blob: f117b8b11ca28ca4b53d689f8772fe943c3f0c64 [file] [log] [blame] [edit]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL (ES) Module
* -----------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Precision and range tests for GLSL builtins and types.
*
*//*--------------------------------------------------------------------*/
#include "glsBuiltinPrecisionTests.hpp"
#include "deMath.h"
#include "deMemory.h"
#include "deDefs.hpp"
#include "deRandom.hpp"
#include "deSTLUtil.hpp"
#include "deStringUtil.hpp"
#include "deUniquePtr.hpp"
#include "deSharedPtr.hpp"
#include "deArrayUtil.hpp"
#include "tcuCommandLine.hpp"
#include "tcuFloatFormat.hpp"
#include "tcuInterval.hpp"
#include "tcuTestCase.hpp"
#include "tcuTestLog.hpp"
#include "tcuVector.hpp"
#include "tcuMatrix.hpp"
#include "tcuResultCollector.hpp"
#include "gluContextInfo.hpp"
#include "gluVarType.hpp"
#include "gluRenderContext.hpp"
#include "glwDefs.hpp"
#include "glsShaderExecUtil.hpp"
#include <cmath>
#include <string>
#include <sstream>
#include <iostream>
#include <map>
#include <utility>
#include <limits>
// Uncomment this to get evaluation trace dumps to std::cerr
// #define GLS_ENABLE_TRACE
// set this to true to dump even passing results
#define GLS_LOG_ALL_RESULTS false
enum
{
// Computing reference intervals can take a non-trivial amount of time, especially on
// platforms where toggling floating-point rounding mode is slow (emulated arm on x86).
// As a workaround watchdog is kept happy by touching it periodically during reference
// interval computation.
TOUCH_WATCHDOG_VALUE_FREQUENCY = 4096
};
namespace deqp
{
namespace gls
{
namespace BuiltinPrecisionTests
{
using std::map;
using std::ostream;
using std::ostringstream;
using std::pair;
using std::set;
using std::string;
using std::vector;
using de::MovePtr;
using de::Random;
using de::SharedPtr;
using de::UniquePtr;
using tcu::FloatFormat;
using tcu::Interval;
using tcu::Matrix;
using tcu::MessageBuilder;
using tcu::TestCase;
using tcu::TestLog;
using tcu::Vector;
namespace matrix = tcu::matrix;
using gls::ShaderExecUtil::Symbol;
using glu::ContextInfo;
using glu::DataType;
using glu::Precision;
using glu::RenderContext;
using glu::ShaderType;
using glu::VarType;
typedef TestCase::IterateResult IterateResult;
using namespace glw;
using namespace tcu;
/*--------------------------------------------------------------------*//*!
* \brief Generic singleton creator.
*
* instance<T>() returns a reference to a unique default-constructed instance
* of T. This is mainly used for our GLSL function implementations: each
* function is implemented by an object, and each of the objects has a
* distinct class. It would be extremely toilsome to maintain a separate
* context object that contained individual instances of the function classes,
* so we have to resort to global singleton instances.
*
*//*--------------------------------------------------------------------*/
template <typename T>
const T &instance(void)
{
static const T s_instance = T();
return s_instance;
}
/*--------------------------------------------------------------------*//*!
* \brief A placeholder type for unused template parameters.
*
* In the precision tests we are dealing with functions of different arities.
* To minimize code duplication, we only define templates with the maximum
* number of arguments, currently four. If a function's arity is less than the
* maximum, Void us used as the type for unused arguments.
*
* Although Voids are not used at run-time, they still must be compilable, so
* they must support all operations that other types do.
*
*//*--------------------------------------------------------------------*/
struct Void
{
typedef Void Element;
enum
{
SIZE = 0,
};
template <typename T>
explicit Void(const T &)
{
}
Void(void)
{
}
operator double(void) const
{
return TCU_NAN;
}
// These are used to make Voids usable as containers in container-generic code.
Void &operator[](int)
{
return *this;
}
const Void &operator[](int) const
{
return *this;
}
};
ostream &operator<<(ostream &os, Void)
{
return os << "()";
}
//! Returns true for all other types except Void
template <typename T>
bool isTypeValid(void)
{
return true;
}
template <>
bool isTypeValid<Void>(void)
{
return false;
}
//! Utility function for getting the name of a data type.
//! This is used in vector and matrix constructors.
template <typename T>
const char *dataTypeNameOf(void)
{
return glu::getDataTypeName(glu::dataTypeOf<T>());
}
template <>
const char *dataTypeNameOf<Void>(void)
{
DE_FATAL("Impossible");
return DE_NULL;
}
//! A hack to get Void support for VarType.
template <typename T>
VarType getVarTypeOf(Precision prec = glu::PRECISION_LAST)
{
return glu::varTypeOf<T>(prec);
}
template <>
VarType getVarTypeOf<Void>(Precision)
{
DE_FATAL("Impossible");
return VarType();
}
/*--------------------------------------------------------------------*//*!
* \brief Type traits for generalized interval types.
*
* We are trying to compute sets of acceptable values not only for
* float-valued expressions but also for compound values: vectors and
* matrices. We approximate a set of vectors as a vector of intervals and
* likewise for matrices.
*
* We now need generalized operations for each type and its interval
* approximation. These are given in the type Traits<T>.
*
* The type Traits<T>::IVal is the approximation of T: it is `Interval` for
* scalar types, and a vector or matrix of intervals for container types.
*
* To allow template inference to take place, there are function wrappers for
* the actual operations in Traits<T>. Hence we can just use:
*
* makeIVal(someFloat)
*
* instead of:
*
* Traits<float>::doMakeIVal(value)
*
*//*--------------------------------------------------------------------*/
template <typename T>
struct Traits;
//! Create container from elementwise singleton values.
template <typename T>
typename Traits<T>::IVal makeIVal(const T &value)
{
return Traits<T>::doMakeIVal(value);
}
//! Elementwise union of intervals.
template <typename T>
typename Traits<T>::IVal unionIVal(const typename Traits<T>::IVal &a, const typename Traits<T>::IVal &b)
{
return Traits<T>::doUnion(a, b);
}
//! Returns true iff every element of `ival` contains the corresponding element of `value`.
template <typename T>
bool contains(const typename Traits<T>::IVal &ival, const T &value)
{
return Traits<T>::doContains(ival, value);
}
//! Returns true iff every element of `ival` contains corresponding element of `value` within the warning interval
template <typename T>
bool containsWarning(const typename Traits<T>::IVal &ival, const T &value)
{
return Traits<T>::doContainsWarning(ival, value);
}
//! Print out an interval with the precision of `fmt`.
template <typename T>
void printIVal(const FloatFormat &fmt, const typename Traits<T>::IVal &ival, ostream &os)
{
Traits<T>::doPrintIVal(fmt, ival, os);
}
template <typename T>
string intervalToString(const FloatFormat &fmt, const typename Traits<T>::IVal &ival)
{
ostringstream oss;
printIVal<T>(fmt, ival, oss);
return oss.str();
}
//! Print out a value with the precision of `fmt`.
template <typename T>
void printValue(const FloatFormat &fmt, const T &value, ostream &os)
{
Traits<T>::doPrintValue(fmt, value, os);
}
template <typename T>
string valueToString(const FloatFormat &fmt, const T &val)
{
ostringstream oss;
printValue(fmt, val, oss);
return oss.str();
}
//! Approximate `value` elementwise to the float precision defined in `fmt`.
//! The resulting interval might not be a singleton if rounding in both
//! directions is allowed.
template <typename T>
typename Traits<T>::IVal round(const FloatFormat &fmt, const T &value)
{
return Traits<T>::doRound(fmt, value);
}
template <typename T>
typename Traits<T>::IVal convert(const FloatFormat &fmt, const typename Traits<T>::IVal &value)
{
return Traits<T>::doConvert(fmt, value);
}
//! Common traits for scalar types.
template <typename T>
struct ScalarTraits
{
typedef Interval IVal;
static Interval doMakeIVal(const T &value)
{
// Thankfully all scalar types have a well-defined conversion to `double`,
// hence Interval can represent their ranges without problems.
return Interval(double(value));
}
static Interval doUnion(const Interval &a, const Interval &b)
{
return a | b;
}
static bool doContains(const Interval &a, T value)
{
return a.contains(double(value));
}
static bool doContainsWarning(const Interval &a, T value)
{
return a.containsWarning(double(value));
}
static Interval doConvert(const FloatFormat &fmt, const IVal &ival)
{
return fmt.convert(ival);
}
static Interval doRound(const FloatFormat &fmt, T value)
{
return fmt.roundOut(double(value), false);
}
};
template <>
struct Traits<float> : ScalarTraits<float>
{
static void doPrintIVal(const FloatFormat &fmt, const Interval &ival, ostream &os)
{
os << fmt.intervalToHex(ival);
}
static void doPrintValue(const FloatFormat &fmt, const float &value, ostream &os)
{
os << fmt.floatToHex(value);
}
};
template <>
struct Traits<bool> : ScalarTraits<bool>
{
static void doPrintValue(const FloatFormat &, const float &value, ostream &os)
{
os << (value != 0.0f ? "true" : "false");
}
static void doPrintIVal(const FloatFormat &, const Interval &ival, ostream &os)
{
os << "{";
if (ival.contains(false))
os << "false";
if (ival.contains(false) && ival.contains(true))
os << ", ";
if (ival.contains(true))
os << "true";
os << "}";
}
};
template <>
struct Traits<int> : ScalarTraits<int>
{
static void doPrintValue(const FloatFormat &, const int &value, ostream &os)
{
os << value;
}
static void doPrintIVal(const FloatFormat &, const Interval &ival, ostream &os)
{
os << "[" << int(ival.lo()) << ", " << int(ival.hi()) << "]";
}
};
//! Common traits for containers, i.e. vectors and matrices.
//! T is the container type itself, I is the same type with interval elements.
template <typename T, typename I>
struct ContainerTraits
{
typedef typename T::Element Element;
typedef I IVal;
static IVal doMakeIVal(const T &value)
{
IVal ret;
for (int ndx = 0; ndx < T::SIZE; ++ndx)
ret[ndx] = makeIVal(value[ndx]);
return ret;
}
static IVal doUnion(const IVal &a, const IVal &b)
{
IVal ret;
for (int ndx = 0; ndx < T::SIZE; ++ndx)
ret[ndx] = unionIVal<Element>(a[ndx], b[ndx]);
return ret;
}
static bool doContains(const IVal &ival, const T &value)
{
for (int ndx = 0; ndx < T::SIZE; ++ndx)
if (!contains(ival[ndx], value[ndx]))
return false;
return true;
}
static bool doContainsWarning(const IVal &ival, const T &value)
{
for (int ndx = 0; ndx < T::SIZE; ++ndx)
if (!containsWarning(ival[ndx], value[ndx]))
return false;
return true;
}
static void doPrintIVal(const FloatFormat &fmt, const IVal ival, ostream &os)
{
os << "(";
for (int ndx = 0; ndx < T::SIZE; ++ndx)
{
if (ndx > 0)
os << ", ";
printIVal<Element>(fmt, ival[ndx], os);
}
os << ")";
}
static void doPrintValue(const FloatFormat &fmt, const T &value, ostream &os)
{
os << dataTypeNameOf<T>() << "(";
for (int ndx = 0; ndx < T::SIZE; ++ndx)
{
if (ndx > 0)
os << ", ";
printValue<Element>(fmt, value[ndx], os);
}
os << ")";
}
static IVal doConvert(const FloatFormat &fmt, const IVal &value)
{
IVal ret;
for (int ndx = 0; ndx < T::SIZE; ++ndx)
ret[ndx] = convert<Element>(fmt, value[ndx]);
return ret;
}
static IVal doRound(const FloatFormat &fmt, T value)
{
IVal ret;
for (int ndx = 0; ndx < T::SIZE; ++ndx)
ret[ndx] = round(fmt, value[ndx]);
return ret;
}
};
template <typename T, int Size>
struct Traits<Vector<T, Size>> : ContainerTraits<Vector<T, Size>, Vector<typename Traits<T>::IVal, Size>>
{
};
template <typename T, int Rows, int Cols>
struct Traits<Matrix<T, Rows, Cols>>
: ContainerTraits<Matrix<T, Rows, Cols>, Matrix<typename Traits<T>::IVal, Rows, Cols>>
{
};
//! Void traits. These are just dummies, but technically valid: a Void is a
//! unit type with a single possible value.
template <>
struct Traits<Void>
{
typedef Void IVal;
static Void doMakeIVal(const Void &value)
{
return value;
}
static Void doUnion(const Void &, const Void &)
{
return Void();
}
static bool doContains(const Void &, Void)
{
return true;
}
static bool doContainsWarning(const Void &, Void)
{
return true;
}
static Void doRound(const FloatFormat &, const Void &value)
{
return value;
}
static Void doConvert(const FloatFormat &, const Void &value)
{
return value;
}
static void doPrintValue(const FloatFormat &, const Void &, ostream &os)
{
os << "()";
}
static void doPrintIVal(const FloatFormat &, const Void &, ostream &os)
{
os << "()";
}
};
//! This is needed for container-generic operations.
