearStencil(access, stencil);
}
}
void ReferenceContext::clearBufferiv(uint32_t buffer, int drawbuffer, const int *value)
{
RC_IF_ERROR(buffer != GL_COLOR && buffer != GL_STENCIL, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(drawbuffer != 0, GL_INVALID_VALUE, RC_RET_VOID); // \todo [2012-04-06 pyry] MRT support.
IVec4 baseArea = m_scissorEnabled ? m_scissorBox : IVec4(0, 0, 0x7fffffff, 0x7fffffff);
if (buffer == GL_COLOR)
{
rr::MultisamplePixelBufferAccess colorBuf = getDrawColorbuffer();
bool maskUsed = !m_colorMask[0] || !m_colorMask[1] || !m_colorMask[2] || !m_colorMask[3];
bool maskZero = !m_colorMask[0] && !m_colorMask[1] && !m_colorMask[2] && !m_colorMask[3];
IVec4 area = intersect(baseArea, getBufferRect(colorBuf));
if (!isEmpty(area) && !maskZero)
{
rr::MultisamplePixelBufferAccess access =
rr::getSubregion(colorBuf, area.x(), area.y(), area.z(), area.w());
IVec4 color(value[0], value[1], value[2], value[3]);
if (!maskUsed)
rr::clear(access, color);
else
{
for (int y = 0; y < access.raw().getDepth(); y++)
for (int x = 0; x < access.raw().getHeight(); x++)
for (int s = 0; s < access.getNumSamples(); s++)
access.raw().setPixel(tcu::select(color, access.raw().getPixelInt(s, x, y), m_colorMask), s,
x, y);
}
}
}
else
{
TCU_CHECK_INTERNAL(buffer == GL_STENCIL);
rr::MultisamplePixelBufferAccess stencilBuf = getDrawStencilbuffer();
IVec4 area = intersect(baseArea, getBufferRect(stencilBuf));
if (!isEmpty(area) && m_stencil[rr::FACETYPE_FRONT].writeMask != 0)
{
rr::MultisamplePixelBufferAccess access =
getStencilMultisampleAccess(rr::getSubregion(stencilBuf, area.x(), area.y(), area.z(), area.w()));
int stencil = value[0];
for (int y = 0; y < access.raw().getDepth(); y++)
for (int x = 0; x < access.raw().getHeight(); x++)
for (int s = 0; s < access.getNumSamples(); s++)
writeMaskedStencil(access, s, x, y, stencil, m_stencil[rr::FACETYPE_FRONT].writeMask);
}
}
}
void ReferenceContext::clearBufferfv(uint32_t buffer, int drawbuffer, const float *value)
{
RC_IF_ERROR(buffer != GL_COLOR && buffer != GL_DEPTH, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(drawbuffer != 0, GL_INVALID_VALUE, RC_RET_VOID); // \todo [2012-04-06 pyry] MRT support.
IVec4 baseArea = m_scissorEnabled ? m_scissorBox : IVec4(0, 0, 0x7fffffff, 0x7fffffff);
if (buffer == GL_COLOR)
{
rr::MultisamplePixelBufferAccess colorBuf = getDrawColorbuffer();
bool maskUsed = !m_colorMask[0] || !m_colorMask[1] || !m_colorMask[2] || !m_colorMask[3];
bool maskZero = !m_colorMask[0] && !m_colorMask[1] && !m_colorMask[2] && !m_colorMask[3];
IVec4 area = intersect(baseArea, getBufferRect(colorBuf));
if (!isEmpty(area) && !maskZero)
{
rr::MultisamplePixelBufferAccess access =
rr::getSubregion(colorBuf, area.x(), area.y(), area.z(), area.w());
Vec4 color(value[0], value[1], value[2], value[3]);
if (m_sRGBUpdateEnabled && tcu::isSRGB(access.raw().getFormat()))
color = tcu::linearToSRGB(color);
if (!maskUsed)
rr::clear(access, color);
else
{
for (int y = 0; y < access.raw().getDepth(); y++)
for (int x = 0; x < access.raw().getHeight(); x++)
for (int s = 0; s < access.getNumSamples(); s++)
access.raw().setPixel(tcu::select(color, access.raw().getPixel(s, x, y), m_colorMask), s, x,
y);
}
}
}
else
{
TCU_CHECK_INTERNAL(buffer == GL_DEPTH);
rr::MultisamplePixelBufferAccess depthBuf = getDrawDepthbuffer();
IVec4 area = intersect(baseArea, getBufferRect(depthBuf));
if (!isEmpty(area) && m_depthMask)
{
rr::MultisamplePixelBufferAccess access =
rr::getSubregion(depthBuf, area.x(), area.y(), area.z(), area.w());
float depth = value[0];
rr::clearDepth(access, depth);
}
}
}
void ReferenceContext::clearBufferuiv(uint32_t buffer, int drawbuffer, const uint32_t *value)
{
RC_IF_ERROR(buffer != GL_COLOR, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(drawbuffer != 0, GL_INVALID_VALUE, RC_RET_VOID); // \todo [2012-04-06 pyry] MRT support.
IVec4 baseArea = m_scissorEnabled ? m_scissorBox : IVec4(0, 0, 0x7fffffff, 0x7fffffff);
TCU_CHECK_INTERNAL(buffer == GL_COLOR);
{
rr::MultisamplePixelBufferAccess colorBuf = getDrawColorbuffer();
bool maskUsed = !m_colorMask[0] || !m_colorMask[1] || !m_colorMask[2] || !m_colorMask[3];
bool maskZero = !m_colorMask[0] && !m_colorMask[1] && !m_colorMask[2] && !m_colorMask[3];
IVec4 area = intersect(baseArea, getBufferRect(colorBuf));
if (!isEmpty(area) && !maskZero)
{
rr::MultisamplePixelBufferAccess access =
rr::getSubregion(colorBuf, area.x(), area.y(), area.z(), area.w());
tcu::UVec4 color(value[0], value[1], value[2], value[3]);
if (!maskUsed)
rr::clear(access, color.asInt());
else
{
for (int y = 0; y < access.raw().getDepth(); y++)
for (int x = 0; x < access.raw().getHeight(); x++)
for (int s = 0; s < access.getNumSamples(); s++)
access.raw().setPixel(tcu::select(color, access.raw().getPixelUint(s, x, y), m_colorMask),
s, x, y);
}
}
}
}
void ReferenceContext::clearBufferfi(uint32_t buffer, int drawbuffer, float depth, int stencil)
{
RC_IF_ERROR(buffer != GL_DEPTH_STENCIL, GL_INVALID_ENUM, RC_RET_VOID);
clearBufferfv(GL_DEPTH, drawbuffer, &depth);
clearBufferiv(GL_STENCIL, drawbuffer, &stencil);
}
void ReferenceContext::bindVertexArray(uint32_t array)
{
rc::VertexArray *vertexArrayObject = DE_NULL;
if (array != 0)
{
vertexArrayObject = m_vertexArrays.find(array);
if (!vertexArrayObject)
{
vertexArrayObject = new rc::VertexArray(array, m_limits.maxVertexAttribs);
m_vertexArrays.insert(vertexArrayObject);
}
}
// Create new references
if (vertexArrayObject)
m_vertexArrays.acquireReference(vertexArrayObject);
// Remove old references
if (m_vertexArrayBinding)
m_vertexArrays.releaseReference(m_vertexArrayBinding);
m_vertexArrayBinding = vertexArrayObject;
}
void ReferenceContext::genVertexArrays(int numArrays, uint32_t *vertexArrays)
{
RC_IF_ERROR(!vertexArrays, GL_INVALID_VALUE, RC_RET_VOID);
for (int ndx = 0; ndx < numArrays; ndx++)
vertexArrays[ndx] = m_vertexArrays.allocateName();
}
void ReferenceContext::deleteVertexArrays(int numArrays, const uint32_t *vertexArrays)
{
for (int i = 0; i < numArrays; i++)
{
uint32_t name = vertexArrays[i];
VertexArray *vertexArray = name ? m_vertexArrays.find(name) : DE_NULL;
if (vertexArray)
deleteVertexArray(vertexArray);
}
}
void ReferenceContext::vertexAttribPointer(uint32_t index, int rawSize, uint32_t type, bool normalized, int stride,
const void *pointer)
{
const bool allowBGRA = !glu::isContextTypeES(getType());
const int effectiveSize = (allowBGRA && rawSize == GL_BGRA) ? (4) : (rawSize);
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(effectiveSize <= 0 || effectiveSize > 4, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(type != GL_BYTE && type != GL_UNSIGNED_BYTE && type != GL_SHORT && type != GL_UNSIGNED_SHORT &&
type != GL_INT && type != GL_UNSIGNED_INT && type != GL_FIXED && type != GL_DOUBLE &&
type != GL_FLOAT && type != GL_HALF_FLOAT && type != GL_INT_2_10_10_10_REV &&
type != GL_UNSIGNED_INT_2_10_10_10_REV,
GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(normalized != GL_TRUE && normalized != GL_FALSE, GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(stride < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR((type == GL_INT_2_10_10_10_REV || type == GL_UNSIGNED_INT_2_10_10_10_REV) && effectiveSize != 4,
GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(m_vertexArrayBinding != DE_NULL && m_arrayBufferBinding == DE_NULL && pointer != DE_NULL,
GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(allowBGRA && rawSize == GL_BGRA && type != GL_INT_2_10_10_10_REV &&
type != GL_UNSIGNED_INT_2_10_10_10_REV && type != GL_UNSIGNED_BYTE,
GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(allowBGRA && rawSize == GL_BGRA && normalized == GL_FALSE, GL_INVALID_OPERATION, RC_RET_VOID);
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
vao.m_arrays[index].size = rawSize;
vao.m_arrays[index].stride = stride;
vao.m_arrays[index].type = type;
vao.m_arrays[index].normalized = normalized == GL_TRUE;
vao.m_arrays[index].integer = false;
vao.m_arrays[index].pointer = pointer;
// acquire new reference
if (m_arrayBufferBinding)
m_buffers.acquireReference(m_arrayBufferBinding);
// release old reference
if (vao.m_arrays[index].bufferBinding)
m_buffers.releaseReference(vao.m_arrays[index].bufferBinding);
vao.m_arrays[index].bufferDeleted = false;
vao.m_arrays[index].bufferBinding = m_arrayBufferBinding;
}
void ReferenceContext::vertexAttribIPointer(uint32_t index, int size, uint32_t type, int stride, const void *pointer)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(size <= 0 || size > 4, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(type != GL_BYTE && type != GL_UNSIGNED_BYTE && type != GL_SHORT && type != GL_UNSIGNED_SHORT &&
type != GL_INT && type != GL_UNSIGNED_INT,
GL_INVALID_ENUM, RC_RET_VOID);
RC_IF_ERROR(stride < 0, GL_INVALID_VALUE, RC_RET_VOID);
RC_IF_ERROR(m_vertexArrayBinding != DE_NULL && m_arrayBufferBinding == DE_NULL && pointer != DE_NULL,
GL_INVALID_OPERATION, RC_RET_VOID);
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
vao.m_arrays[index].size = size;
vao.m_arrays[index].stride = stride;
vao.m_arrays[index].type = type;
vao.m_arrays[index].normalized = false;
vao.m_arrays[index].integer = true;
vao.m_arrays[index].pointer = pointer;
// acquire new reference
if (m_arrayBufferBinding)
m_buffers.acquireReference(m_arrayBufferBinding);
// release old reference
if (vao.m_arrays[index].bufferBinding)
m_buffers.releaseReference(vao.m_arrays[index].bufferBinding);
vao.m_arrays[index].bufferDeleted = false;
vao.m_arrays[index].bufferBinding = m_arrayBufferBinding;
}
void ReferenceContext::enableVertexAttribArray(uint32_t index)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
vao.m_arrays[index].enabled = true;
}
void ReferenceContext::disableVertexAttribArray(uint32_t index)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
vao.m_arrays[index].enabled = false;
}
void ReferenceContext::vertexAttribDivisor(uint32_t index, uint32_t divisor)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
vao.m_arrays[index].divisor = divisor;
}
void ReferenceContext::vertexAttrib1f(uint32_t index, float x)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
m_currentAttribs[index] = rr::GenericVec4(tcu::Vec4(x, 0, 0, 1));
}
void ReferenceContext::vertexAttrib2f(uint32_t index, float x, float y)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
m_currentAttribs[index] = rr::GenericVec4(tcu::Vec4(x, y, 0, 1));
}
void ReferenceContext::vertexAttrib3f(uint32_t index, float x, float y, float z)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
m_currentAttribs[index] = rr::GenericVec4(tcu::Vec4(x, y, z, 1));
}
void ReferenceContext::vertexAttrib4f(uint32_t index, float x, float y, float z, float w)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
m_currentAttribs[index] = rr::GenericVec4(tcu::Vec4(x, y, z, w));
}
void ReferenceContext::vertexAttribI4i(uint32_t index, int32_t x, int32_t y, int32_t z, int32_t w)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
m_currentAttribs[index] = rr::GenericVec4(tcu::IVec4(x, y, z, w));
}
void ReferenceContext::vertexAttribI4ui(uint32_t index, uint32_t x, uint32_t y, uint32_t z, uint32_t w)
{
RC_IF_ERROR(index >= (uint32_t)m_limits.maxVertexAttribs, GL_INVALID_VALUE, RC_RET_VOID);
m_currentAttribs[index] = rr::GenericVec4(tcu::UVec4(x, y, z, w));
}
int32_t ReferenceContext::getAttribLocation(uint32_t program, const char *name)
{
ShaderProgramObjectContainer *shaderProg = m_programs.find(program);
RC_IF_ERROR(shaderProg == DE_NULL, GL_INVALID_OPERATION, -1);
if (name)
{
std::string nameString(name);
for (size_t ndx = 0; ndx < shaderProg->m_program->m_attributeNames.size(); ++ndx)
if (shaderProg->m_program->m_attributeNames[ndx] == nameString)
return (int)ndx;
}
return -1;
}
void ReferenceContext::uniformv(int32_t location, glu::DataType type, int32_t count, const void *v)
{
RC_IF_ERROR(m_currentProgram == DE_NULL, GL_INVALID_OPERATION, RC_RET_VOID);
std::vector<sglr::UniformSlot> &uniforms = m_currentProgram->m_program->m_uniforms;
if (location == -1)
return;
RC_IF_ERROR(location < 0 || (size_t)location >= uniforms.size(), GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(uniforms[location].type != type, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(count != 1, GL_INVALID_OPERATION, RC_RET_VOID); // \todo [2013-12-13 pyry] Array uniforms.
{
const int scalarSize = glu::getDataTypeScalarSize(type);
DE_ASSERT(scalarSize * sizeof(uint32_t) <= sizeof(uniforms[location].value));
deMemcpy(&uniforms[location].value, v, scalarSize * (int)sizeof(uint32_t));
}
}
void ReferenceContext::uniform1iv(int32_t location, int32_t count, const int32_t *v)
{
RC_IF_ERROR(m_currentProgram == DE_NULL, GL_INVALID_OPERATION, RC_RET_VOID);
std::vector<sglr::UniformSlot> &uniforms = m_currentProgram->m_program->m_uniforms;
if (location == -1)
return;
RC_IF_ERROR(location < 0 || (size_t)location >= uniforms.size(), GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(count != 1, GL_INVALID_OPERATION, RC_RET_VOID); // \todo [2013-12-13 pyry] Array uniforms.
switch (uniforms[location].type)
{
case glu::TYPE_INT:
uniforms[location].value.i = *v;
return;
// \note texture unit is stored to value
case glu::TYPE_SAMPLER_2D:
case glu::TYPE_UINT_SAMPLER_2D:
case glu::TYPE_INT_SAMPLER_2D:
case glu::TYPE_SAMPLER_CUBE:
case glu::TYPE_UINT_SAMPLER_CUBE:
case glu::TYPE_INT_SAMPLER_CUBE:
case glu::TYPE_SAMPLER_2D_ARRAY:
case glu::TYPE_UINT_SAMPLER_2D_ARRAY:
case glu::TYPE_INT_SAMPLER_2D_ARRAY:
case glu::TYPE_SAMPLER_3D:
case glu::TYPE_UINT_SAMPLER_3D:
case glu::TYPE_INT_SAMPLER_3D:
case glu::TYPE_SAMPLER_CUBE_ARRAY:
case glu::TYPE_UINT_SAMPLER_CUBE_ARRAY:
case glu::TYPE_INT_SAMPLER_CUBE_ARRAY:
uniforms[location].value.i = *v;
return;
default:
setError(GL_INVALID_OPERATION);
return;
}
}
void ReferenceContext::uniform1f(int32_t location, const float v0)
{
uniform1fv(location, 1, &v0);
}
void ReferenceContext::uniform1i(int32_t location, int32_t v0)
{
uniform1iv(location, 1, &v0);
}
void ReferenceContext::uniform1fv(int32_t location, int32_t count, const float *v)
{
uniformv(location, glu::TYPE_FLOAT, count, v);
}
void ReferenceContext::uniform2fv(int32_t location, int32_t count, const float *v)
{
uniformv(location, glu::TYPE_FLOAT_VEC2, count, v);
}
void ReferenceContext::uniform3fv(int32_t location, int32_t count, const float *v)
{
uniformv(location, glu::TYPE_FLOAT_VEC3, count, v);
}
void ReferenceContext::uniform4fv(int32_t location, int32_t count, const float *v)
{
uniformv(location, glu::TYPE_FLOAT_VEC4, count, v);
}
void ReferenceContext::uniform2iv(int32_t location, int32_t count, const int32_t *v)
{
uniformv(location, glu::TYPE_INT_VEC2, count, v);
}
void ReferenceContext::uniform3iv(int32_t location, int32_t count, const int32_t *v)
{
uniformv(location, glu::TYPE_INT_VEC3, count, v);
}
void ReferenceContext::uniform4iv(int32_t location, int32_t count, const int32_t *v)
{
uniformv(location, glu::TYPE_INT_VEC4, count, v);
}
void ReferenceContext::uniformMatrix3fv(int32_t location, int32_t count, bool transpose, const float *value)
{
RC_IF_ERROR(m_currentProgram == DE_NULL, GL_INVALID_OPERATION, RC_RET_VOID);
std::vector<sglr::UniformSlot> &uniforms = m_currentProgram->m_program->m_uniforms;
if (location == -1)
return;
RC_IF_ERROR(location < 0 || (size_t)location >= uniforms.size(), GL_INVALID_OPERATION, RC_RET_VOID);
if (count == 0)
return;
RC_IF_ERROR(transpose != GL_TRUE && transpose != GL_FALSE, GL_INVALID_ENUM, RC_RET_VOID);
switch (uniforms[location].type)
{
case glu::TYPE_FLOAT_MAT3:
RC_IF_ERROR(count > 1, GL_INVALID_OPERATION, RC_RET_VOID);
if (transpose == GL_FALSE) // input is column major => transpose from column major to internal row major
for (int row = 0; row < 3; ++row)
for (int col = 0; col < 3; ++col)
uniforms[location].value.m3[row * 3 + col] = value[col * 3 + row];
else // input is row major
for (int row = 0; row < 3; ++row)
for (int col = 0; col < 3; ++col)
uniforms[location].value.m3[row * 3 + col] = value[row * 3 + col];
break;
default:
setError(GL_INVALID_OPERATION);
return;
}
}
void ReferenceContext::uniformMatrix4fv(int32_t location, int32_t count, bool transpose, const float *value)