//! We want a scalar type T to be its own "one-element vector".
template <typename T, int Size>
struct ContainerOf
{
typedef Vector<T, Size> Container;
};
template <typename T>
struct ContainerOf<T, 1>
{
typedef T Container;
};
template <int Size>
struct ContainerOf<Void, Size>
{
typedef Void Container;
};
// This is a kludge that is only needed to get the ExprP::operator[] syntactic sugar to work.
template <typename T>
struct ElementOf
{
typedef typename T::Element Element;
};
template <>
struct ElementOf<float>
{
typedef void Element;
};
template <>
struct ElementOf<bool>
{
typedef void Element;
};
template <>
struct ElementOf<int>
{
typedef void Element;
};
/*--------------------------------------------------------------------*//*!
*
* \name Abstract syntax for expressions and statements.
*
* We represent GLSL programs as syntax objects: an Expr<T> represents an
* expression whose GLSL type corresponds to the C++ type T, and a Statement
* represents a statement.
*
* To ease memory management, we use shared pointers to refer to expressions
* and statements. ExprP<T> is a shared pointer to an Expr<T>, and StatementP
* is a shared pointer to a Statement.
*
* \{
*
*//*--------------------------------------------------------------------*/
class ExprBase;
class ExpandContext;
class Statement;
class StatementP;
class FuncBase;
template <typename T>
class ExprP;
template <typename T>
class Variable;
template <typename T>
class VariableP;
template <typename T>
class DefaultSampling;
typedef set<const FuncBase *> FuncSet;
template <typename T>
VariableP<T> variable(const string &name);
StatementP compoundStatement(const vector<StatementP> &statements);
/*--------------------------------------------------------------------*//*!
* \brief A variable environment.
*
* An Environment object maintains the mapping between variables of the
* abstract syntax tree and their values.
*
* \todo [2014-03-28 lauri] At least run-time type safety.
*
*//*--------------------------------------------------------------------*/
class Environment
{
public:
template <typename T>
void bind(const Variable<T> &variable, const typename Traits<T>::IVal &value)
{
uint8_t *const data = new uint8_t[sizeof(value)];
deMemcpy(data, &value, sizeof(value));
de::insert(m_map, variable.getName(), SharedPtr<uint8_t>(data, de::ArrayDeleter<uint8_t>()));
}
template <typename T>
typename Traits<T>::IVal &lookup(const Variable<T> &variable) const
{
uint8_t *const data = de::lookup(m_map, variable.getName()).get();
return *reinterpret_cast<typename Traits<T>::IVal *>(data);
}
private:
map<string, SharedPtr<uint8_t>> m_map;
};
/*--------------------------------------------------------------------*//*!
* \brief Evaluation context.
*
* The evaluation context contains everything that separates one execution of
* an expression from the next. Currently this means the desired floating
* point precision and the current variable environment.
*
*//*--------------------------------------------------------------------*/
struct EvalContext
{
EvalContext(const FloatFormat &format_, Precision floatPrecision_, Environment &env_, int callDepth_ = 0)
: format(format_)
, floatPrecision(floatPrecision_)
, env(env_)
, callDepth(callDepth_)
{
}
FloatFormat format;
Precision floatPrecision;
Environment &env;
int callDepth;
};
/*--------------------------------------------------------------------*//*!
* \brief Simple incremental counter.
*
* This is used to make sure that different ExpandContexts will not produce
* overlapping temporary names.
*
*//*--------------------------------------------------------------------*/
class Counter
{
public:
Counter(int count = 0) : m_count(count)
{
}
int operator()(void)
{
return m_count++;
}
private:
int m_count;
};
/*--------------------------------------------------------------------*//*!
* \brief A statement or declaration.
*
* Statements have no values. Instead, they are executed for their side
* effects only: the execute() method should modify at least one variable in
* the environment.
*
* As a bit of a kludge, a Statement object can also represent a declaration:
* when it is evaluated, it can add a variable binding to the environment
* instead of modifying a current one.
*
*//*--------------------------------------------------------------------*/
class Statement
{
public:
virtual ~Statement(void)
{
}
//! Execute the statement, modifying the environment of `ctx`
void execute(EvalContext &ctx) const
{
this->doExecute(ctx);
}
void print(ostream &os) const
{
this->doPrint(os);
}
//! Add the functions used in this statement to `dst`.
void getUsedFuncs(FuncSet &dst) const
{
this->doGetUsedFuncs(dst);
}
protected:
virtual void doPrint(ostream &os) const = 0;
virtual void doExecute(EvalContext &ctx) const = 0;
virtual void doGetUsedFuncs(FuncSet &dst) const = 0;
};
ostream &operator<<(ostream &os, const Statement &stmt)
{
stmt.print(os);
return os;
}
/*--------------------------------------------------------------------*//*!
* \brief Smart pointer for statements (and declarations)
*
*//*--------------------------------------------------------------------*/
class StatementP : public SharedPtr<const Statement>
{
public:
typedef SharedPtr<const Statement> Super;
StatementP(void)
{
}
explicit StatementP(const Statement *ptr) : Super(ptr)
{
}
StatementP(const Super &ptr) : Super(ptr)
{
}
};
class ExpandContext
{
public:
ExpandContext(Counter &symCounter) : m_symCounter(symCounter)
{
}
ExpandContext(const ExpandContext &parent) : m_symCounter(parent.m_symCounter)
{
}
template <typename T>
VariableP<T> genSym(const string &baseName)
{
return variable<T>(baseName + de::toString(m_symCounter()));
}
void addStatement(const StatementP &stmt)
{
m_statements.push_back(stmt);
}
vector<StatementP> getStatements(void) const
{
return m_statements;
}
private:
Counter &m_symCounter;
vector<StatementP> m_statements;
};
/*--------------------------------------------------------------------*//*!
* \brief
*
* A statement that modifies a variable or a declaration that binds a variable.
*
*//*--------------------------------------------------------------------*/
template <typename T>
class VariableStatement : public Statement
{
public:
VariableStatement(const VariableP<T> &variable, const ExprP<T> &value, bool isDeclaration)
: m_variable(variable)
, m_value(value)
, m_isDeclaration(isDeclaration)
{
}
protected:
void doPrint(ostream &os) const
{
if (m_isDeclaration)
os << glu::declare(getVarTypeOf<T>(), m_variable->getName());
else
os << m_variable->getName();
os << " = " << *m_value << ";\n";
}
void doExecute(EvalContext &ctx) const
{
if (m_isDeclaration)
ctx.env.bind(*m_variable, m_value->evaluate(ctx));
else
ctx.env.lookup(*m_variable) = m_value->evaluate(ctx);
}
void doGetUsedFuncs(FuncSet &dst) const
{
m_value->getUsedFuncs(dst);
}
VariableP<T> m_variable;
ExprP<T> m_value;
bool m_isDeclaration;
};
template <typename T>
StatementP variableStatement(const VariableP<T> &variable, const ExprP<T> &value, bool isDeclaration)
{
return StatementP(new VariableStatement<T>(variable, value, isDeclaration));
}
template <typename T>
StatementP variableDeclaration(const VariableP<T> &variable, const ExprP<T> &definiens)
{
return variableStatement(variable, definiens, true);
}
template <typename T>
StatementP variableAssignment(const VariableP<T> &variable, const ExprP<T> &value)
{
return variableStatement(variable, value, false);
}
/*--------------------------------------------------------------------*//*!
* \brief A compound statement, i.e. a block.
*
* A compound statement is executed by executing its constituent statements in
* sequence.
*
*//*--------------------------------------------------------------------*/
class CompoundStatement : public Statement
{
public:
CompoundStatement(const vector<StatementP> &statements) : m_statements(statements)
{
}
protected:
void doPrint(ostream &os) const
{
os << "{\n";
for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
os << *m_statements[ndx];
os << "}\n";
}
void doExecute(EvalContext &ctx) const
{
for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
m_statements[ndx]->execute(ctx);
}
void doGetUsedFuncs(FuncSet &dst) const
{
for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
m_statements[ndx]->getUsedFuncs(dst);
}
vector<StatementP> m_statements;
};
StatementP compoundStatement(const vector<StatementP> &statements)
{
return StatementP(new CompoundStatement(statements));
}
//! Common base class for all expressions regardless of their type.
class ExprBase
{
public:
virtual ~ExprBase(void)
{
}
void printExpr(ostream &os) const
{
this->doPrintExpr(os);
}
//! Output the functions that this expression refers to
void getUsedFuncs(FuncSet &dst) const
{
this->doGetUsedFuncs(dst);
}
protected:
virtual void doPrintExpr(ostream &) const
{
}
virtual void doGetUsedFuncs(FuncSet &) const
{
}
};
//! Type-specific operations for an expression representing type T.
template <typename T>
class Expr : public ExprBase
{
public:
typedef T Val;
typedef typename Traits<T>::IVal IVal;
IVal evaluate(const EvalContext &ctx) const;
protected:
virtual IVal doEvaluate(const EvalContext &ctx) const = 0;
};
//! Evaluate an expression with the given context, optionally tracing the calls to stderr.
template <typename T>
typename Traits<T>::IVal Expr<T>::evaluate(const EvalContext &ctx) const
{
#ifdef GLS_ENABLE_TRACE
static const FloatFormat highpFmt(-126, 127, 23, true, tcu::MAYBE, tcu::YES, tcu::MAYBE);
EvalContext newCtx(ctx.format, ctx.floatPrecision, ctx.env, ctx.callDepth + 1);
const IVal ret = this->doEvaluate(newCtx);
if (isTypeValid<T>())
{
std::cerr << string(ctx.callDepth, ' ');
this->printExpr(std::cerr);
std::cerr << " -> " << intervalToString<T>(highpFmt, ret) << std::endl;
}
return ret;
#else
return this->doEvaluate(ctx);
#endif
}
template <typename T>
class ExprPBase : public SharedPtr<const Expr<T>>
{
public:
};
ostream &operator<<(ostream &os, const ExprBase &expr)
{
expr.printExpr(os);
return os;
}
/*--------------------------------------------------------------------*//*!
* \brief Shared pointer to an expression of a container type.
*
* Container types (i.e. vectors and matrices) support the subscription
* operator. This class provides a bit of syntactic sugar to allow us to use
* the C++ subscription operator to create a subscription expression.
*//*--------------------------------------------------------------------*/
template <typename T>
class ContainerExprPBase : public ExprPBase<T>
{
public:
ExprP<typename T::Element> operator[](int i) const;
};
template <typename T>
class ExprP : public ExprPBase<T>
{
};
// We treat Voids as containers since the unused parameters in generalized
// vector functions are represented as Voids.
template <>
class ExprP<Void> : public ContainerExprPBase<Void>
{
};
template <typename T, int Size>
class ExprP<Vector<T, Size>> : public ContainerExprPBase<Vector<T, Size>>
{
};
template <typename T, int Rows, int Cols>
class ExprP<Matrix<T, Rows, Cols>> : public ContainerExprPBase<Matrix<T, Rows, Cols>>
{
};
template <typename T>
ExprP<T> exprP(void)
{
return ExprP<T>();
}
template <typename T>
ExprP<T> exprP(const SharedPtr<const Expr<T>> &ptr)
{
ExprP<T> ret;
static_cast<SharedPtr<const Expr<T>> &>(ret) = ptr;
return ret;
}
template <typename T>
ExprP<T> exprP(const Expr<T> *ptr)
{
return exprP(SharedPtr<const Expr<T>>(ptr));
}
/*--------------------------------------------------------------------*//*!
* \brief A shared pointer to a variable expression.
*
* This is just a narrowing of ExprP for the operations that require a variable
* instead of an arbitrary expression.
*
*//*--------------------------------------------------------------------*/
template <typename T>
class VariableP : public SharedPtr<const Variable<T>>
{
public:
typedef SharedPtr<const Variable<T>> Super;
explicit VariableP(const Variable<T> *ptr) : Super(ptr)
{
}
VariableP(void)
{
}
VariableP(const Super &ptr) : Super(ptr)
{
}
operator ExprP<T>(void) const
{
SharedPtr<const Expr<T>> ptr = *this;
return exprP(ptr);
}
};
/*--------------------------------------------------------------------*//*!