{
RC_IF_ERROR(m_currentProgram == DE_NULL, GL_INVALID_OPERATION, RC_RET_VOID);
std::vector<sglr::UniformSlot> &uniforms = m_currentProgram->m_program->m_uniforms;
if (location == -1)
return;
RC_IF_ERROR(location < 0 || (size_t)location >= uniforms.size(), GL_INVALID_OPERATION, RC_RET_VOID);
if (count == 0)
return;
RC_IF_ERROR(transpose != GL_TRUE && transpose != GL_FALSE, GL_INVALID_ENUM, RC_RET_VOID);
switch (uniforms[location].type)
{
case glu::TYPE_FLOAT_MAT4:
RC_IF_ERROR(count > 1, GL_INVALID_OPERATION, RC_RET_VOID);
if (transpose == GL_FALSE) // input is column major => transpose from column major to internal row major
for (int row = 0; row < 4; ++row)
for (int col = 0; col < 4; ++col)
uniforms[location].value.m4[row * 3 + col] = value[col * 3 + row];
else // input is row major
for (int row = 0; row < 4; ++row)
for (int col = 0; col < 4; ++col)
uniforms[location].value.m4[row * 3 + col] = value[row * 3 + col];
break;
default:
setError(GL_INVALID_OPERATION);
return;
}
}
int32_t ReferenceContext::getUniformLocation(uint32_t program, const char *name)
{
ShaderProgramObjectContainer *shaderProg = m_programs.find(program);
RC_IF_ERROR(shaderProg == DE_NULL, GL_INVALID_OPERATION, -1);
std::vector<sglr::UniformSlot> &uniforms = shaderProg->m_program->m_uniforms;
for (size_t i = 0; i < uniforms.size(); ++i)
if (name && deStringEqual(uniforms[i].name.c_str(), name))
return (int)i;
return -1;
}
void ReferenceContext::lineWidth(float w)
{
RC_IF_ERROR(w < 0.0f, GL_INVALID_VALUE, RC_RET_VOID);
m_lineWidth = w;
}
void ReferenceContext::deleteVertexArray(rc::VertexArray *vertexArray)
{
if (m_vertexArrayBinding == vertexArray)
bindVertexArray(0);
if (vertexArray->m_elementArrayBufferBinding)
m_buffers.releaseReference(vertexArray->m_elementArrayBufferBinding);
for (size_t ndx = 0; ndx < vertexArray->m_arrays.size(); ++ndx)
if (vertexArray->m_arrays[ndx].bufferBinding)
m_buffers.releaseReference(vertexArray->m_arrays[ndx].bufferBinding);
DE_ASSERT(vertexArray->getRefCount() == 1);
m_vertexArrays.releaseReference(vertexArray);
}
void ReferenceContext::deleteProgramObject(rc::ShaderProgramObjectContainer *sp)
{
// Unbinding program will delete it
if (m_currentProgram == sp && sp->m_deleteFlag)
{
useProgram(0);
return;
}
// Unbinding program will NOT delete it
if (m_currentProgram == sp)
useProgram(0);
DE_ASSERT(sp->getRefCount() == 1);
m_programs.releaseReference(sp);
}
void ReferenceContext::drawArrays(uint32_t mode, int first, int count)
{
drawArraysInstanced(mode, first, count, 1);
}
void ReferenceContext::drawArraysInstanced(uint32_t mode, int first, int count, int instanceCount)
{
// Error conditions
{
RC_IF_ERROR(first < 0 || count < 0 || instanceCount < 0, GL_INVALID_VALUE, RC_RET_VOID);
if (!predrawErrorChecks(mode))
return;
}
// All is ok
{
const rr::PrimitiveType primitiveType = sglr::rr_util::mapGLPrimitiveType(mode);
drawWithReference(rr::PrimitiveList(primitiveType, count, first), instanceCount);
}
}
void ReferenceContext::drawElements(uint32_t mode, int count, uint32_t type, const void *indices)
{
drawElementsInstanced(mode, count, type, indices, 1);
}
void ReferenceContext::drawElementsBaseVertex(uint32_t mode, int count, uint32_t type, const void *indices,
int baseVertex)
{
drawElementsInstancedBaseVertex(mode, count, type, indices, 1, baseVertex);
}
void ReferenceContext::drawElementsInstanced(uint32_t mode, int count, uint32_t type, const void *indices,
int instanceCount)
{
drawElementsInstancedBaseVertex(mode, count, type, indices, instanceCount, 0);
}
void ReferenceContext::drawElementsInstancedBaseVertex(uint32_t mode, int count, uint32_t type, const void *indices,
int instanceCount, int baseVertex)
{
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
// Error conditions
{
RC_IF_ERROR(type != GL_UNSIGNED_BYTE && type != GL_UNSIGNED_SHORT && type != GL_UNSIGNED_INT, GL_INVALID_ENUM,
RC_RET_VOID);
RC_IF_ERROR(count < 0 || instanceCount < 0, GL_INVALID_VALUE, RC_RET_VOID);
if (!predrawErrorChecks(mode))
return;
}
// All is ok
{
const rr::PrimitiveType primitiveType = sglr::rr_util::mapGLPrimitiveType(mode);
const void *indicesPtr =
(vao.m_elementArrayBufferBinding) ?
(vao.m_elementArrayBufferBinding->getData() + reinterpret_cast<uintptr_t>(indices)) :
(indices);
drawWithReference(
rr::PrimitiveList(primitiveType, count,
rr::DrawIndices(indicesPtr, sglr::rr_util::mapGLIndexType(type), baseVertex)),
instanceCount);
}
}
void ReferenceContext::drawRangeElements(uint32_t mode, uint32_t start, uint32_t end, int count, uint32_t type,
const void *indices)
{
RC_IF_ERROR(end < start, GL_INVALID_VALUE, RC_RET_VOID);
drawElements(mode, count, type, indices);
}
void ReferenceContext::drawRangeElementsBaseVertex(uint32_t mode, uint32_t start, uint32_t end, int count,
uint32_t type, const void *indices, int baseVertex)
{
RC_IF_ERROR(end < start, GL_INVALID_VALUE, RC_RET_VOID);
drawElementsBaseVertex(mode, count, type, indices, baseVertex);
}
void ReferenceContext::drawArraysIndirect(uint32_t mode, const void *indirect)
{
struct DrawArraysIndirectCommand
{
uint32_t count;
uint32_t primCount;
uint32_t first;
uint32_t reservedMustBeZero;
};
const DrawArraysIndirectCommand *command;
// Check errors
if (!predrawErrorChecks(mode))
return;
// Check pointer validity
RC_IF_ERROR(m_drawIndirectBufferBinding == DE_NULL, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(!deIsAlignedPtr(indirect, 4), GL_INVALID_OPERATION, RC_RET_VOID);
// \note watch for overflows, indirect might be close to 0xFFFFFFFF and indirect+something might overflow
RC_IF_ERROR((size_t) reinterpret_cast<uintptr_t>(indirect) > (size_t)m_drawIndirectBufferBinding->getSize(),
GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR((size_t) reinterpret_cast<uintptr_t>(indirect) + sizeof(DrawArraysIndirectCommand) >
(size_t)m_drawIndirectBufferBinding->getSize(),
GL_INVALID_OPERATION, RC_RET_VOID);
// Check values
command = (const DrawArraysIndirectCommand *)(m_drawIndirectBufferBinding->getData() +
reinterpret_cast<uintptr_t>(indirect));
RC_IF_ERROR(command->reservedMustBeZero != 0, GL_INVALID_OPERATION, RC_RET_VOID);
// draw
drawArraysInstanced(mode, command->first, command->count, command->primCount);
}
void ReferenceContext::drawElementsIndirect(uint32_t mode, uint32_t type, const void *indirect)
{
struct DrawElementsIndirectCommand
{
uint32_t count;
uint32_t primCount;
uint32_t firstIndex;
int32_t baseVertex;
uint32_t reservedMustBeZero;
};
const DrawElementsIndirectCommand *command;
// Check errors
if (!predrawErrorChecks(mode))
return;
RC_IF_ERROR(type != GL_UNSIGNED_BYTE && type != GL_UNSIGNED_SHORT && type != GL_UNSIGNED_INT, GL_INVALID_ENUM,
RC_RET_VOID);
RC_IF_ERROR(!getBufferBinding(GL_ELEMENT_ARRAY_BUFFER), GL_INVALID_OPERATION, RC_RET_VOID);
// Check pointer validity
RC_IF_ERROR(m_drawIndirectBufferBinding == DE_NULL, GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(!deIsAlignedPtr(indirect, 4), GL_INVALID_OPERATION, RC_RET_VOID);
// \note watch for overflows, indirect might be close to 0xFFFFFFFF and indirect+something might overflow
RC_IF_ERROR((size_t) reinterpret_cast<uintptr_t>(indirect) > (size_t)m_drawIndirectBufferBinding->getSize(),
GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR((size_t) reinterpret_cast<uintptr_t>(indirect) + sizeof(DrawElementsIndirectCommand) >
(size_t)m_drawIndirectBufferBinding->getSize(),
GL_INVALID_OPERATION, RC_RET_VOID);
// Check values
command = (const DrawElementsIndirectCommand *)(m_drawIndirectBufferBinding->getData() +
reinterpret_cast<uintptr_t>(indirect));
RC_IF_ERROR(command->reservedMustBeZero != 0, GL_INVALID_OPERATION, RC_RET_VOID);
// Check command error conditions
RC_IF_ERROR((int)command->count < 0 || (int)command->primCount < 0, GL_INVALID_VALUE, RC_RET_VOID);
// Draw
{
const size_t sizeOfType = (type == GL_UNSIGNED_BYTE) ? (1) : ((type == GL_UNSIGNED_SHORT) ? (2) : (4));
const void *indicesPtr = glu::BufferOffsetAsPointer(command->firstIndex * sizeOfType);
drawElementsInstancedBaseVertex(mode, (int)command->count, type, indicesPtr, (int)command->primCount,
command->baseVertex);
}
}
void ReferenceContext::multiDrawArrays(uint32_t mode, const int *first, const int *count, int primCount)
{
DE_UNREF(mode);
DE_UNREF(first);
DE_UNREF(count);
DE_UNREF(primCount);
// not supported in gles, prevent accidental use
DE_ASSERT(false);
}
void ReferenceContext::multiDrawElements(uint32_t mode, const int *count, uint32_t type, const void **indices,
int primCount)
{
DE_UNREF(mode);
DE_UNREF(count);
DE_UNREF(type);
DE_UNREF(indices);
DE_UNREF(primCount);
// not supported in gles, prevent accidental use
DE_ASSERT(false);
}
void ReferenceContext::multiDrawElementsBaseVertex(uint32_t mode, const int *count, uint32_t type, const void **indices,
int primCount, const int *baseVertex)
{
DE_UNREF(mode);
DE_UNREF(count);
DE_UNREF(type);
DE_UNREF(indices);
DE_UNREF(primCount);
DE_UNREF(baseVertex);
// not supported in gles, prevent accidental use
DE_ASSERT(false);
}
bool ReferenceContext::predrawErrorChecks(uint32_t mode)
{
RC_IF_ERROR(mode != GL_POINTS && mode != GL_LINE_STRIP && mode != GL_LINE_LOOP && mode != GL_LINES &&
mode != GL_TRIANGLE_STRIP && mode != GL_TRIANGLE_FAN && mode != GL_TRIANGLES &&
mode != GL_LINES_ADJACENCY && mode != GL_LINE_STRIP_ADJACENCY && mode != GL_TRIANGLES_ADJACENCY &&
mode != GL_TRIANGLE_STRIP_ADJACENCY,
GL_INVALID_ENUM, false);
// \todo [jarkko] Uncomment following code when the buffer mapping support is added
//for (size_t ndx = 0; ndx < vao.m_arrays.size(); ++ndx)
// if (vao.m_arrays[ndx].enabled && vao.m_arrays[ndx].bufferBinding && vao.m_arrays[ndx].bufferBinding->isMapped)
// RC_ERROR_RET(GL_INVALID_OPERATION, RC_RET_VOID);
RC_IF_ERROR(checkFramebufferStatus(GL_DRAW_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE,
GL_INVALID_FRAMEBUFFER_OPERATION, false);
// Geometry shader checks
if (m_currentProgram && m_currentProgram->m_program->m_hasGeometryShader)
{
RC_IF_ERROR(m_currentProgram->m_program->rr::GeometryShader::getInputType() ==
rr::GEOMETRYSHADERINPUTTYPE_POINTS &&
mode != GL_POINTS,
GL_INVALID_OPERATION, false);
RC_IF_ERROR(m_currentProgram->m_program->rr::GeometryShader::getInputType() ==
rr::GEOMETRYSHADERINPUTTYPE_LINES &&
(mode != GL_LINES && mode != GL_LINE_STRIP && mode != GL_LINE_LOOP),
GL_INVALID_OPERATION, false);
RC_IF_ERROR(m_currentProgram->m_program->rr::GeometryShader::getInputType() ==
rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES &&
(mode != GL_TRIANGLES && mode != GL_TRIANGLE_STRIP && mode != GL_TRIANGLE_FAN),
GL_INVALID_OPERATION, false);
RC_IF_ERROR(m_currentProgram->m_program->rr::GeometryShader::getInputType() ==
rr::GEOMETRYSHADERINPUTTYPE_LINES_ADJACENCY &&
(mode != GL_LINES_ADJACENCY && mode != GL_LINE_STRIP_ADJACENCY),
GL_INVALID_OPERATION, false);
RC_IF_ERROR(m_currentProgram->m_program->rr::GeometryShader::getInputType() ==
rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES_ADJACENCY &&
(mode != GL_TRIANGLES_ADJACENCY && mode != GL_TRIANGLE_STRIP_ADJACENCY),
GL_INVALID_OPERATION, false);
}
return true;
}
static rr::PrimitiveType getPrimitiveBaseType(rr::PrimitiveType derivedType)
{
switch (derivedType)
{
case rr::PRIMITIVETYPE_TRIANGLES:
case rr::PRIMITIVETYPE_TRIANGLE_STRIP:
case rr::PRIMITIVETYPE_TRIANGLE_FAN:
case rr::PRIMITIVETYPE_TRIANGLES_ADJACENCY:
case rr::PRIMITIVETYPE_TRIANGLE_STRIP_ADJACENCY:
return rr::PRIMITIVETYPE_TRIANGLES;
case rr::PRIMITIVETYPE_LINES:
case rr::PRIMITIVETYPE_LINE_STRIP:
case rr::PRIMITIVETYPE_LINE_LOOP:
case rr::PRIMITIVETYPE_LINES_ADJACENCY:
case rr::PRIMITIVETYPE_LINE_STRIP_ADJACENCY:
return rr::PRIMITIVETYPE_LINES;
case rr::PRIMITIVETYPE_POINTS:
return rr::PRIMITIVETYPE_POINTS;
default:
DE_ASSERT(false);
return rr::PRIMITIVETYPE_LAST;
}
}
static uint32_t getFixedRestartIndex(rr::IndexType indexType)
{
switch (indexType)
{
case rr::INDEXTYPE_UINT8:
return 0xFF;
case rr::INDEXTYPE_UINT16:
return 0xFFFF;
case rr::INDEXTYPE_UINT32:
return 0xFFFFFFFFul;
case rr::INDEXTYPE_LAST:
default:
DE_ASSERT(false);
return 0;
}
}
void ReferenceContext::drawWithReference(const rr::PrimitiveList &primitives, int instanceCount)
{
// undefined results
if (m_currentProgram == DE_NULL)
return;
rr::MultisamplePixelBufferAccess colorBuf0 = getDrawColorbuffer();
rr::MultisamplePixelBufferAccess depthBuf = getDepthMultisampleAccess(getDrawDepthbuffer());
rr::MultisamplePixelBufferAccess stencilBuf = getStencilMultisampleAccess(getDrawStencilbuffer());
const bool hasStencil = !isEmpty(stencilBuf);
const int stencilBits = (hasStencil) ? (getNumStencilBits(stencilBuf.raw().getFormat())) : (0);
const rr::RenderTarget renderTarget(colorBuf0, depthBuf, stencilBuf);
const rr::Program program(
m_currentProgram->m_program->getVertexShader(), m_currentProgram->m_program->getFragmentShader(),
(m_currentProgram->m_program->m_hasGeometryShader) ? (m_currentProgram->m_program->getGeometryShader()) :
(DE_NULL));
rr::RenderState state((rr::ViewportState)(colorBuf0), m_limits.subpixelBits);
const rr::Renderer referenceRenderer;
std::vector<rr::VertexAttrib> vertexAttribs;
// Gen state
{
const rr::PrimitiveType baseType = getPrimitiveBaseType(primitives.getPrimitiveType());
const bool polygonOffsetEnabled =
(baseType == rr::PRIMITIVETYPE_TRIANGLES) ? (m_polygonOffsetFillEnabled) : (false);
//state.cullMode = m_cullMode
state.fragOps.scissorTestEnabled = m_scissorEnabled;
state.fragOps.scissorRectangle =
rr::WindowRectangle(m_scissorBox.x(), m_scissorBox.y(), m_scissorBox.z(), m_scissorBox.w());
state.fragOps.numStencilBits = stencilBits;
state.fragOps.stencilTestEnabled = m_stencilTestEnabled;
for (int faceType = 0; faceType < rr::FACETYPE_LAST; faceType++)
{
state.fragOps.stencilStates[faceType].compMask = m_stencil[faceType].opMask;
state.fragOps.stencilStates[faceType].writeMask = m_stencil[faceType].writeMask;
state.fragOps.stencilStates[faceType].ref = m_stencil[faceType].ref;
state.fragOps.stencilStates[faceType].func = sglr::rr_util::mapGLTestFunc(m_stencil[faceType].func);
state.fragOps.stencilStates[faceType].sFail =
sglr::rr_util::mapGLStencilOp(m_stencil[faceType].opStencilFail);
state.fragOps.stencilStates[faceType].dpFail =
sglr::rr_util::mapGLStencilOp(m_stencil[faceType].opDepthFail);
state.fragOps.stencilStates[faceType].dpPass =
sglr::rr_util::mapGLStencilOp(m_stencil[faceType].opDepthPass);
}
state.fragOps.depthTestEnabled = m_depthTestEnabled;
state.fragOps.depthFunc = sglr::rr_util::mapGLTestFunc(m_depthFunc);
state.fragOps.depthMask = m_depthMask;
state.fragOps.blendMode = m_blendEnabled ? rr::BLENDMODE_STANDARD : rr::BLENDMODE_NONE;
state.fragOps.blendRGBState.equation = sglr::rr_util::mapGLBlendEquation(m_blendModeRGB);
state.fragOps.blendRGBState.srcFunc = sglr::rr_util::mapGLBlendFunc(m_blendFactorSrcRGB);
state.fragOps.blendRGBState.dstFunc = sglr::rr_util::mapGLBlendFunc(m_blendFactorDstRGB);
state.fragOps.blendAState.equation = sglr::rr_util::mapGLBlendEquation(m_blendModeAlpha);
state.fragOps.blendAState.srcFunc = sglr::rr_util::mapGLBlendFunc(m_blendFactorSrcAlpha);
state.fragOps.blendAState.dstFunc = sglr::rr_util::mapGLBlendFunc(m_blendFactorDstAlpha);
state.fragOps.blendColor = m_blendColor;
state.fragOps.sRGBEnabled = m_sRGBUpdateEnabled;
state.fragOps.colorMask = m_colorMask;
state.fragOps.depthClampEnabled = m_depthClampEnabled;
state.viewport.rect = rr::WindowRectangle(m_viewport.x(), m_viewport.y(), m_viewport.z(), m_viewport.w());
state.viewport.zn = m_depthRangeNear;
state.viewport.zf = m_depthRangeFar;
//state.point.pointSize = m_pointSize;
state.line.lineWidth = m_lineWidth;
state.fragOps.polygonOffsetEnabled = polygonOffsetEnabled;
state.fragOps.polygonOffsetFactor = m_polygonOffsetFactor;
state.fragOps.polygonOffsetUnits = m_polygonOffsetUnits;
{
const rr::IndexType indexType = primitives.getIndexType();
if (m_primitiveRestartFixedIndex && indexType != rr::INDEXTYPE_LAST)
{
state.restart.enabled = true;
state.restart.restartIndex = getFixedRestartIndex(indexType);
}
else if (m_primitiveRestartSettableIndex)
{
// \note PRIMITIVE_RESTART is active for non-indexed (DrawArrays) operations too.