* \name Syntactic sugar operators for expressions.
*
* @{
*
* These operators allow the use of C++ syntax to construct GLSL expressions
* containing operators: e.g. "a+b" creates an addition expression with
* operands a and b, and so on.
*
*//*--------------------------------------------------------------------*/
ExprP<float> operator-(const ExprP<float> &arg0);
ExprP<float> operator+(const ExprP<float> &arg0, const ExprP<float> &arg1);
ExprP<float> operator-(const ExprP<float> &arg0, const ExprP<float> &arg1);
ExprP<float> operator*(const ExprP<float> &arg0, const ExprP<float> &arg1);
ExprP<float> operator/(const ExprP<float> &arg0, const ExprP<float> &arg1);
template <int Size>
ExprP<Vector<float, Size>> operator-(const ExprP<Vector<float, Size>> &arg0);
template <int Size>
ExprP<Vector<float, Size>> operator*(const ExprP<Vector<float, Size>> &arg0, const ExprP<float> &arg1);
template <int Size>
ExprP<Vector<float, Size>> operator*(const ExprP<Vector<float, Size>> &arg0, const ExprP<Vector<float, Size>> &arg1);
template <int Size>
ExprP<Vector<float, Size>> operator-(const ExprP<Vector<float, Size>> &arg0, const ExprP<Vector<float, Size>> &arg1);
template <int Left, int Mid, int Right>
ExprP<Matrix<float, Left, Right>> operator*(const ExprP<Matrix<float, Left, Mid>> &left,
const ExprP<Matrix<float, Mid, Right>> &right);
template <int Rows, int Cols>
ExprP<Vector<float, Rows>> operator*(const ExprP<Vector<float, Cols>> &left,
const ExprP<Matrix<float, Rows, Cols>> &right);
template <int Rows, int Cols>
ExprP<Vector<float, Cols>> operator*(const ExprP<Matrix<float, Rows, Cols>> &left,
const ExprP<Vector<float, Rows>> &right);
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> operator*(const ExprP<Matrix<float, Rows, Cols>> &left, const ExprP<float> &right);
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> operator+(const ExprP<Matrix<float, Rows, Cols>> &left,
const ExprP<Matrix<float, Rows, Cols>> &right);
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> operator-(const ExprP<Matrix<float, Rows, Cols>> &mat);
//! @}
/*--------------------------------------------------------------------*//*!
* \brief Variable expression.
*
* A variable is evaluated by looking up its range of possible values from an
* environment.
*//*--------------------------------------------------------------------*/
template <typename T>
class Variable : public Expr<T>
{
public:
typedef typename Expr<T>::IVal IVal;
Variable(const string &name) : m_name(name)
{
}
string getName(void) const
{
return m_name;
}
protected:
void doPrintExpr(ostream &os) const
{
os << m_name;
}
IVal doEvaluate(const EvalContext &ctx) const
{
return ctx.env.lookup<T>(*this);
}
private:
string m_name;
};
template <typename T>
VariableP<T> variable(const string &name)
{
return VariableP<T>(new Variable<T>(name));
}
template <typename T>
VariableP<T> bindExpression(const string &name, ExpandContext &ctx, const ExprP<T> &expr)
{
VariableP<T> var = ctx.genSym<T>(name);
ctx.addStatement(variableDeclaration(var, expr));
return var;
}
/*--------------------------------------------------------------------*//*!
* \brief Constant expression.
*
* A constant is evaluated by rounding it to a set of possible values allowed
* by the current floating point precision.
*//*--------------------------------------------------------------------*/
template <typename T>
class Constant : public Expr<T>
{
public:
typedef typename Expr<T>::IVal IVal;
Constant(const T &value) : m_value(value)
{
}
protected:
void doPrintExpr(ostream &os) const
{
os << m_value;
}
IVal doEvaluate(const EvalContext &) const
{
return makeIVal(m_value);
}
private:
T m_value;
};
template <typename T>
ExprP<T> constant(const T &value)
{
return exprP(new Constant<T>(value));
}
//! Return a reference to a singleton void constant.
const ExprP<Void> &voidP(void)
{
static const ExprP<Void> singleton = constant(Void());
return singleton;
}
/*--------------------------------------------------------------------*//*!
* \brief Four-element tuple.
*
* This is used for various things where we need one thing for each possible
* function parameter. Currently the maximum supported number of parameters is
* four.
*//*--------------------------------------------------------------------*/
template <typename T0 = Void, typename T1 = Void, typename T2 = Void, typename T3 = Void>
struct Tuple4
{
explicit Tuple4(const T0 e0 = T0(), const T1 e1 = T1(), const T2 e2 = T2(), const T3 e3 = T3())
: a(e0)
, b(e1)
, c(e2)
, d(e3)
{
}
T0 a;
T1 b;
T2 c;
T3 d;
};
/*--------------------------------------------------------------------*//*!
* \brief Function signature.
*
* This is a purely compile-time structure used to bundle all types in a
* function signature together. This makes passing the signature around in
* templates easier, since we only need to take and pass a single Sig instead
* of a bunch of parameter types and a return type.
*
*//*--------------------------------------------------------------------*/
template <typename R, typename P0 = Void, typename P1 = Void, typename P2 = Void, typename P3 = Void>
struct Signature
{
typedef R Ret;
typedef P0 Arg0;
typedef P1 Arg1;
typedef P2 Arg2;
typedef P3 Arg3;
typedef typename Traits<Ret>::IVal IRet;
typedef typename Traits<Arg0>::IVal IArg0;
typedef typename Traits<Arg1>::IVal IArg1;
typedef typename Traits<Arg2>::IVal IArg2;
typedef typename Traits<Arg3>::IVal IArg3;
typedef Tuple4<const Arg0 &, const Arg1 &, const Arg2 &, const Arg3 &> Args;
typedef Tuple4<const IArg0 &, const IArg1 &, const IArg2 &, const IArg3 &> IArgs;
typedef Tuple4<ExprP<Arg0>, ExprP<Arg1>, ExprP<Arg2>, ExprP<Arg3>> ArgExprs;
};
typedef vector<const ExprBase *> BaseArgExprs;
/*--------------------------------------------------------------------*//*!
* \brief Type-independent operations for function objects.
*
*//*--------------------------------------------------------------------*/
class FuncBase
{
public:
virtual ~FuncBase(void)
{
}
virtual string getName(void) const = 0;
//! Name of extension that this function requires, or empty.
virtual string getRequiredExtension(const RenderContext &) const
{
return "";
}
virtual void print(ostream &, const BaseArgExprs &) const = 0;
//! Index of output parameter, or -1 if none of the parameters is output.
virtual int getOutParamIndex(void) const
{
return -1;
}
void printDefinition(ostream &os) const
{
doPrintDefinition(os);
}
void getUsedFuncs(FuncSet &dst) const
{
this->doGetUsedFuncs(dst);
}
protected:
virtual void doPrintDefinition(ostream &os) const = 0;
virtual void doGetUsedFuncs(FuncSet &dst) const = 0;
};
typedef Tuple4<string, string, string, string> ParamNames;
/*--------------------------------------------------------------------*//*!
* \brief Function objects.
*
* Each Func object represents a GLSL function. It can be applied to interval
* arguments, and it returns the an interval that is a conservative
* approximation of the image of the GLSL function over the argument
* intervals. That is, it is given a set of possible arguments and it returns
* the set of possible values.
*
*//*--------------------------------------------------------------------*/
template <typename Sig_>
class Func : public FuncBase
{
public:
typedef Sig_ Sig;
typedef typename Sig::Ret Ret;
typedef typename Sig::Arg0 Arg0;
typedef typename Sig::Arg1 Arg1;
typedef typename Sig::Arg2 Arg2;
typedef typename Sig::Arg3 Arg3;
typedef typename Sig::IRet IRet;
typedef typename Sig::IArg0 IArg0;
typedef typename Sig::IArg1 IArg1;
typedef typename Sig::IArg2 IArg2;
typedef typename Sig::IArg3 IArg3;
typedef typename Sig::Args Args;
typedef typename Sig::IArgs IArgs;
typedef typename Sig::ArgExprs ArgExprs;
void print(ostream &os, const BaseArgExprs &args) const
{
this->doPrint(os, args);
}
IRet apply(const EvalContext &ctx, const IArg0 &arg0 = IArg0(), const IArg1 &arg1 = IArg1(),
const IArg2 &arg2 = IArg2(), const IArg3 &arg3 = IArg3()) const
{
return this->applyArgs(ctx, IArgs(arg0, arg1, arg2, arg3));
}
IRet applyArgs(const EvalContext &ctx, const IArgs &args) const
{
return this->doApply(ctx, args);
}
ExprP<Ret> operator()(const ExprP<Arg0> &arg0 = voidP(), const ExprP<Arg1> &arg1 = voidP(),
const ExprP<Arg2> &arg2 = voidP(), const ExprP<Arg3> &arg3 = voidP()) const;
const ParamNames &getParamNames(void) const
{
return this->doGetParamNames();
}
protected:
virtual IRet doApply(const EvalContext &, const IArgs &) const = 0;
virtual void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << getName() << "(";
if (isTypeValid<Arg0>())
os << *args[0];
if (isTypeValid<Arg1>())
os << ", " << *args[1];
if (isTypeValid<Arg2>())
os << ", " << *args[2];
if (isTypeValid<Arg3>())
os << ", " << *args[3];
os << ")";
}
virtual const ParamNames &doGetParamNames(void) const
{
static ParamNames names("a", "b", "c", "d");
return names;
}
};
template <typename Sig>
class Apply : public Expr<typename Sig::Ret>
{
public:
typedef typename Sig::Ret Ret;
typedef typename Sig::Arg0 Arg0;
typedef typename Sig::Arg1 Arg1;
typedef typename Sig::Arg2 Arg2;
typedef typename Sig::Arg3 Arg3;
typedef typename Expr<Ret>::Val Val;
typedef typename Expr<Ret>::IVal IVal;
typedef Func<Sig> ApplyFunc;
typedef typename ApplyFunc::ArgExprs ArgExprs;
Apply(const ApplyFunc &func, const ExprP<Arg0> &arg0 = voidP(), const ExprP<Arg1> &arg1 = voidP(),
const ExprP<Arg2> &arg2 = voidP(), const ExprP<Arg3> &arg3 = voidP())
: m_func(func)
, m_args(arg0, arg1, arg2, arg3)
{
}
Apply(const ApplyFunc &func, const ArgExprs &args) : m_func(func), m_args(args)
{
}
protected:
void doPrintExpr(ostream &os) const
{
BaseArgExprs args;
args.push_back(m_args.a.get());
args.push_back(m_args.b.get());
args.push_back(m_args.c.get());
args.push_back(m_args.d.get());
m_func.print(os, args);
}
IVal doEvaluate(const EvalContext &ctx) const
{
return m_func.apply(ctx, m_args.a->evaluate(ctx), m_args.b->evaluate(ctx), m_args.c->evaluate(ctx),
m_args.d->evaluate(ctx));
}
void doGetUsedFuncs(FuncSet &dst) const
{
m_func.getUsedFuncs(dst);
m_args.a->getUsedFuncs(dst);
m_args.b->getUsedFuncs(dst);
m_args.c->getUsedFuncs(dst);
m_args.d->getUsedFuncs(dst);
}
const ApplyFunc &m_func;
ArgExprs m_args;
};
template <typename T>
class Alternatives : public Func<Signature<T, T, T>>
{
public:
typedef typename Alternatives::Sig Sig;
protected:
typedef typename Alternatives::IRet IRet;
typedef typename Alternatives::IArgs IArgs;
virtual string getName(void) const
{
return "alternatives";
}
virtual void doPrintDefinition(std::ostream &) const
{
}
void doGetUsedFuncs(FuncSet &) const
{
}
virtual IRet doApply(const EvalContext &, const IArgs &args) const
{
return unionIVal<T>(args.a, args.b);
}
virtual void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "{" << *args[0] << " | " << *args[1] << "}";
}
};
template <typename Sig>
ExprP<typename Sig::Ret> createApply(const Func<Sig> &func, const typename Func<Sig>::ArgExprs &args)
{
return exprP(new Apply<Sig>(func, args));
}
template <typename Sig>
ExprP<typename Sig::Ret> createApply(const Func<Sig> &func, const ExprP<typename Sig::Arg0> &arg0 = voidP(),
const ExprP<typename Sig::Arg1> &arg1 = voidP(),
const ExprP<typename Sig::Arg2> &arg2 = voidP(),
const ExprP<typename Sig::Arg3> &arg3 = voidP())
{
return exprP(new Apply<Sig>(func, arg0, arg1, arg2, arg3));
}
template <typename Sig>
ExprP<typename Sig::Ret> Func<Sig>::operator()(const ExprP<typename Sig::Arg0> &arg0,
const ExprP<typename Sig::Arg1> &arg1,
const ExprP<typename Sig::Arg2> &arg2,
const ExprP<typename Sig::Arg3> &arg3) const
{
return createApply(*this, arg0, arg1, arg2, arg3);
}
template <typename F>
ExprP<typename F::Ret> app(const ExprP<typename F::Arg0> &arg0 = voidP(), const ExprP<typename F::Arg1> &arg1 = voidP(),
const ExprP<typename F::Arg2> &arg2 = voidP(), const ExprP<typename F::Arg3> &arg3 = voidP())
{
return createApply(instance<F>(), arg0, arg1, arg2, arg3);
}
template <typename F>
typename F::IRet call(const EvalContext &ctx, const typename F::IArg0 &arg0 = Void(),
const typename F::IArg1 &arg1 = Void(), const typename F::IArg2 &arg2 = Void(),
const typename F::IArg3 &arg3 = Void())
{
return instance<F>().apply(ctx, arg0, arg1, arg2, arg3);
}
template <typename T>
ExprP<T> alternatives(const ExprP<T> &arg0, const ExprP<T> &arg1)
{
return createApply<typename Alternatives<T>::Sig>(instance<Alternatives<T>>(), arg0, arg1);
}
template <typename Sig>
class ApplyVar : public Apply<Sig>
{
public:
typedef typename Sig::Ret Ret;
typedef typename Sig::Arg0 Arg0;
typedef typename Sig::Arg1 Arg1;
typedef typename Sig::Arg2 Arg2;
typedef typename Sig::Arg3 Arg3;
typedef typename Expr<Ret>::Val Val;
typedef typename Expr<Ret>::IVal IVal;
typedef Func<Sig> ApplyFunc;
typedef typename ApplyFunc::ArgExprs ArgExprs;
ApplyVar(const ApplyFunc &func, const VariableP<Arg0> &arg0, const VariableP<Arg1> &arg1,
const VariableP<Arg2> &arg2, const VariableP<Arg3> &arg3)
: Apply<Sig>(func, arg0, arg1, arg2, arg3)
{
}
protected:
IVal doEvaluate(const EvalContext &ctx) const
{
const Variable<Arg0> &var0 = static_cast<const Variable<Arg0> &>(*this->m_args.a);
const Variable<Arg1> &var1 = static_cast<const Variable<Arg1> &>(*this->m_args.b);
const Variable<Arg2> &var2 = static_cast<const Variable<Arg2> &>(*this->m_args.c);
const Variable<Arg3> &var3 = static_cast<const Variable<Arg3> &>(*this->m_args.d);
return this->m_func.apply(ctx, ctx.env.lookup(var0), ctx.env.lookup(var1), ctx.env.lookup(var2),
ctx.env.lookup(var3));
}
};
template <typename Sig>
ExprP<typename Sig::Ret> applyVar(const Func<Sig> &func, const VariableP<typename Sig::Arg0> &arg0,
const VariableP<typename Sig::Arg1> &arg1, const VariableP<typename Sig::Arg2> &arg2,
const VariableP<typename Sig::Arg3> &arg3)
{
return exprP(new ApplyVar<Sig>(func, arg0, arg1, arg2, arg3));
}
template <typename Sig_>
class DerivedFunc : public Func<Sig_>
{
public:
typedef typename DerivedFunc::ArgExprs ArgExprs;
typedef typename DerivedFunc::IRet IRet;
typedef typename DerivedFunc::IArgs IArgs;
typedef typename DerivedFunc::Ret Ret;
typedef typename DerivedFunc::Arg0 Arg0;
typedef typename DerivedFunc::Arg1 Arg1;
typedef typename DerivedFunc::Arg2 Arg2;
typedef typename DerivedFunc::Arg3 Arg3;
typedef typename DerivedFunc::IArg0 IArg0;
typedef typename DerivedFunc::IArg1 IArg1;
typedef typename DerivedFunc::IArg2 IArg2;
typedef typename DerivedFunc::IArg3 IArg3;
protected:
void doPrintDefinition(ostream &os) const
{
const ParamNames &paramNames = this->getParamNames();
initialize();
os << dataTypeNameOf<Ret>() << " " << this->getName() << "(";
if (isTypeValid<Arg0>())
os << dataTypeNameOf<Arg0>() << " " << paramNames.a;
if (isTypeValid<Arg1>())
os << ", " << dataTypeNameOf<Arg1>() << " " << paramNames.b;
if (isTypeValid<Arg2>())
os << ", " << dataTypeNameOf<Arg2>() << " " << paramNames.c;
if (isTypeValid<Arg3>())
os << ", " << dataTypeNameOf<Arg3>() << " " << paramNames.d;
os << ")\n{\n";
for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
os << *m_body[ndx];
os << "return " << *m_ret << ";\n";
os << "}\n";
}
IRet doApply(const EvalContext &ctx, const IArgs &args) const
{
Environment funEnv;
IArgs &mutArgs = const_cast<IArgs &>(args);
IRet ret;
initialize();
funEnv.bind(*m_var0, args.a);
funEnv.bind(*m_var1, args.b);
funEnv.bind(*m_var2, args.c);
funEnv.bind(*m_var3, args.d);
{
EvalContext funCtx(ctx.format, ctx.floatPrecision, funEnv, ctx.callDepth);
for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
m_body[ndx]->execute(funCtx);
ret = m_ret->evaluate(funCtx);
}
// \todo [lauri] Store references instead of values in environment
const_cast<IArg0 &>(mutArgs.a) = funEnv.lookup(*m_var0);
const_cast<IArg1 &>(mutArgs.b) = funEnv.lookup(*m_var1);
const_cast<IArg2 &>(mutArgs.c) = funEnv.lookup(*m_var2);
const_cast<IArg3 &>(mutArgs.d) = funEnv.lookup(*m_var3);
return ret;
}
void doGetUsedFuncs(FuncSet &dst) const
{
initialize();
if (dst.insert(this).second)
{
for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
m_body[ndx]->getUsedFuncs(dst);
m_ret->getUsedFuncs(dst);
}
}
virtual ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args_) const = 0;
// These are transparently initialized when first needed. They cannot be
// initialized in the constructor because they depend on the doExpand
// method of the subclass.
mutable VariableP<Arg0> m_var0;
mutable VariableP<Arg1> m_var1;
mutable VariableP<Arg2> m_var2;
mutable VariableP<Arg3> m_var3;
mutable vector<StatementP> m_body;
mutable ExprP<Ret> m_ret;
private:
void initialize(void) const
{
if (!m_ret)
{
const ParamNames &paramNames = this->getParamNames();
Counter symCounter;
ExpandContext ctx(symCounter);
ArgExprs args;
args.a = m_var0 = variable<Arg0>(paramNames.a);
args.b = m_var1 = variable<Arg1>(paramNames.b);
args.c = m_var2 = variable<Arg2>(paramNames.c);
args.d = m_var3 = variable<Arg3>(paramNames.d);
m_ret = this->doExpand(ctx, args);
m_body = ctx.getStatements();
}
}
};
template <typename Sig>
class PrimitiveFunc : public Func<Sig>
{
public:
typedef typename PrimitiveFunc::Ret Ret;
typedef typename PrimitiveFunc::ArgExprs ArgExprs;
protected:
void doPrintDefinition(ostream &) const
{
}
void doGetUsedFuncs(FuncSet &) const
{
}
};
template <typename T>
class Cond : public PrimitiveFunc<Signature<T, bool, T, T>>
{
public:
typedef typename Cond::IArgs IArgs;
typedef typename Cond::IRet IRet;
string getName(void) const
{
return "_cond";
}
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "(" << *args[0] << " ? " << *args[1] << " : " << *args[2] << ")";
}
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
if (iargs.a.contains(true))
ret = unionIVal<T>(ret, iargs.b);
if (iargs.a.contains(false))
ret = unionIVal<T>(ret, iargs.c);
return ret;
}
};
template <typename T>
class CompareOperator : public PrimitiveFunc<Signature<bool, T, T>>
{
public:
typedef typename CompareOperator::IArgs IArgs;
typedef typename CompareOperator::IArg0 IArg0;
typedef typename CompareOperator::IArg1 IArg1;
typedef typename CompareOperator::IRet IRet;
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "(" << *args[0] << getSymbol() << *args[1] << ")";
}
Interval doApply(const EvalContext &, const IArgs &iargs) const
{
const IArg0 &arg0 = iargs.a;
const IArg1 &arg1 = iargs.b;
IRet ret;
if (canSucceed(arg0, arg1))
ret |= true;
if (canFail(arg0, arg1))
ret |= false;
return ret;
}
virtual string getSymbol(void) const = 0;
virtual bool canSucceed(const IArg0 &, const IArg1 &) const = 0;
virtual bool canFail(const IArg0 &, const IArg1 &) const = 0;
};
template <typename T>
class LessThan : public CompareOperator<T>
{
public:
string getName(void) const
{
return "lessThan";
}
protected:
string getSymbol(void) const
{
return "<";
}
bool canSucceed(const Interval &a, const Interval &b) const
{
return (a.lo() < b.hi());
}
bool canFail(const Interval &a, const Interval &b) const
{
return !(a.hi() < b.lo());
}
};
template <typename T>
ExprP<bool> operator<(const ExprP<T> &a, const ExprP<T> &b)
{
return app<LessThan<T>>(a, b);
}
template <typename T>
ExprP<T> cond(const ExprP<bool> &test, const ExprP<T> &consequent, const ExprP<T> &alternative)
{
return app<Cond<T>>(test, consequent, alternative);
}
/*--------------------------------------------------------------------*//*!
*
* @}
*
*//*--------------------------------------------------------------------*/
class FloatFunc1 : public PrimitiveFunc<Signature<float, float>>
{
protected:
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
return this->applyMonotone(ctx, iargs.a);
}
Interval applyMonotone(const EvalContext &ctx, const Interval &iarg0) const
{
Interval ret;
TCU_INTERVAL_APPLY_MONOTONE1(ret, arg0, iarg0, val,
TCU_SET_INTERVAL(val, point, point = this->applyPoint(ctx, arg0)));
ret |= innerExtrema(ctx, iarg0);
ret &= (this->getCodomain() | TCU_NAN);
return ctx.format.convert(ret);
}
virtual Interval innerExtrema(const EvalContext &, const Interval &) const
{
return Interval(); // empty interval, i.e. no extrema
}
virtual Interval applyPoint(const EvalContext &ctx, double arg0) const
{
const double exact = this->applyExact(arg0);
const double prec = this->precision(ctx, exact, arg0);
const double wprec = this->warningPrecision(ctx, exact, arg0);
Interval ioutput = exact + Interval(-prec, prec);
ioutput.warning(exact - wprec, exact + wprec);
return ioutput;
}
virtual double applyExact(double) const
{
TCU_THROW(InternalError, "Cannot apply");
}
virtual Interval getCodomain(void) const
{
return Interval::unbounded(true);
}
virtual double precision(const EvalContext &ctx, double, double) const = 0;
virtual double warningPrecision(const EvalContext &ctx, double exact, double arg0) const
{
return precision(ctx, exact, arg0);
}
};
class CFloatFunc1 : public FloatFunc1
{
public:
CFloatFunc1(const string &name, DoubleFunc1 &func) : m_name(name), m_func(func)
{
}
string getName(void) const
{
return m_name;
}
protected:
double applyExact(double x) const
{
return m_func(x);
}
const string m_name;
DoubleFunc1 &m_func;
};
class FloatFunc2 : public PrimitiveFunc<Signature<float, float, float>>
{
protected:
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
return this->applyMonotone(ctx, iargs.a, iargs.b);
}
Interval applyMonotone(const EvalContext &ctx, const Interval &xi, const Interval &yi) const
{
Interval reti;
TCU_INTERVAL_APPLY_MONOTONE2(reti, x, xi, y, yi, ret,
TCU_SET_INTERVAL(ret, point, point = this->applyPoint(ctx, x, y)));
reti |= innerExtrema(ctx, xi, yi);
reti &= (this->getCodomain() | TCU_NAN);
return ctx.format.convert(reti);
}
virtual Interval innerExtrema(const EvalContext &, const Interval &, const Interval &) const
{
return Interval(); // empty interval, i.e. no extrema
}
virtual Interval applyPoint(const EvalContext &ctx, double x, double y) const
{
const double exact = this->applyExact(x, y);
const double prec = this->precision(ctx, exact, x, y);
return exact + Interval(-prec, prec);
}
virtual double applyExact(double, double) const
{
TCU_THROW(InternalError, "Cannot apply");
}
virtual Interval getCodomain(void) const
{
return Interval::unbounded(true);
}
virtual double precision(const EvalContext &ctx, double ret, double x, double y) const = 0;
};
class CFloatFunc2 : public FloatFunc2
{
public:
CFloatFunc2(const string &name, DoubleFunc2 &func) : m_name(name), m_func(func)
{
}
string getName(void) const
{
return m_name;
}
protected:
double applyExact(double x, double y) const
{
return m_func(x, y);
}
const string m_name;
DoubleFunc2 &m_func;
};
class InfixOperator : public FloatFunc2
{
protected:
virtual string getSymbol(void) const = 0;
void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
}
Interval applyPoint(const EvalContext &ctx, double x, double y) const
{
const double exact = this->applyExact(x, y);
// Allow either representable number on both sides of the exact value,
// but require exactly representable values to be preserved.