state.restart.enabled = true;
state.restart.restartIndex = m_primitiveRestartIndex;
}
else
{
state.restart.enabled = false;
}
}
state.provokingVertexConvention =
(m_provokingFirstVertexConvention) ? (rr::PROVOKINGVERTEX_FIRST) : (rr::PROVOKINGVERTEX_LAST);
}
// gen attributes
{
rc::VertexArray &vao = (m_vertexArrayBinding) ? (*m_vertexArrayBinding) : (m_clientVertexArray);
vertexAttribs.resize(vao.m_arrays.size());
for (size_t ndx = 0; ndx < vao.m_arrays.size(); ++ndx)
{
if (!vao.m_arrays[ndx].enabled)
{
vertexAttribs[ndx].type =
rr::VERTEXATTRIBTYPE_DONT_CARE; // reading with wrong type is allowed, but results are undefined
vertexAttribs[ndx].generic = m_currentAttribs[ndx];
}
else if (vao.m_arrays[ndx].bufferDeleted)
{
vertexAttribs[ndx].type = rr::VERTEXATTRIBTYPE_DONT_CARE; // reading from deleted buffer, output zeros
vertexAttribs[ndx].generic = tcu::Vec4(0, 0, 0, 0);
}
else
{
vertexAttribs[ndx].type =
(vao.m_arrays[ndx].integer) ?
(sglr::rr_util::mapGLPureIntegerVertexAttributeType(vao.m_arrays[ndx].type)) :
(sglr::rr_util::mapGLFloatVertexAttributeType(vao.m_arrays[ndx].type,
vao.m_arrays[ndx].normalized,
vao.m_arrays[ndx].size, this->getType()));
vertexAttribs[ndx].size = sglr::rr_util::mapGLSize(vao.m_arrays[ndx].size);
vertexAttribs[ndx].stride = vao.m_arrays[ndx].stride;
vertexAttribs[ndx].instanceDivisor = vao.m_arrays[ndx].divisor;
vertexAttribs[ndx].pointer = (vao.m_arrays[ndx].bufferBinding) ?
(vao.m_arrays[ndx].bufferBinding->getData() +
reinterpret_cast<uintptr_t>(vao.m_arrays[ndx].pointer)) :
(vao.m_arrays[ndx].pointer);
}
}
}
// Set shader samplers
for (size_t uniformNdx = 0; uniformNdx < m_currentProgram->m_program->m_uniforms.size(); ++uniformNdx)
{
const tcu::Sampler::DepthStencilMode depthStencilMode =
tcu::Sampler::MODE_DEPTH; // \todo[jarkko] support sampler state
const int texNdx = m_currentProgram->m_program->m_uniforms[uniformNdx].value.i;
switch (m_currentProgram->m_program->m_uniforms[uniformNdx].type)
{
case glu::TYPE_SAMPLER_1D:
case glu::TYPE_UINT_SAMPLER_1D:
case glu::TYPE_INT_SAMPLER_1D:
{
rc::Texture1D *tex = DE_NULL;
if (texNdx >= 0 && (size_t)texNdx < m_textureUnits.size())
tex = (m_textureUnits[texNdx].tex1DBinding) ? (m_textureUnits[texNdx].tex1DBinding) :
(&m_textureUnits[texNdx].default1DTex);
if (tex && tex->isComplete())
{
tex->updateView(depthStencilMode);
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex1D = tex;
}
else
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex1D = &m_emptyTex1D;
break;
}
case glu::TYPE_SAMPLER_2D:
case glu::TYPE_UINT_SAMPLER_2D:
case glu::TYPE_INT_SAMPLER_2D:
{
rc::Texture2D *tex = DE_NULL;
if (texNdx >= 0 && (size_t)texNdx < m_textureUnits.size())
tex = (m_textureUnits[texNdx].tex2DBinding) ? (m_textureUnits[texNdx].tex2DBinding) :
(&m_textureUnits[texNdx].default2DTex);
if (tex && tex->isComplete())
{
tex->updateView(depthStencilMode);
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex2D = tex;
}
else
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex2D = &m_emptyTex2D;
break;
}
case glu::TYPE_SAMPLER_CUBE:
case glu::TYPE_UINT_SAMPLER_CUBE:
case glu::TYPE_INT_SAMPLER_CUBE:
{
rc::TextureCube *tex = DE_NULL;
if (texNdx >= 0 && (size_t)texNdx < m_textureUnits.size())
tex = (m_textureUnits[texNdx].texCubeBinding) ? (m_textureUnits[texNdx].texCubeBinding) :
(&m_textureUnits[texNdx].defaultCubeTex);
if (tex && tex->isComplete())
{
tex->updateView(depthStencilMode);
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.texCube = tex;
}
else
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.texCube = &m_emptyTexCube;
break;
}
case glu::TYPE_SAMPLER_2D_ARRAY:
case glu::TYPE_UINT_SAMPLER_2D_ARRAY:
case glu::TYPE_INT_SAMPLER_2D_ARRAY:
{
rc::Texture2DArray *tex = DE_NULL;
if (texNdx >= 0 && (size_t)texNdx < m_textureUnits.size())
tex = (m_textureUnits[texNdx].tex2DArrayBinding) ? (m_textureUnits[texNdx].tex2DArrayBinding) :
(&m_textureUnits[texNdx].default2DArrayTex);
if (tex && tex->isComplete())
{
tex->updateView(depthStencilMode);
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex2DArray = tex;
}
else
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex2DArray = &m_emptyTex2DArray;
break;
}
case glu::TYPE_SAMPLER_3D:
case glu::TYPE_UINT_SAMPLER_3D:
case glu::TYPE_INT_SAMPLER_3D:
{
rc::Texture3D *tex = DE_NULL;
if (texNdx >= 0 && (size_t)texNdx < m_textureUnits.size())
tex = (m_textureUnits[texNdx].tex3DBinding) ? (m_textureUnits[texNdx].tex3DBinding) :
(&m_textureUnits[texNdx].default3DTex);
if (tex && tex->isComplete())
{
tex->updateView(depthStencilMode);
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex3D = tex;
}
else
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.tex3D = &m_emptyTex3D;
break;
}
case glu::TYPE_SAMPLER_CUBE_ARRAY:
case glu::TYPE_UINT_SAMPLER_CUBE_ARRAY:
case glu::TYPE_INT_SAMPLER_CUBE_ARRAY:
{
rc::TextureCubeArray *tex = DE_NULL;
if (texNdx >= 0 && (size_t)texNdx < m_textureUnits.size())
tex = (m_textureUnits[texNdx].texCubeArrayBinding) ? (m_textureUnits[texNdx].texCubeArrayBinding) :
(&m_textureUnits[texNdx].defaultCubeArrayTex);
if (tex && tex->isComplete())
{
tex->updateView(depthStencilMode);
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.texCubeArray = tex;
}
else
m_currentProgram->m_program->m_uniforms[uniformNdx].sampler.texCubeArray = &m_emptyTexCubeArray;
break;
}
default:
// nothing
break;
}
}
referenceRenderer.drawInstanced(
rr::DrawCommand(state, renderTarget, program, (int)vertexAttribs.size(), &vertexAttribs[0], primitives),
instanceCount);
}
uint32_t ReferenceContext::createProgram(ShaderProgram *program)
{
int name = m_programs.allocateName();
m_programs.insert(new rc::ShaderProgramObjectContainer(name, program));
return name;
}
void ReferenceContext::useProgram(uint32_t program)
{
rc::ShaderProgramObjectContainer *shaderProg = DE_NULL;
rc::ShaderProgramObjectContainer *programToBeDeleted = DE_NULL;
if (program)
{
shaderProg = m_programs.find(program);
// shader has not been linked
if (!shaderProg || shaderProg->m_deleteFlag)
RC_ERROR_RET(GL_INVALID_OPERATION, RC_RET_VOID);
}
if (m_currentProgram && m_currentProgram->m_deleteFlag)
programToBeDeleted = m_currentProgram;
m_currentProgram = shaderProg;
if (programToBeDeleted)
{
DE_ASSERT(programToBeDeleted->getRefCount() == 1);
deleteProgramObject(programToBeDeleted);
}
}
void ReferenceContext::deleteProgram(uint32_t program)
{
if (!program)
return;
rc::ShaderProgramObjectContainer *shaderProg = m_programs.find(program);
if (shaderProg)
{
if (shaderProg == m_currentProgram)
{
m_currentProgram->m_deleteFlag = true;
}
else
{
DE_ASSERT(shaderProg->getRefCount() == 1);
m_programs.releaseReference(shaderProg);
}
}
}
void ReferenceContext::readPixels(int x, int y, int width, int height, uint32_t format, uint32_t type, void *data)
{
rr::MultisamplePixelBufferAccess src = getReadColorbuffer();
TextureFormat transferFmt;
// Map transfer format.