return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
}
double precision(const EvalContext &, double, double, double) const
{
return 0.0;
}
};
class FloatFunc3 : public PrimitiveFunc<Signature<float, float, float, float>>
{
protected:
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
return this->applyMonotone(ctx, iargs.a, iargs.b, iargs.c);
}
Interval applyMonotone(const EvalContext &ctx, const Interval &xi, const Interval &yi, const Interval &zi) const
{
Interval reti;
TCU_INTERVAL_APPLY_MONOTONE3(reti, x, xi, y, yi, z, zi, ret,
TCU_SET_INTERVAL(ret, point, point = this->applyPoint(ctx, x, y, z)));
return ctx.format.convert(reti);
}
virtual Interval applyPoint(const EvalContext &ctx, double x, double y, double z) const
{
const double exact = this->applyExact(x, y, z);
const double prec = this->precision(ctx, exact, x, y, z);
return exact + Interval(-prec, prec);
}
virtual double applyExact(double, double, double) const
{
TCU_THROW(InternalError, "Cannot apply");
}
virtual double precision(const EvalContext &ctx, double result, double x, double y, double z) const = 0;
};
// We define syntactic sugar functions for expression constructors. Since
// these have the same names as ordinary mathematical operations (sin, log
// etc.), it's better to give them a dedicated namespace.
namespace Functions
{
using namespace tcu;
class Add : public InfixOperator
{
public:
string getName(void) const
{
return "add";
}
string getSymbol(void) const
{
return "+";
}
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
// Fast-path for common case
if (iargs.a.isOrdinary(ctx.format.getMaxValue()) && iargs.b.isOrdinary(ctx.format.getMaxValue()))
{
Interval ret;
TCU_SET_INTERVAL_BOUNDS(ret, sum, sum = iargs.a.lo() + iargs.b.lo(), sum = iargs.a.hi() + iargs.b.hi());
return ctx.format.convert(ctx.format.roundOut(ret, true));
}
return this->applyMonotone(ctx, iargs.a, iargs.b);
}
protected:
double applyExact(double x, double y) const
{
return x + y;
}
};
class Mul : public InfixOperator
{
public:
string getName(void) const
{
return "mul";
}
string getSymbol(void) const
{
return "*";
}
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
Interval a = iargs.a;
Interval b = iargs.b;
// Fast-path for common case
if (a.isOrdinary(ctx.format.getMaxValue()) && b.isOrdinary(ctx.format.getMaxValue()))
{
Interval ret;
if (a.hi() < 0)
{
a = -a;
b = -b;
}
if (a.lo() >= 0 && b.lo() >= 0)
{
TCU_SET_INTERVAL_BOUNDS(ret, prod, prod = iargs.a.lo() * iargs.b.lo(),
prod = iargs.a.hi() * iargs.b.hi());
return ctx.format.convert(ctx.format.roundOut(ret, true));
}
if (a.lo() >= 0 && b.hi() <= 0)
{
TCU_SET_INTERVAL_BOUNDS(ret, prod, prod = iargs.a.hi() * iargs.b.lo(),
prod = iargs.a.lo() * iargs.b.hi());
return ctx.format.convert(ctx.format.roundOut(ret, true));
}
}
return this->applyMonotone(ctx, iargs.a, iargs.b);
}
protected:
double applyExact(double x, double y) const
{
return x * y;
}
Interval innerExtrema(const EvalContext &, const Interval &xi, const Interval &yi) const
{
if (((xi.contains(-TCU_INFINITY) || xi.contains(TCU_INFINITY)) && yi.contains(0.0)) ||
((yi.contains(-TCU_INFINITY) || yi.contains(TCU_INFINITY)) && xi.contains(0.0)))
return Interval(TCU_NAN);
return Interval();
}
};
class Sub : public InfixOperator
{
public:
string getName(void) const
{
return "sub";
}
string getSymbol(void) const
{
return "-";
}
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
// Fast-path for common case
if (iargs.a.isOrdinary(ctx.format.getMaxValue()) && iargs.b.isOrdinary(ctx.format.getMaxValue()))
{
Interval ret;
TCU_SET_INTERVAL_BOUNDS(ret, diff, diff = iargs.a.lo() - iargs.b.hi(), diff = iargs.a.hi() - iargs.b.lo());
return ctx.format.convert(ctx.format.roundOut(ret, true));
}
else
{
return this->applyMonotone(ctx, iargs.a, iargs.b);
}
}
protected:
double applyExact(double x, double y) const
{
return x - y;
}
};
class Negate : public FloatFunc1
{
public:
string getName(void) const
{
return "_negate";
}
void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "-" << *args[0];
}
protected:
double precision(const EvalContext &, double, double) const
{
return 0.0;
}
double applyExact(double x) const
{
return -x;
}
};
class Div : public InfixOperator
{
public:
string getName(void) const
{
return "div";
}
protected:
string getSymbol(void) const
{
return "/";
}
Interval innerExtrema(const EvalContext &, const Interval &nom, const Interval &den) const
{
Interval ret;
if (den.contains(0.0))
{
if (nom.contains(0.0))
ret |= TCU_NAN;
if (nom.lo() < 0.0 || nom.hi() > 0.0)
ret |= Interval::unbounded();
}
return ret;
}
double applyExact(double x, double y) const
{
return x / y;
}
Interval applyPoint(const EvalContext &ctx, double x, double y) const
{
Interval ret = FloatFunc2::applyPoint(ctx, x, y);
if (!deIsInf(x) && !deIsInf(y) && y != 0.0)
{
const Interval dst = ctx.format.convert(ret);
if (dst.contains(-TCU_INFINITY))
ret |= -ctx.format.getMaxValue();
if (dst.contains(+TCU_INFINITY))
ret |= +ctx.format.getMaxValue();
}
return ret;
}
double precision(const EvalContext &ctx, double ret, double, double den) const
{
const FloatFormat &fmt = ctx.format;
// \todo [2014-03-05 lauri] Check that the limits in GLSL 3.10 are actually correct.
// For now, we assume that division's precision is 2.5 ULP when the value is within
// [2^MINEXP, 2^MAXEXP-1]
if (den == 0.0)
return 0.0; // Result must be exactly inf
else if (de::inBounds(deAbs(den), deLdExp(1.0, fmt.getMinExp()), deLdExp(1.0, fmt.getMaxExp() - 1)))
return fmt.ulp(ret, 2.5);
else
return TCU_INFINITY; // Can be any number, but must be a number.
}
};
class InverseSqrt : public FloatFunc1
{
public:
string getName(void) const
{
return "inversesqrt";
}
protected:
double applyExact(double x) const
{
return 1.0 / deSqrt(x);
}
double precision(const EvalContext &ctx, double ret, double x) const
{
return x <= 0 ? TCU_NAN : ctx.format.ulp(ret, 2.0);
}
Interval getCodomain(void) const
{
return Interval(0.0, TCU_INFINITY);
}
};
class ExpFunc : public CFloatFunc1
{
public:
ExpFunc(const string &name, DoubleFunc1 &func) : CFloatFunc1(name, func)
{
}
protected:
double precision(const EvalContext &ctx, double ret, double x) const
{
switch (ctx.floatPrecision)
{
case glu::PRECISION_HIGHP:
return ctx.format.ulp(ret, 3.0 + 2.0 * deAbs(x));
case glu::PRECISION_MEDIUMP:
return ctx.format.ulp(ret, 2.0 + 2.0 * deAbs(x));
case glu::PRECISION_LOWP:
return ctx.format.ulp(ret, 2.0);
default:
DE_FATAL("Impossible");
}
return 0;
}
Interval getCodomain(void) const
{
return Interval(0.0, TCU_INFINITY);
}
};
class Exp2 : public ExpFunc
{
public:
Exp2(void) : ExpFunc("exp2", deExp2)
{
}
};
class Exp : public ExpFunc
{
public:
Exp(void) : ExpFunc("exp", deExp)
{
}
};
ExprP<float> exp2(const ExprP<float> &x)
{
return app<Exp2>(x);
}
ExprP<float> exp(const ExprP<float> &x)
{
return app<Exp>(x);
}
class LogFunc : public CFloatFunc1
{
public:
LogFunc(const string &name, DoubleFunc1 &func) : CFloatFunc1(name, func)
{
}
protected:
double precision(const EvalContext &ctx, double ret, double x) const
{
if (x <= 0)
return TCU_NAN;
switch (ctx.floatPrecision)
{
case glu::PRECISION_HIGHP:
return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
case glu::PRECISION_MEDIUMP:
return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 2.0);
case glu::PRECISION_LOWP:
return ctx.format.ulp(ret, 2.0);
default:
DE_FATAL("Impossible");
}
return 0;
}
// OpenGL API Issue #57 "Clarifying the required ULP precision for GLSL built-in log()". Agreed that
// implementations will be allowed 4 ULPs for HIGHP Log/Log2, but CTS should generate a quality warning.
double warningPrecision(const EvalContext &ctx, double ret, double x) const
{
if (ctx.floatPrecision == glu::PRECISION_HIGHP && x > 0)
{
return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 4.0);
}
else
{
return precision(ctx, ret, x);
}
}
};
class Log2 : public LogFunc
{
public:
Log2(void) : LogFunc("log2", deLog2)
{
}
};
class Log : public LogFunc
{
public:
Log(void) : LogFunc("log", deLog)
{
}
};
ExprP<float> log2(const ExprP<float> &x)
{
return app<Log2>(x);
}
ExprP<float> log(const ExprP<float> &x)
{
return app<Log>(x);
}
#define DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) \
ExprP<TRET> NAME(const ExprP<T0> &arg0) \
{ \
return app<CLASS>(arg0); \
}
#define DEFINE_DERIVED1(CLASS, TRET, NAME, T0, ARG0, EXPANSION) \
class CLASS : public DerivedFunc<Signature<TRET, T0>> /* NOLINT(CLASS) */ \
{ \
public: \
string getName(void) const \
{ \
return #NAME; \
} \
\
protected: \
ExprP<TRET> doExpand(ExpandContext &, const CLASS::ArgExprs &args_) const \
{ \
const ExprP<float> &ARG0 = args_.a; \
return EXPANSION; \
} \
}; \
DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
#define DEFINE_DERIVED_FLOAT1(CLASS, NAME, ARG0, EXPANSION) DEFINE_DERIVED1(CLASS, float, NAME, float, ARG0, EXPANSION)
#define DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1) \
ExprP<TRET> NAME(const ExprP<T0> &arg0, const ExprP<T1> &arg1) \
{ \
return app<CLASS>(arg0, arg1); \
}
#define DEFINE_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION) \
class CLASS : public DerivedFunc<Signature<TRET, T0, T1>> /* NOLINT(CLASS) */ \
{ \
public: \
string getName(void) const \
{ \
return #NAME; \
} \
\
protected: \
ExprP<TRET> doExpand(ExpandContext &, const ArgExprs &args_) const \
{ \
const ExprP<T0> &Arg0 = args_.a; \
const ExprP<T1> &Arg1 = args_.b; \
return EXPANSION; \
} \
}; \
DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)
#define DEFINE_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION) \
DEFINE_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION)
#define DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2) \
ExprP<TRET> NAME(const ExprP<T0> &arg0, const ExprP<T1> &arg1, const ExprP<T2> &arg2) \
{ \
return app<CLASS>(arg0, arg1, arg2); \
}
#define DEFINE_DERIVED3(CLASS, TRET, NAME, T0, ARG0, T1, ARG1, T2, ARG2, EXPANSION) \
class CLASS : public DerivedFunc<Signature<TRET, T0, T1, T2>> /* NOLINT(CLASS) */ \
{ \
public: \
string getName(void) const \
{ \
return #NAME; \
} \
\
protected: \
ExprP<TRET> doExpand(ExpandContext &, const ArgExprs &args_) const \
{ \
const ExprP<T0> &ARG0 = args_.a; \
const ExprP<T1> &ARG1 = args_.b; \
const ExprP<T2> &ARG2 = args_.c; \
return EXPANSION; \
} \
}; \
DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)
#define DEFINE_DERIVED_FLOAT3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION) \
DEFINE_DERIVED3(CLASS, float, NAME, float, ARG0, float, ARG1, float, ARG2, EXPANSION)
#define DEFINE_CONSTRUCTOR4(CLASS, TRET, NAME, T0, T1, T2, T3) \
ExprP<TRET> NAME(const ExprP<T0> &arg0, const ExprP<T1> &arg1, const ExprP<T2> &arg2, const ExprP<T3> &arg3) \
{ \
return app<CLASS>(arg0, arg1, arg2, arg3); \
}
DEFINE_DERIVED_FLOAT1(Sqrt, sqrt, x, (x == 0.0f ? constant(1.0f) : (constant(1.0f) / app<InverseSqrt>(x))))
DEFINE_DERIVED_FLOAT2(Pow, pow, x, y, exp2(y *log2(x)))
DEFINE_DERIVED_FLOAT1(Radians, radians, d, (constant(DE_PI) / constant(180.0f)) * d)
DEFINE_DERIVED_FLOAT1(Degrees, degrees, r, (constant(180.0f) / constant(DE_PI)) * r)
class TrigFunc : public CFloatFunc1
{
public:
TrigFunc(const string &name, DoubleFunc1 &func, const Interval &loEx, const Interval &hiEx)
: CFloatFunc1(name, func)
, m_loExtremum(loEx)
, m_hiExtremum(hiEx)
{
}
protected:
Interval innerExtrema(const EvalContext &, const Interval &angle) const
{
const double lo = angle.lo();
const double hi = angle.hi();
const int loSlope = doGetSlope(lo);
const int hiSlope = doGetSlope(hi);
// Detect the high and low values the function can take between the
// interval endpoints.
if (angle.length() >= 2.0 * DE_PI_DOUBLE)
{
// The interval is longer than a full cycle, so it must get all possible values.
return m_hiExtremum | m_loExtremum;
}
else if (loSlope == 1 && hiSlope == -1)
{
// The slope can change from positive to negative only at the maximum value.
return m_hiExtremum;
}
else if (loSlope == -1 && hiSlope == 1)
{
// The slope can change from negative to positive only at the maximum value.
return m_loExtremum;
}
else if (loSlope == hiSlope && deIntSign(applyExact(hi) - applyExact(lo)) * loSlope == -1)
{
// The slope has changed twice between the endpoints, so both extrema are included.
return m_hiExtremum | m_loExtremum;
}
return Interval();
}
Interval getCodomain(void) const
{
// Ensure that result is always within [-1, 1], or NaN (for +-inf)
return Interval(-1.0, 1.0) | TCU_NAN;
}
double precision(const EvalContext &ctx, double ret, double arg) const
{
if (ctx.floatPrecision == glu::PRECISION_HIGHP)
{
// Use precision from OpenCL fast relaxed math
if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
{
return deLdExp(1.0, -11);
}
else
{
// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
// 2^-11 at x == pi.
return deLdExp(deAbs(arg), -12);
}
}
else if (ctx.floatPrecision == glu::PRECISION_MEDIUMP)
{
if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
{
// from OpenCL half-float extension specification
return ctx.format.ulp(ret, 2.0);
}
else
{
// |x| * 2^-10, slightly larger than 2 ULP at x == pi
return deLdExp(deAbs(arg), -10);
}
}
else
{
DE_ASSERT(ctx.floatPrecision == glu::PRECISION_LOWP);
// from OpenCL half-float extension specification
return ctx.format.ulp(ret, 2.0);
}
}
virtual int doGetSlope(double angle) const = 0;
Interval m_loExtremum;
Interval m_hiExtremum;
};
class Sin : public TrigFunc
{
public:
Sin(void) : TrigFunc("sin", deSin, -1.0, 1.0)
{
}
protected:
int doGetSlope(double angle) const
{
return deIntSign(deCos(angle));
}
};
ExprP<float> sin(const ExprP<float> &x)
{
return app<Sin>(x);
}
class Cos : public TrigFunc
{
public:
Cos(void) : TrigFunc("cos", deCos, -1.0, 1.0)
{
}
protected:
int doGetSlope(double angle) const
{
return -deIntSign(deSin(angle));
}
};
ExprP<float> cos(const ExprP<float> &x)
{
return app<Cos>(x);
}
DEFINE_DERIVED_FLOAT1(Tan, tan, x, sin(x) * (constant(1.0f) / cos(x)))
class ASin : public CFloatFunc1
{
public:
ASin(void) : CFloatFunc1("asin", deAsin)
{
}
protected:
double precision(const EvalContext &ctx, double, double x) const
{
if (!de::inBounds(x, -1.0, 1.0))
return TCU_NAN;
if (ctx.floatPrecision == glu::PRECISION_HIGHP)
{
// Absolute error of 2^-11
return deLdExp(1.0, -11);
}
else
{
// Absolute error of 2^-8
return deLdExp(1.0, -8);
}
}
};
class ArcTrigFunc : public CFloatFunc1
{
public:
ArcTrigFunc(const string &name, DoubleFunc1 &func, double precisionULPs, const Interval &domain,
const Interval &codomain)
: CFloatFunc1(name, func)
, m_precision(precisionULPs)
, m_domain(domain)
, m_codomain(codomain)
{
}
protected:
double precision(const EvalContext &ctx, double ret, double x) const
{
if (!m_domain.contains(x))
return TCU_NAN;
if (ctx.floatPrecision == glu::PRECISION_HIGHP)
{
// Use OpenCL's fast relaxed math precision
return ctx.format.ulp(ret, m_precision);
}
else
{
// Use OpenCL half-float spec
return ctx.format.ulp(ret, 2.0);
}
}
// We could implement getCodomain with m_codomain, but choose not to,
// because it seems too strict with trascendental constants like pi.
const double m_precision;
const Interval m_domain;
const Interval m_codomain;
};
class ACos : public ArcTrigFunc
{
public:
ACos(void) : ArcTrigFunc("acos", deAcos, 4096.0, Interval(-1.0, 1.0), Interval(0.0, DE_PI_DOUBLE))
{
}
};
class ATan : public ArcTrigFunc
{
public:
ATan(void)
: ArcTrigFunc("atan", deAtanOver, 4096.0, Interval::unbounded(),
Interval(-DE_PI_DOUBLE * 0.5, DE_PI_DOUBLE * 0.5))
{
}
};
class ATan2 : public CFloatFunc2
{
public:
ATan2(void) : CFloatFunc2("atan", deAtan2)
{
}
protected:
Interval innerExtrema(const EvalContext &ctx, const Interval &yi, const Interval &xi) const
{
Interval ret;
if (yi.contains(0.0))
{
if (xi.contains(0.0))
ret |= TCU_NAN;
if (xi.intersects(Interval(-TCU_INFINITY, 0.0)))
ret |= Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE);
}
if (!yi.isFinite(ctx.format.getMaxValue()) || !xi.isFinite(ctx.format.getMaxValue()))
{
// Infinities may not be supported, allow anything, including NaN
ret |= TCU_NAN;
}
return ret;
}
double precision(const EvalContext &ctx, double ret, double, double) const
{
if (ctx.floatPrecision == glu::PRECISION_HIGHP)
return ctx.format.ulp(ret, 4096.0);
else
return ctx.format.ulp(ret, 2.0);
}
// Codomain could be [-pi, pi], but that would probably be too strict.
};
DEFINE_DERIVED_FLOAT1(Sinh, sinh, x, (exp(x) - exp(-x)) / constant(2.0f))
DEFINE_DERIVED_FLOAT1(Cosh, cosh, x, (exp(x) + exp(-x)) / constant(2.0f))
DEFINE_DERIVED_FLOAT1(Tanh, tanh, x, sinh(x) / cosh(x))
// These are not defined as derived forms in the GLSL ES spec, but
// that gives us a reasonable precision.
DEFINE_DERIVED_FLOAT1(ASinh, asinh, x, log(x + sqrt(x * x + constant(1.0f))))
DEFINE_DERIVED_FLOAT1(ACosh, acosh, x,
log(x +
sqrt(alternatives((x + constant(1.0f)) * (x - constant(1.0f)), (x * x - constant(1.0f))))))
DEFINE_DERIVED_FLOAT1(ATanh, atanh, x, constant(0.5f) * log((constant(1.0f) + x) / (constant(1.0f) - x)))
template <typename T>
class GetComponent : public PrimitiveFunc<Signature<typename T::Element, T, int>>
{
public:
typedef typename GetComponent::IRet IRet;
string getName(void) const
{
return "_getComponent";
}
void print(ostream &os, const BaseArgExprs &args) const
{
os << *args[0] << "[" << *args[1] << "]";
}
protected:
IRet doApply(const EvalContext &, const typename GetComponent::IArgs &iargs) const
{
IRet ret;
for (int compNdx = 0; compNdx < T::SIZE; ++compNdx)
{
if (iargs.b.contains(compNdx))
ret = unionIVal<typename T::Element>(ret, iargs.a[compNdx]);
}
return ret;
}
};
template <typename T>
ExprP<typename T::Element> getComponent(const ExprP<T> &container, int ndx)
{
DE_ASSERT(0 <= ndx && ndx < T::SIZE);
return app<GetComponent<T>>(container, constant(ndx));
}
template <typename T>
string vecNamePrefix(void);
template <>
string vecNamePrefix<float>(void)
{
return "";
}
template <>
string vecNamePrefix<int>(void)
{
return "i";
}
template <>
string vecNamePrefix<bool>(void)
{
return "b";
}
template <typename T, int Size>
string vecName(void)
{
return vecNamePrefix<T>() + "vec" + de::toString(Size);
}
template <typename T, int Size>
class GenVec;
template <typename T>
class GenVec<T, 1> : public DerivedFunc<Signature<T, T>>
{
public:
typedef typename GenVec<T, 1>::ArgExprs ArgExprs;
string getName(void) const
{
return "_" + vecName<T, 1>();
}
protected:
ExprP<T> doExpand(ExpandContext &, const ArgExprs &args) const
{
return args.a;
}
};
template <typename T>
class GenVec<T, 2> : public PrimitiveFunc<Signature<Vector<T, 2>, T, T>>
{
public:
typedef typename GenVec::IRet IRet;
typedef typename GenVec::IArgs IArgs;
string getName(void) const
{
return vecName<T, 2>();
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
return IRet(iargs.a, iargs.b);
}
};
template <typename T>
class GenVec<T, 3> : public PrimitiveFunc<Signature<Vector<T, 3>, T, T, T>>
{
public:
typedef typename GenVec::IRet IRet;
typedef typename GenVec::IArgs IArgs;
string getName(void) const
{
return vecName<T, 3>();
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
return IRet(iargs.a, iargs.b, iargs.c);
}
};
template <typename T>
class GenVec<T, 4> : public PrimitiveFunc<Signature<Vector<T, 4>, T, T, T, T>>
{
public:
typedef typename GenVec::IRet IRet;
typedef typename GenVec::IArgs IArgs;
string getName(void) const
{
return vecName<T, 4>();
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
return IRet(iargs.a, iargs.b, iargs.c, iargs.d);
}
};
template <typename T, int Rows, int Columns>
class GenMat;
template <typename T, int Rows>
class GenMat<T, Rows, 2> : public PrimitiveFunc<Signature<Matrix<T, Rows, 2>, Vector<T, Rows>, Vector<T, Rows>>>
{
public:
typedef typename GenMat::Ret Ret;
typedef typename GenMat::IRet IRet;
typedef typename GenMat::IArgs IArgs;
string getName(void) const
{
return dataTypeNameOf<Ret>();
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
ret[0] = iargs.a;
ret[1] = iargs.b;
return ret;
}
};
template <typename T, int Rows>
class GenMat<T, Rows, 3>
: public PrimitiveFunc<Signature<Matrix<T, Rows, 3>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>>>
{
public:
typedef typename GenMat::Ret Ret;
typedef typename GenMat::IRet IRet;
typedef typename GenMat::IArgs IArgs;
string getName(void) const
{
return dataTypeNameOf<Ret>();
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
ret[0] = iargs.a;
ret[1] = iargs.b;
ret[2] = iargs.c;
return ret;
}
};
template <typename T, int Rows>
class GenMat<T, Rows, 4>
: public PrimitiveFunc<
Signature<Matrix<T, Rows, 4>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>>>
{
public:
typedef typename GenMat::Ret Ret;
typedef typename GenMat::IRet IRet;
typedef typename GenMat::IArgs IArgs;
string getName(void) const
{
return dataTypeNameOf<Ret>();
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
ret[0] = iargs.a;
ret[1] = iargs.b;
ret[2] = iargs.c;
ret[3] = iargs.d;
return ret;
}
};
template <typename T, int Rows>
ExprP<Matrix<T, Rows, 2>> mat2(const ExprP<Vector<T, Rows>> &arg0, const ExprP<Vector<T, Rows>> &arg1)
{
return app<GenMat<T, Rows, 2>>(arg0, arg1);
}
template <typename T, int Rows>
ExprP<Matrix<T, Rows, 3>> mat3(const ExprP<Vector<T, Rows>> &arg0, const ExprP<Vector<T, Rows>> &arg1,
const ExprP<Vector<T, Rows>> &arg2)
{
return app<GenMat<T, Rows, 3>>(arg0, arg1, arg2);
}
template <typename T, int Rows>
ExprP<Matrix<T, Rows, 4>> mat4(const ExprP<Vector<T, Rows>> &arg0, const ExprP<Vector<T, Rows>> &arg1,
const ExprP<Vector<T, Rows>> &arg2, const ExprP<Vector<T, Rows>> &arg3)
{
return app<GenMat<T, Rows, 4>>(arg0, arg1, arg2, arg3);
}
template <int Rows, int Cols>
class MatNeg : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols>>>
{
public:
typedef typename MatNeg::IRet IRet;
typedef typename MatNeg::IArgs IArgs;
string getName(void) const
{
return "_matNeg";
}
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "-(" << *args[0] << ")";
}
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
for (int col = 0; col < Cols; ++col)
{
for (int row = 0; row < Rows; ++row)
ret[col][row] = -iargs.a[col][row];
}
return ret;
}
};
template <typename T, typename Sig>
class CompWiseFunc : public PrimitiveFunc<Sig>
{
public:
typedef Func<Signature<T, T, T>> ScalarFunc;
string getName(void) const
{
return doGetScalarFunc().getName();
}
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
doGetScalarFunc().print(os, args);
}
virtual const ScalarFunc &doGetScalarFunc(void) const = 0;
};
template <int Rows, int Cols>
class CompMatFuncBase
: public CompWiseFunc<float,
Signature<Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols>>>
{
public:
typedef typename CompMatFuncBase::IRet IRet;
typedef typename CompMatFuncBase::IArgs IArgs;
protected:
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
IRet ret;
for (int col = 0; col < Cols; ++col)
{
for (int row = 0; row < Rows; ++row)
ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b[col][row]);
}
return ret;
}
};
template <typename F, int Rows, int Cols>
class CompMatFunc : public CompMatFuncBase<Rows, Cols>
{
protected:
const typename CompMatFunc::ScalarFunc &doGetScalarFunc(void) const
{
return instance<F>();