transferFmt = glu::mapGLTransferFormat(format, type);
RC_IF_ERROR(transferFmt.order == TextureFormat::CHANNELORDER_LAST ||
transferFmt.type == TextureFormat::CHANNELTYPE_LAST,
GL_INVALID_ENUM, RC_RET_VOID);
// Clamp input values
const int copyX = deClamp32(x, 0, src.raw().getHeight());
const int copyY = deClamp32(y, 0, src.raw().getDepth());
const int copyWidth = deClamp32(width, 0, src.raw().getHeight() - x);
const int copyHeight = deClamp32(height, 0, src.raw().getDepth() - y);
PixelBufferAccess dst(transferFmt, width, height, 1,
deAlign32(width * transferFmt.getPixelSize(), m_pixelPackAlignment), 0,
getPixelPackPtr(data));
rr::resolveMultisampleColorBuffer(tcu::getSubregion(dst, 0, 0, copyWidth, copyHeight),
rr::getSubregion(src, copyX, copyY, copyWidth, copyHeight));
}
uint32_t ReferenceContext::getError(void)
{
uint32_t err = m_lastError;
m_lastError = GL_NO_ERROR;
return err;
}
void ReferenceContext::finish(void)
{
}
inline void ReferenceContext::setError(uint32_t error)
{
if (m_lastError == GL_NO_ERROR)
m_lastError = error;
}
void ReferenceContext::getIntegerv(uint32_t pname, int *param)
{
switch (pname)
{
case GL_MAX_TEXTURE_SIZE:
*param = m_limits.maxTexture2DSize;
break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
*param = m_limits.maxTextureCubeSize;
break;
case GL_MAX_ARRAY_TEXTURE_LAYERS:
*param = m_limits.maxTexture2DArrayLayers;
break;
case GL_MAX_3D_TEXTURE_SIZE:
*param = m_limits.maxTexture3DSize;
break;
case GL_MAX_RENDERBUFFER_SIZE:
*param = m_limits.maxRenderbufferSize;
break;
case GL_MAX_TEXTURE_IMAGE_UNITS:
*param = m_limits.maxTextureImageUnits;
break;
case GL_MAX_VERTEX_ATTRIBS:
*param = m_limits.maxVertexAttribs;
break;
default:
setError(GL_INVALID_ENUM);
break;
}
}
const char *ReferenceContext::getString(uint32_t pname)
{
switch (pname)
{
case GL_EXTENSIONS:
return m_limits.extensionStr.c_str();
default:
setError(GL_INVALID_ENUM);
return DE_NULL;
}
}
namespace rc
{
TextureLevelArray::TextureLevelArray(void)
{
}
TextureLevelArray::~TextureLevelArray(void)
{
clear();
}
void TextureLevelArray::clear(void)
{
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(m_data) == DE_LENGTH_OF_ARRAY(m_access));
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(m_data); ndx++)
{
m_data[ndx].clear();
m_access[ndx] = PixelBufferAccess();
}
}
void TextureLevelArray::allocLevel(int level, const tcu::TextureFormat &format, int width, int height, int depth)
{
const int dataSize = format.getPixelSize() * width * height * depth;
DE_ASSERT(deInBounds32(level, 0, DE_LENGTH_OF_ARRAY(m_data)));
if (hasLevel(level))
clearLevel(level);
m_data[level].setStorage(dataSize);
m_access[level] = PixelBufferAccess(format, width, height, depth, m_data[level].getPtr());
}
void TextureLevelArray::clearLevel(int level)
{
DE_ASSERT(deInBounds32(level, 0, DE_LENGTH_OF_ARRAY(m_data)));
m_data[level].clear();
m_access[level] = PixelBufferAccess();
}
void TextureLevelArray::updateSamplerMode(tcu::Sampler::DepthStencilMode mode)
{
for (int levelNdx = 0; hasLevel(levelNdx); ++levelNdx)
m_effectiveAccess[levelNdx] = tcu::getEffectiveDepthStencilAccess(m_access[levelNdx], mode);
}
Texture::Texture(uint32_t name, Type type, bool seamless)
: NamedObject(name)
, m_type(type)
, m_immutable(false)
, m_sampler(tcu::Sampler::REPEAT_GL, tcu::Sampler::REPEAT_GL, tcu::Sampler::REPEAT_GL,
tcu::Sampler::NEAREST_MIPMAP_LINEAR, tcu::Sampler::LINEAR,
0.0f, // LOD threshold
true, // normalized coords
tcu::Sampler::COMPAREMODE_NONE,
0, // cmp channel ndx
tcu::Vec4(0.0f), // border color
seamless // seamless cube map, Default value is True.
)
, m_baseLevel(0)
, m_maxLevel(1000)
{
}
Texture1D::Texture1D(uint32_t name) : Texture(name, TYPE_1D), m_view(0, DE_NULL)
{
}
Texture1D::~Texture1D(void)
{
}
void Texture1D::allocLevel(int level, const tcu::TextureFormat &format, int width)
{
m_levels.allocLevel(level, format, width, 1, 1);
}
bool Texture1D::isComplete(void) const
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel))
{
const tcu::ConstPixelBufferAccess &level0 = getLevel(baseLevel);
const bool mipmap = isMipmapFilter(getSampler().minFilter);
if (mipmap)
{
const TextureFormat &format = level0.getFormat();
const int w = level0.getWidth();
const int numLevels = de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels1D(w));
for (int levelNdx = 1; levelNdx < numLevels; levelNdx++)
{
if (hasLevel(baseLevel + levelNdx))
{
const tcu::ConstPixelBufferAccess &level = getLevel(baseLevel + levelNdx);
const int expectedW = getMipLevelSize(w, levelNdx);
if (level.getWidth() != expectedW || level.getFormat() != format)
return false;
}
else
return false;
}
}
return true;
}
else
return false;
}
tcu::Vec4 Texture1D::sample(float s, float lod) const
{
return m_view.sample(getSampler(), s, 0.0f, lod);
}
void Texture1D::sample4(tcu::Vec4 output[4], const float packetTexcoords[4], float lodBias) const
{
const float texWidth = (float)m_view.getWidth();
const float dFdx0 = packetTexcoords[1] - packetTexcoords[0];
const float dFdx1 = packetTexcoords[3] - packetTexcoords[2];
const float dFdy0 = packetTexcoords[2] - packetTexcoords[0];
const float dFdy1 = packetTexcoords[3] - packetTexcoords[1];
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
const float &dFdx = (fragNdx > 2) ? dFdx1 : dFdx0;
const float &dFdy = (fragNdx % 2) ? dFdy1 : dFdy0;
const float mu = de::max(de::abs(dFdx), de::abs(dFdy));
const float p = mu * texWidth;
const float lod = deFloatLog2(p) + lodBias;
output[fragNdx] = sample(packetTexcoords[fragNdx], lod);
}
}
void Texture1D::updateView(tcu::Sampler::DepthStencilMode mode)
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel) && !isEmpty(getLevel(baseLevel)))
{
const int width = getLevel(baseLevel).getWidth();
const bool isMipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels = isMipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels1D(width)) : 1;
m_levels.updateSamplerMode(mode);
m_view = tcu::Texture2DView(numLevels, m_levels.getEffectiveLevels() + baseLevel);
}
else
m_view = tcu::Texture2DView(0, DE_NULL);
}
Texture2D::Texture2D(uint32_t name, bool es2) : Texture(name, TYPE_2D), m_view(0, DE_NULL, es2)
{
}
Texture2D::~Texture2D(void)
{
}
void Texture2D::allocLevel(int level, const tcu::TextureFormat &format, int width, int height)
{
m_levels.allocLevel(level, format, width, height, 1);
}
bool Texture2D::isComplete(void) const
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel))
{
const tcu::ConstPixelBufferAccess &level0 = getLevel(baseLevel);
const bool mipmap = isMipmapFilter(getSampler().minFilter);
if (mipmap)
{
const TextureFormat &format = level0.getFormat();
const int w = level0.getWidth();
const int h = level0.getHeight();
const int numLevels = de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(w, h));
for (int levelNdx = 1; levelNdx < numLevels; levelNdx++)
{
if (hasLevel(baseLevel + levelNdx))
{
const tcu::ConstPixelBufferAccess &level = getLevel(baseLevel + levelNdx);
const int expectedW = getMipLevelSize(w, levelNdx);
const int expectedH = getMipLevelSize(h, levelNdx);
if (level.getWidth() != expectedW || level.getHeight() != expectedH || level.getFormat() != format)
return false;
}
else
return false;
}
}
return true;
}
else
return false;
}
void Texture2D::updateView(tcu::Sampler::DepthStencilMode mode)
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel) && !isEmpty(getLevel(baseLevel)))
{
// Update number of levels in mipmap pyramid.