}
};
class ScalarMatrixCompMult : public Mul
{
public:
string getName(void) const
{
return "matrixCompMult";
}
void doPrint(ostream &os, const BaseArgExprs &args) const
{
Func<Sig>::doPrint(os, args);
}
};
template <int Rows, int Cols>
class MatrixCompMult : public CompMatFunc<ScalarMatrixCompMult, Rows, Cols>
{
};
template <int Rows, int Cols>
class ScalarMatFuncBase
: public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols>, float>>
{
public:
typedef typename ScalarMatFuncBase::IRet IRet;
typedef typename ScalarMatFuncBase::IArgs IArgs;
protected:
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
IRet ret;
for (int col = 0; col < Cols; ++col)
{
for (int row = 0; row < Rows; ++row)
ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b);
}
return ret;
}
};
template <typename F, int Rows, int Cols>
class ScalarMatFunc : public ScalarMatFuncBase<Rows, Cols>
{
protected:
const typename ScalarMatFunc::ScalarFunc &doGetScalarFunc(void) const
{
return instance<F>();
}
};
template <typename T, int Size>
struct GenXType;
template <typename T>
struct GenXType<T, 1>
{
static ExprP<T> genXType(const ExprP<T> &x)
{
return x;
}
};
template <typename T>
struct GenXType<T, 2>
{
static ExprP<Vector<T, 2>> genXType(const ExprP<T> &x)
{
return app<GenVec<T, 2>>(x, x);
}
};
template <typename T>
struct GenXType<T, 3>
{
static ExprP<Vector<T, 3>> genXType(const ExprP<T> &x)
{
return app<GenVec<T, 3>>(x, x, x);
}
};
template <typename T>
struct GenXType<T, 4>
{
static ExprP<Vector<T, 4>> genXType(const ExprP<T> &x)
{
return app<GenVec<T, 4>>(x, x, x, x);
}
};
//! Returns an expression of vector of size `Size` (or scalar if Size == 1),
//! with each element initialized with the expression `x`.
template <typename T, int Size>
ExprP<typename ContainerOf<T, Size>::Container> genXType(const ExprP<T> &x)
{
return GenXType<T, Size>::genXType(x);
}
typedef GenVec<float, 2> FloatVec2;
DEFINE_CONSTRUCTOR2(FloatVec2, Vec2, vec2, float, float)
typedef GenVec<float, 3> FloatVec3;
DEFINE_CONSTRUCTOR3(FloatVec3, Vec3, vec3, float, float, float)
typedef GenVec<float, 4> FloatVec4;
DEFINE_CONSTRUCTOR4(FloatVec4, Vec4, vec4, float, float, float, float)
template <int Size>
class Dot : public DerivedFunc<Signature<float, Vector<float, Size>, Vector<float, Size>>>
{
public:
typedef typename Dot::ArgExprs ArgExprs;
string getName(void) const
{
return "dot";
}
protected:
ExprP<float> doExpand(ExpandContext &, const ArgExprs &args) const
{
ExprP<float> op[Size];
// Precompute all products.
for (int ndx = 0; ndx < Size; ++ndx)
op[ndx] = args.a[ndx] * args.b[ndx];
int idx[Size];
//Prepare an array of indices.
for (int ndx = 0; ndx < Size; ++ndx)
idx[ndx] = ndx;
ExprP<float> res = op[0];
// Compute the first dot alternative: SUM(a[i]*b[i]), i = 0 .. Size-1
for (int ndx = 1; ndx < Size; ++ndx)
res = res + op[ndx];
// Generate all permutations of indices and
// using a permutation compute a dot alternative.
// Generates all possible variants fo summation of products in the dot product expansion expression.
do
{
ExprP<float> alt = constant(0.0f);
for (int ndx = 0; ndx < Size; ++ndx)
alt = alt + op[idx[ndx]];
res = alternatives(res, alt);
} while (std::next_permutation(idx, idx + Size));
return res;
}
};
template <>
class Dot<1> : public DerivedFunc<Signature<float, float, float>>
{
public:
string getName(void) const
{
return "dot";
}
ExprP<float> doExpand(ExpandContext &, const ArgExprs &args) const
{
return args.a * args.b;
}
};
template <int Size>
ExprP<float> dot(const ExprP<Vector<float, Size>> &x, const ExprP<Vector<float, Size>> &y)
{
return app<Dot<Size>>(x, y);
}
ExprP<float> dot(const ExprP<float> &x, const ExprP<float> &y)
{
return app<Dot<1>>(x, y);
}
template <int Size>
class Length : public DerivedFunc<Signature<float, typename ContainerOf<float, Size>::Container>>
{
public:
typedef typename Length::ArgExprs ArgExprs;
string getName(void) const
{
return "length";
}
protected:
ExprP<float> doExpand(ExpandContext &, const ArgExprs &args) const
{
return sqrt(dot(args.a, args.a));
}
};
template <int Size>
ExprP<float> length(const ExprP<typename ContainerOf<float, Size>::Container> &x)
{
return app<Length<Size>>(x);
}
template <int Size>
class Distance
: public DerivedFunc<
Signature<float, typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container>>
{
public:
typedef typename Distance::Ret Ret;
typedef typename Distance::ArgExprs ArgExprs;
string getName(void) const
{
return "distance";
}
protected:
ExprP<Ret> doExpand(ExpandContext &, const ArgExprs &args) const
{
return length<Size>(args.a - args.b);
}
};
// cross
class Cross : public DerivedFunc<Signature<Vec3, Vec3, Vec3>>
{
public:
string getName(void) const
{
return "cross";
}
protected:
ExprP<Vec3> doExpand(ExpandContext &, const ArgExprs &x) const
{
return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2], x.a[2] * x.b[0] - x.b[2] * x.a[0],
x.a[0] * x.b[1] - x.b[0] * x.a[1]);
}
};
DEFINE_CONSTRUCTOR2(Cross, Vec3, cross, Vec3, Vec3)
template <int Size>
class Normalize
: public DerivedFunc<
Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container>>
{
public:
typedef typename Normalize::Ret Ret;
typedef typename Normalize::ArgExprs ArgExprs;
string getName(void) const
{
return "normalize";
}
protected:
ExprP<Ret> doExpand(ExpandContext &, const ArgExprs &args) const
{
return args.a / length<Size>(args.a);
}
};
template <int Size>
class FaceForward
: public DerivedFunc<
Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container,
typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container>>
{
public:
typedef typename FaceForward::Ret Ret;
typedef typename FaceForward::ArgExprs ArgExprs;
string getName(void) const
{
return "faceforward";
}
protected:
ExprP<Ret> doExpand(ExpandContext &, const ArgExprs &args) const
{
return cond(dot(args.c, args.b) < constant(0.0f), args.a, -args.a);
}
};
template <int Size, typename Ret, typename Arg0, typename Arg1>
struct ApplyReflect
{
static ExprP<Ret> apply(ExpandContext &ctx, const ExprP<Arg0> &i, const ExprP<Arg1> &n)
{
const ExprP<float> dotNI = bindExpression("dotNI", ctx, dot(n, i));
return i - alternatives((n * dotNI) * constant(2.0f), n * (dotNI * constant(2.0f)));
}
};
template <typename Ret, typename Arg0, typename Arg1>
struct ApplyReflect<1, Ret, Arg0, Arg1>
{
static ExprP<Ret> apply(ExpandContext &, const ExprP<Arg0> &i, const ExprP<Arg1> &n)
{
return i - alternatives(alternatives((n * (n * i)) * constant(2.0f), n * ((n * i) * constant(2.0f))),
(n * n) * (i * constant(2.0f)));
}
};
template <int Size>
class Reflect
: public DerivedFunc<
Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container,
typename ContainerOf<float, Size>::Container>>
{
public:
typedef typename Reflect::Ret Ret;
typedef typename Reflect::Arg0 Arg0;
typedef typename Reflect::Arg1 Arg1;
typedef typename Reflect::ArgExprs ArgExprs;
string getName(void) const
{
return "reflect";
}
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
const ExprP<Arg0> &i = args.a;
const ExprP<Arg1> &n = args.b;
return ApplyReflect<Size, Ret, Arg0, Arg1>::apply(ctx, i, n);
}
};
template <int Size>
class Refract
: public DerivedFunc<
Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container,
typename ContainerOf<float, Size>::Container, float>>
{
public:
typedef typename Refract::Ret Ret;
typedef typename Refract::Arg0 Arg0;
typedef typename Refract::Arg1 Arg1;
typedef typename Refract::ArgExprs ArgExprs;
string getName(void) const
{
return "refract";
}
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
const ExprP<Arg0> &i = args.a;
const ExprP<Arg1> &n = args.b;
const ExprP<float> &eta = args.c;
const ExprP<float> dotNI = bindExpression("dotNI", ctx, dot(n, i));
const ExprP<float> k1 =
bindExpression("k1", ctx, constant(1.0f) - eta * eta * (constant(1.0f) - dotNI * dotNI));
const ExprP<float> k2 =
bindExpression("k2", ctx, (((dotNI * (-dotNI)) + constant(1.0f)) * eta) * (-eta) + constant(1.0f));
const ExprP<float> k = bindExpression("k", ctx, alternatives(k1, k2));
return cond(k < constant(0.0f), genXType<float, Size>(constant(0.0f)), i * eta - n * (eta * dotNI + sqrt(k)));
}
};
class PreciseFunc1 : public CFloatFunc1
{
public:
PreciseFunc1(const string &name, DoubleFunc1 &func) : CFloatFunc1(name, func)
{
}
protected:
double precision(const EvalContext &, double, double) const
{
return 0.0;
}
};
class Abs : public PreciseFunc1
{
public:
Abs(void) : PreciseFunc1("abs", deAbs)
{
}
};
class Sign : public PreciseFunc1
{
public:
Sign(void) : PreciseFunc1("sign", deSign)
{
}
};
class Floor : public PreciseFunc1
{
public:
Floor(void) : PreciseFunc1("floor", deFloor)
{
}
};
class Trunc : public PreciseFunc1
{
public:
Trunc(void) : PreciseFunc1("trunc", deTrunc)
{
}
};
class Round : public FloatFunc1
{
public:
string getName(void) const
{
return "round";
}
protected:
Interval applyPoint(const EvalContext &, double x) const
{
double truncated = 0.0;
const double fract = deModf(x, &truncated);
Interval ret;
if (fabs(fract) <= 0.5)
ret |= truncated;
if (fabs(fract) >= 0.5)
ret |= truncated + deSign(fract);
return ret;
}
double precision(const EvalContext &, double, double) const
{
return 0.0;
}
};
class RoundEven : public PreciseFunc1
{
public:
RoundEven(void) : PreciseFunc1("roundEven", deRoundEven)
{
}
};
class Ceil : public PreciseFunc1
{
public:
Ceil(void) : PreciseFunc1("ceil", deCeil)
{
}
};
DEFINE_DERIVED_FLOAT1(Fract, fract, x, x - app<Floor>(x))
class PreciseFunc2 : public CFloatFunc2
{
public:
PreciseFunc2(const string &name, DoubleFunc2 &func) : CFloatFunc2(name, func)
{
}
protected:
double precision(const EvalContext &, double, double, double) const
{
return 0.0;
}
};
DEFINE_DERIVED_FLOAT2(Mod, mod, x, y, x - y * app<Floor>(x / y))
class Modf : public PrimitiveFunc<Signature<float, float, float>>
{
public:
string getName(void) const
{
return "modf";
}
protected:
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
Interval fracIV;
Interval &wholeIV = const_cast<Interval &>(iargs.b);
double intPart = 0;
TCU_INTERVAL_APPLY_MONOTONE1(fracIV, x, iargs.a, frac, frac = deModf(x, &intPart));
TCU_INTERVAL_APPLY_MONOTONE1(wholeIV, x, iargs.a, whole, deModf(x, &intPart); whole = intPart);
if (!iargs.a.isFinite(ctx.format.getMaxValue()))
{
// Behavior on modf(Inf) not well-defined, allow anything as a fractional part
// See Khronos bug 13907
fracIV |= TCU_NAN;
}
return fracIV;
}
int getOutParamIndex(void) const
{
return 1;
}
};
int compare(const EvalContext &ctx, double x, double y)
{
if (ctx.format.hasSubnormal() != tcu::YES)
{
const int minExp = ctx.format.getMinExp();
const int fractionBits = ctx.format.getFractionBits();
const double minQuantum = deLdExp(1.0f, minExp - fractionBits);
const double minNormalized = deLdExp(1.0f, minExp);
const double maxSubnormal = minNormalized - minQuantum;
const double minSubnormal = -maxSubnormal;
if (minSubnormal <= x && x <= maxSubnormal && minSubnormal <= y && y <= maxSubnormal)
return 0;
}
if (x < y)
return -1;
if (y < x)
return 1;
return 0;
}
class MinMaxFunc : public FloatFunc2
{
public:
MinMaxFunc(const string &name, int sign) : m_name(name), m_sign(sign)
{
}
string getName(void) const
{
return m_name;
}
protected:
Interval applyPoint(const EvalContext &ctx, double x, double y) const
{
const int cmp = compare(ctx, x, y) * m_sign;
if (cmp > 0)
return x;
if (cmp < 0)
return y;
// An implementation without subnormals may not be able to distinguish
// between x and y even when they're not equal in host arithmetic.