const int width = getLevel(baseLevel).getWidth();
const int height = getLevel(baseLevel).getHeight();
const bool isMipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels = isMipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(width, height)) : 1;
m_levels.updateSamplerMode(mode);
m_view = tcu::Texture2DView(numLevels, m_levels.getEffectiveLevels() + baseLevel);
}
else
m_view = tcu::Texture2DView(0, DE_NULL);
}
tcu::Vec4 Texture2D::sample(float s, float t, float lod) const
{
return m_view.sample(getSampler(), s, t, lod);
}
void Texture2D::sample4(tcu::Vec4 output[4], const tcu::Vec2 packetTexcoords[4], float lodBias) const
{
const float texWidth = (float)m_view.getWidth();
const float texHeight = (float)m_view.getHeight();
const tcu::Vec2 dFdx0 = packetTexcoords[1] - packetTexcoords[0];
const tcu::Vec2 dFdx1 = packetTexcoords[3] - packetTexcoords[2];
const tcu::Vec2 dFdy0 = packetTexcoords[2] - packetTexcoords[0];
const tcu::Vec2 dFdy1 = packetTexcoords[3] - packetTexcoords[1];
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
const tcu::Vec2 &dFdx = (fragNdx & 2) ? dFdx1 : dFdx0;
const tcu::Vec2 &dFdy = (fragNdx & 1) ? dFdy1 : dFdy0;
const float mu = de::max(de::abs(dFdx.x()), de::abs(dFdy.x()));
const float mv = de::max(de::abs(dFdx.y()), de::abs(dFdy.y()));
const float p = de::max(mu * texWidth, mv * texHeight);
const float lod = deFloatLog2(p) + lodBias;
output[fragNdx] = sample(packetTexcoords[fragNdx].x(), packetTexcoords[fragNdx].y(), lod);
}
}
TextureCube::TextureCube(uint32_t name, bool seamless) : Texture(name, TYPE_CUBE_MAP, seamless)
{
}
TextureCube::~TextureCube(void)
{
}
void TextureCube::clearLevels(void)
{
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
m_levels[face].clear();
}
void TextureCube::allocFace(int level, tcu::CubeFace face, const tcu::TextureFormat &format, int width, int height)
{
m_levels[face].allocLevel(level, format, width, height, 1);
}
bool TextureCube::isComplete(void) const
{
const int baseLevel = getBaseLevel();
if (hasFace(baseLevel, tcu::CUBEFACE_NEGATIVE_X))
{
const int width = getFace(baseLevel, tcu::CUBEFACE_NEGATIVE_X).getWidth();
const int height = getFace(baseLevel, tcu::CUBEFACE_NEGATIVE_X).getHeight();
const tcu::TextureFormat &format = getFace(baseLevel, tcu::CUBEFACE_NEGATIVE_X).getFormat();
const bool mipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels = mipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(width, height)) : 1;
if (width != height)
return false; // Non-square is not supported.
// \note Level 0 is always checked for consistency
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
const int levelW = getMipLevelSize(width, levelNdx);
const int levelH = getMipLevelSize(height, levelNdx);
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
if (hasFace(baseLevel + levelNdx, (tcu::CubeFace)face))
{
const tcu::ConstPixelBufferAccess &level = getFace(baseLevel + levelNdx, (tcu::CubeFace)face);
if (level.getWidth() != levelW || level.getHeight() != levelH || level.getFormat() != format)
return false;
}
else
return false;
}
}
return true;
}
else
return false;
}
void TextureCube::updateView(tcu::Sampler::DepthStencilMode mode)
{
const int baseLevel = getBaseLevel();
const tcu::ConstPixelBufferAccess *faces[tcu::CUBEFACE_LAST];
deMemset(&faces[0], 0, sizeof(faces));
if (isComplete())
{
const int size = getFace(baseLevel, tcu::CUBEFACE_NEGATIVE_X).getWidth();
const bool isMipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels = isMipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels1D(size)) : 1;
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
m_levels[face].updateSamplerMode(mode);
faces[face] = m_levels[face].getEffectiveLevels() + baseLevel;
}
m_view = tcu::TextureCubeView(numLevels, faces);
}
else
m_view = tcu::TextureCubeView(0, faces);
}
tcu::Vec4 TextureCube::sample(float s, float t, float p, float lod) const
{
return m_view.sample(getSampler(), s, t, p, lod);
}
void TextureCube::sample4(tcu::Vec4 output[4], const tcu::Vec3 packetTexcoords[4], float lodBias) const
{
const float cubeSide = (float)m_view.getSize();
// Each tex coord might be in a different face.
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
const tcu::CubeFace face = tcu::selectCubeFace(packetTexcoords[fragNdx]);
const tcu::Vec2 coords[4] = {
tcu::projectToFace(face, packetTexcoords[0]),
tcu::projectToFace(face, packetTexcoords[1]),
tcu::projectToFace(face, packetTexcoords[2]),
tcu::projectToFace(face, packetTexcoords[3]),
};
const tcu::Vec2 dFdx0 = coords[1] - coords[0];
const tcu::Vec2 dFdx1 = coords[3] - coords[2];
const tcu::Vec2 dFdy0 = coords[2] - coords[0];
const tcu::Vec2 dFdy1 = coords[3] - coords[1];
const tcu::Vec2 &dFdx = (fragNdx & 2) ? dFdx1 : dFdx0;
const tcu::Vec2 &dFdy = (fragNdx & 1) ? dFdy1 : dFdy0;
const float mu = de::max(de::abs(dFdx.x()), de::abs(dFdy.x()));
const float mv = de::max(de::abs(dFdx.y()), de::abs(dFdy.y()));
const float p = de::max(mu * cubeSide, mv * cubeSide);
const float lod = deFloatLog2(p) + lodBias;
output[fragNdx] =
sample(packetTexcoords[fragNdx].x(), packetTexcoords[fragNdx].y(), packetTexcoords[fragNdx].z(), lod);
}
}
Texture2DArray::Texture2DArray(uint32_t name) : Texture(name, TYPE_2D_ARRAY), m_view(0, DE_NULL)
{
}
Texture2DArray::~Texture2DArray(void)
{
}
void Texture2DArray::allocLevel(int level, const tcu::TextureFormat &format, int width, int height, int numLayers)
{
m_levels.allocLevel(level, format, width, height, numLayers);
}
bool Texture2DArray::isComplete(void) const
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel))
{
const tcu::ConstPixelBufferAccess &level0 = getLevel(baseLevel);
const bool mipmap = isMipmapFilter(getSampler().minFilter);
if (mipmap)
{
const TextureFormat &format = level0.getFormat();
const int w = level0.getWidth();
const int h = level0.getHeight();
const int numLayers = level0.getDepth();
const int numLevels = de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(w, h));
for (int levelNdx = 1; levelNdx < numLevels; levelNdx++)
{
if (hasLevel(baseLevel + levelNdx))
{
const tcu::ConstPixelBufferAccess &level = getLevel(baseLevel + levelNdx);
const int expectedW = getMipLevelSize(w, levelNdx);
const int expectedH = getMipLevelSize(h, levelNdx);
if (level.getWidth() != expectedW || level.getHeight() != expectedH ||
level.getDepth() != numLayers || level.getFormat() != format)
return false;
}
else
return false;
}
}
return true;
}
else
return false;
}
void Texture2DArray::updateView(tcu::Sampler::DepthStencilMode mode)
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel) && !isEmpty(getLevel(baseLevel)))
{
const int width = getLevel(baseLevel).getWidth();
const int height = getLevel(baseLevel).getHeight();
const bool isMipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels = isMipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(width, height)) : 1;
m_levels.updateSamplerMode(mode);
m_view = tcu::Texture2DArrayView(numLevels, m_levels.getEffectiveLevels() + baseLevel);
}
else
m_view = tcu::Texture2DArrayView(0, DE_NULL);
}
tcu::Vec4 Texture2DArray::sample(float s, float t, float r, float lod) const
{
return m_view.sample(getSampler(), s, t, r, lod);
}
void Texture2DArray::sample4(tcu::Vec4 output[4], const tcu::Vec3 packetTexcoords[4], float lodBias) const
{
const float texWidth = (float)m_view.getWidth();
const float texHeight = (float)m_view.getHeight();
const tcu::Vec3 dFdx0 = packetTexcoords[1] - packetTexcoords[0];
const tcu::Vec3 dFdx1 = packetTexcoords[3] - packetTexcoords[2];
const tcu::Vec3 dFdy0 = packetTexcoords[2] - packetTexcoords[0];
const tcu::Vec3 dFdy1 = packetTexcoords[3] - packetTexcoords[1];
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
const tcu::Vec3 &dFdx = (fragNdx & 2) ? dFdx1 : dFdx0;
const tcu::Vec3 &dFdy = (fragNdx & 1) ? dFdy1 : dFdy0;
const float mu = de::max(de::abs(dFdx.x()), de::abs(dFdy.x()));
const float mv = de::max(de::abs(dFdx.y()), de::abs(dFdy.y()));
const float p = de::max(mu * texWidth, mv * texHeight);
const float lod = deFloatLog2(p) + lodBias;
output[fragNdx] =
sample(packetTexcoords[fragNdx].x(), packetTexcoords[fragNdx].y(), packetTexcoords[fragNdx].z(), lod);
}
}
TextureCubeArray::TextureCubeArray(uint32_t name) : Texture(name, TYPE_CUBE_MAP_ARRAY), m_view(0, DE_NULL)
{
}
TextureCubeArray::~TextureCubeArray(void)
{
}
void TextureCubeArray::allocLevel(int level, const tcu::TextureFormat &format, int width, int height, int numLayers)
{
DE_ASSERT(numLayers % 6 == 0);
m_levels.allocLevel(level, format, width, height, numLayers);
}
bool TextureCubeArray::isComplete(void) const
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel))
{
const tcu::ConstPixelBufferAccess &level0 = getLevel(baseLevel);
const bool mipmap = isMipmapFilter(getSampler().minFilter);
if (mipmap)
{
const TextureFormat &format = level0.getFormat();
const int w = level0.getWidth();
const int h = level0.getHeight();
const int numLayers = level0.getDepth();
const int numLevels = de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(w, h));
for (int levelNdx = 1; levelNdx < numLevels; levelNdx++)
{
if (hasLevel(baseLevel + levelNdx))
{
const tcu::ConstPixelBufferAccess &level = getLevel(baseLevel + levelNdx);
const int expectedW = getMipLevelSize(w, levelNdx);
const int expectedH = getMipLevelSize(h, levelNdx);
if (level.getWidth() != expectedW || level.getHeight() != expectedH ||
level.getDepth() != numLayers || level.getFormat() != format)
return false;
}
else
return false;
}
}
return true;
}
else
return false;
}
void TextureCubeArray::updateView(tcu::Sampler::DepthStencilMode mode)
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel) && !isEmpty(getLevel(baseLevel)))
{
const int width = getLevel(baseLevel).getWidth();
const int height = getLevel(baseLevel).getHeight();
const bool isMipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels = isMipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels2D(width, height)) : 1;
m_levels.updateSamplerMode(mode);
m_view = tcu::TextureCubeArrayView(numLevels, m_levels.getEffectiveLevels() + baseLevel);
}
else
m_view = tcu::TextureCubeArrayView(0, DE_NULL);
}
tcu::Vec4 TextureCubeArray::sample(float s, float t, float r, float q, float lod) const
{
return m_view.sample(getSampler(), s, t, r, q, lod);
}
void TextureCubeArray::sample4(tcu::Vec4 output[4], const tcu::Vec4 packetTexcoords[4], float lodBias) const
{
const float cubeSide = (float)m_view.getSize();
const tcu::Vec3 cubeCoords[4] = {packetTexcoords[0].toWidth<3>(), packetTexcoords[1].toWidth<3>(),
packetTexcoords[2].toWidth<3>(), packetTexcoords[3].toWidth<3>()};
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
const tcu::CubeFace face = tcu::selectCubeFace(cubeCoords[fragNdx]);
const tcu::Vec2 faceCoords[4] = {
tcu::projectToFace(face, cubeCoords[0]),
tcu::projectToFace(face, cubeCoords[1]),
tcu::projectToFace(face, cubeCoords[2]),
tcu::projectToFace(face, cubeCoords[3]),
};
const tcu::Vec2 dFdx0 = faceCoords[1] - faceCoords[0];
const tcu::Vec2 dFdx1 = faceCoords[3] - faceCoords[2];
const tcu::Vec2 dFdy0 = faceCoords[2] - faceCoords[0];
const tcu::Vec2 dFdy1 = faceCoords[3] - faceCoords[1];
const tcu::Vec2 &dFdx = (fragNdx & 2) ? dFdx1 : dFdx0;
const tcu::Vec2 &dFdy = (fragNdx & 1) ? dFdy1 : dFdy0;
const float mu = de::max(de::abs(dFdx.x()), de::abs(dFdy.x()));
const float mv = de::max(de::abs(dFdx.y()), de::abs(dFdy.y()));
const float p = de::max(mu * cubeSide, mv * cubeSide);
const float lod = deFloatLog2(p) + lodBias;
output[fragNdx] = sample(packetTexcoords[fragNdx].x(), packetTexcoords[fragNdx].y(),
packetTexcoords[fragNdx].z(), packetTexcoords[fragNdx].w(), lod);
}
}
Texture3D::Texture3D(uint32_t name) : Texture(name, TYPE_3D), m_view(0, DE_NULL)
{
}
Texture3D::~Texture3D(void)
{
}
void Texture3D::allocLevel(int level, const tcu::TextureFormat &format, int width, int height, int depth)
{
m_levels.allocLevel(level, format, width, height, depth);
}
bool Texture3D::isComplete(void) const
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel))
{
const tcu::ConstPixelBufferAccess &level0 = getLevel(baseLevel);
const bool mipmap = isMipmapFilter(getSampler().minFilter);
if (mipmap)
{
const TextureFormat &format = level0.getFormat();
const int w = level0.getWidth();
const int h = level0.getHeight();
const int d = level0.getDepth();
const int numLevels = de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels3D(w, h, d));
for (int levelNdx = 1; levelNdx < numLevels; levelNdx++)
{
if (hasLevel(baseLevel + levelNdx))
{
const tcu::ConstPixelBufferAccess &level = getLevel(baseLevel + levelNdx);
const int expectedW = getMipLevelSize(w, levelNdx);
const int expectedH = getMipLevelSize(h, levelNdx);
const int expectedD = getMipLevelSize(d, levelNdx);
if (level.getWidth() != expectedW || level.getHeight() != expectedH ||
level.getDepth() != expectedD || level.getFormat() != format)
return false;
}
else
return false;
}
}
return true;
}
else
return false;
}
tcu::Vec4 Texture3D::sample(float s, float t, float r, float lod) const
{
return m_view.sample(getSampler(), s, t, r, lod);
}
void Texture3D::sample4(tcu::Vec4 output[4], const tcu::Vec3 packetTexcoords[4], float lodBias) const
{
const float texWidth = (float)m_view.getWidth();
const float texHeight = (float)m_view.getHeight();
const float texDepth = (float)m_view.getDepth();
const tcu::Vec3 dFdx0 = packetTexcoords[1] - packetTexcoords[0];
const tcu::Vec3 dFdx1 = packetTexcoords[3] - packetTexcoords[2];
const tcu::Vec3 dFdy0 = packetTexcoords[2] - packetTexcoords[0];
const tcu::Vec3 dFdy1 = packetTexcoords[3] - packetTexcoords[1];
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
{
const tcu::Vec3 &dFdx = (fragNdx & 2) ? dFdx1 : dFdx0;
const tcu::Vec3 &dFdy = (fragNdx & 1) ? dFdy1 : dFdy0;
const float mu = de::max(de::abs(dFdx.x()), de::abs(dFdy.x()));
const float mv = de::max(de::abs(dFdx.y()), de::abs(dFdy.y()));
const float mw = de::max(de::abs(dFdx.z()), de::abs(dFdy.z()));
const float p = de::max(de::max(mu * texWidth, mv * texHeight), mw * texDepth);
const float lod = deFloatLog2(p) + lodBias;
output[fragNdx] =
sample(packetTexcoords[fragNdx].x(), packetTexcoords[fragNdx].y(), packetTexcoords[fragNdx].z(), lod);
}
}
void Texture3D::updateView(tcu::Sampler::DepthStencilMode mode)
{
const int baseLevel = getBaseLevel();
if (hasLevel(baseLevel) && !isEmpty(getLevel(baseLevel)))
{
const int width = getLevel(baseLevel).getWidth();
const int height = getLevel(baseLevel).getHeight();
const int depth = getLevel(baseLevel).getDepth();
const bool isMipmap = isMipmapFilter(getSampler().minFilter);
const int numLevels =
isMipmap ? de::min(getMaxLevel() - baseLevel + 1, getNumMipLevels3D(width, height, depth)) : 1;
m_levels.updateSamplerMode(mode);
m_view = tcu::Texture3DView(numLevels, m_levels.getEffectiveLevels() + baseLevel);
}
else
m_view = tcu::Texture3DView(0, DE_NULL);
}
Renderbuffer::Renderbuffer(uint32_t name) : NamedObject(name)
{
}
Renderbuffer::~Renderbuffer(void)
{
}
void Renderbuffer::setStorage(const TextureFormat &format, int width, int height)
{
m_data.setStorage(format, width, height);
}
Framebuffer::Framebuffer(uint32_t name) : NamedObject(name)
{
}
Framebuffer::~Framebuffer(void)
{
}
VertexArray::VertexArray(uint32_t name, int maxVertexAttribs)
: NamedObject(name)
, m_elementArrayBufferBinding(DE_NULL)
, m_arrays(maxVertexAttribs)
{
for (int i = 0; i < maxVertexAttribs; ++i)
{
m_arrays[i].enabled = false;
m_arrays[i].size = 4;
m_arrays[i].stride = 0;
m_arrays[i].type = GL_FLOAT;
m_arrays[i].normalized = false;
m_arrays[i].integer = false;
m_arrays[i].divisor = 0;
m_arrays[i].bufferDeleted = false;
m_arrays[i].bufferBinding = DE_NULL;
m_arrays[i].pointer = DE_NULL;
}
}
ShaderProgramObjectContainer::ShaderProgramObjectContainer(uint32_t name, ShaderProgram *program)
: NamedObject(name)
, m_program(program)
, m_deleteFlag(false)
{
}
ShaderProgramObjectContainer::~ShaderProgramObjectContainer(void)
{
}
} // namespace rc
} // namespace sglr