return Interval(x, y);
}
double precision(const EvalContext &, double, double, double) const
{
return 0.0;
}
const string m_name;
const int m_sign;
};
class Min : public MinMaxFunc
{
public:
Min(void) : MinMaxFunc("min", -1)
{
}
};
class Max : public MinMaxFunc
{
public:
Max(void) : MinMaxFunc("max", 1)
{
}
};
class Clamp : public FloatFunc3
{
public:
string getName(void) const
{
return "clamp";
}
protected:
Interval applyPoint(const EvalContext &ctx, double x, double minVal, double maxVal) const
{
if (minVal > maxVal)
return TCU_NAN;
const int cmpMin = compare(ctx, x, minVal);
const int cmpMax = compare(ctx, x, maxVal);
const int cmpMinMax = compare(ctx, minVal, maxVal);
if (cmpMin < 0)
{
if (cmpMinMax < 0)
return minVal;
else
return Interval(minVal, maxVal);
}
if (cmpMax > 0)
{
if (cmpMinMax < 0)
return maxVal;
else
return Interval(minVal, maxVal);
}
Interval result = x;
if (cmpMin == 0)
result |= minVal;
if (cmpMax == 0)
result |= maxVal;
return result;
}
double precision(const EvalContext &, double, double, double minVal, double maxVal) const
{
return minVal > maxVal ? TCU_NAN : 0.0;
}
};
ExprP<float> clamp(const ExprP<float> &x, const ExprP<float> &minVal, const ExprP<float> &maxVal)
{
return app<Clamp>(x, minVal, maxVal);
}
DEFINE_DERIVED_FLOAT3(Mix, mix, x, y, a, alternatives((x * (constant(1.0f) - a)) + y * a, x + (y - x) * a))
static double step(double edge, double x)
{
return x < edge ? 0.0 : 1.0;
}
class Step : public PreciseFunc2
{
public:
Step(void) : PreciseFunc2("step", step)
{
}
};
class SmoothStep : public DerivedFunc<Signature<float, float, float, float>>
{
public:
string getName(void) const
{
return "smoothstep";
}
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
const ExprP<float> &edge0 = args.a;
const ExprP<float> &edge1 = args.b;
const ExprP<float> &x = args.c;
const ExprP<float> tExpr = clamp((x - edge0) / (edge1 - edge0), constant(0.0f), constant(1.0f));
const ExprP<float> t = bindExpression("t", ctx, tExpr);
return (t * t * (constant(3.0f) - constant(2.0f) * t));
}
};
class FrExp : public PrimitiveFunc<Signature<float, float, int>>
{
public:
string getName(void) const
{
return "frexp";
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
const IArg0 &x = iargs.a;
IArg1 &exponent = const_cast<IArg1 &>(iargs.b);
if (x.hasNaN() || x.contains(TCU_INFINITY) || x.contains(-TCU_INFINITY))
{
// GLSL (in contrast to IEEE) says that result of applying frexp
// to infinity is undefined
ret = Interval::unbounded() | TCU_NAN;
exponent = Interval(-deLdExp(1.0, 31), deLdExp(1.0, 31) - 1);
}
else if (!x.empty())
{
int loExp = 0;
const double loFrac = deFrExp(x.lo(), &loExp);
int hiExp = 0;
const double hiFrac = deFrExp(x.hi(), &hiExp);
if (deSign(loFrac) != deSign(hiFrac))
{
exponent = Interval(-TCU_INFINITY, de::max(loExp, hiExp));
ret = Interval();
if (deSign(loFrac) < 0)
ret |= Interval(-1.0 + DBL_EPSILON * 0.5, 0.0);
if (deSign(hiFrac) > 0)
ret |= Interval(0.0, 1.0 - DBL_EPSILON * 0.5);
}
else
{
exponent = Interval(loExp, hiExp);
if (loExp == hiExp)
ret = Interval(loFrac, hiFrac);
else
ret = deSign(loFrac) * Interval(0.5, 1.0 - DBL_EPSILON * 0.5);
}
}
return ret;
}
int getOutParamIndex(void) const
{
return 1;
}
};
class LdExp : public PrimitiveFunc<Signature<float, float, int>>
{
public:
string getName(void) const
{
return "ldexp";
}
protected:
Interval doApply(const EvalContext &ctx, const IArgs &iargs) const
{
Interval ret = call<Exp2>(ctx, iargs.b);
// Khronos bug 11180 consensus: if exp2(exponent) cannot be represented,
// the result is undefined.
if (ret.contains(TCU_INFINITY) || ret.contains(-TCU_INFINITY))
ret |= TCU_NAN;
return call<Mul>(ctx, iargs.a, ret);
}
};
template <int Rows, int Columns>
class Transpose : public PrimitiveFunc<Signature<Matrix<float, Rows, Columns>, Matrix<float, Columns, Rows>>>
{
public:
typedef typename Transpose::IRet IRet;
typedef typename Transpose::IArgs IArgs;
string getName(void) const
{
return "transpose";
}
protected:
IRet doApply(const EvalContext &, const IArgs &iargs) const
{
IRet ret;
for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
{
for (int colNdx = 0; colNdx < Columns; ++colNdx)
ret(rowNdx, colNdx) = iargs.a(colNdx, rowNdx);
}
return ret;
}
};
template <typename Ret, typename Arg0, typename Arg1>
class MulFunc : public PrimitiveFunc<Signature<Ret, Arg0, Arg1>>
{
public:
string getName(void) const
{
return "mul";
}
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
os << "(" << *args[0] << " * " << *args[1] << ")";
}
};
template <int LeftRows, int Middle, int RightCols>
class MatMul : public MulFunc<Matrix<float, LeftRows, RightCols>, Matrix<float, LeftRows, Middle>,
Matrix<float, Middle, RightCols>>
{
protected:
typedef typename MatMul::IRet IRet;
typedef typename MatMul::IArgs IArgs;
typedef typename MatMul::IArg0 IArg0;
typedef typename MatMul::IArg1 IArg1;
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
const IArg0 &left = iargs.a;
const IArg1 &right = iargs.b;
IRet ret;
for (int row = 0; row < LeftRows; ++row)
{
for (int col = 0; col < RightCols; ++col)
{
Interval element(0.0);
for (int ndx = 0; ndx < Middle; ++ndx)
element = call<Add>(ctx, element, call<Mul>(ctx, left[ndx][row], right[col][ndx]));
ret[col][row] = element;
}
}
return ret;
}
};
template <int Rows, int Cols>
class VecMatMul : public MulFunc<Vector<float, Cols>, Vector<float, Rows>, Matrix<float, Rows, Cols>>
{
public:
typedef typename VecMatMul::IRet IRet;
typedef typename VecMatMul::IArgs IArgs;
typedef typename VecMatMul::IArg0 IArg0;
typedef typename VecMatMul::IArg1 IArg1;
protected:
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
const IArg0 &left = iargs.a;
const IArg1 &right = iargs.b;
IRet ret;
for (int col = 0; col < Cols; ++col)
{
Interval element(0.0);
for (int row = 0; row < Rows; ++row)
element = call<Add>(ctx, element, call<Mul>(ctx, left[row], right[col][row]));
ret[col] = element;
}
return ret;
}
};
template <int Rows, int Cols>
class MatVecMul : public MulFunc<Vector<float, Rows>, Matrix<float, Rows, Cols>, Vector<float, Cols>>
{
public:
typedef typename MatVecMul::IRet IRet;
typedef typename MatVecMul::IArgs IArgs;
typedef typename MatVecMul::IArg0 IArg0;
typedef typename MatVecMul::IArg1 IArg1;
protected:
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
const IArg0 &left = iargs.a;
const IArg1 &right = iargs.b;
return call<VecMatMul<Cols, Rows>>(ctx, right, call<Transpose<Rows, Cols>>(ctx, left));
}
};
template <int Rows, int Cols>
class OuterProduct
: public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>, Vector<float, Rows>, Vector<float, Cols>>>
{
public:
typedef typename OuterProduct::IRet IRet;
typedef typename OuterProduct::IArgs IArgs;
string getName(void) const
{
return "outerProduct";
}
protected:
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
IRet ret;
for (int row = 0; row < Rows; ++row)
{
for (int col = 0; col < Cols; ++col)
ret[col][row] = call<Mul>(ctx, iargs.a[row], iargs.b[col]);
}
return ret;
}
};
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> outerProduct(const ExprP<Vector<float, Rows>> &left,
const ExprP<Vector<float, Cols>> &right)
{
return app<OuterProduct<Rows, Cols>>(left, right);
}
template <int Size>
class DeterminantBase : public DerivedFunc<Signature<float, Matrix<float, Size, Size>>>
{
public:
string getName(void) const
{
return "determinant";
}
};
template <int Size>
class Determinant;
template <int Size>
ExprP<float> determinant(ExprP<Matrix<float, Size, Size>> mat)
{
return app<Determinant<Size>>(mat);
}
template <>
class Determinant<2> : public DeterminantBase<2>
{
protected:
ExprP<Ret> doExpand(ExpandContext &, const ArgExprs &args) const
{
ExprP<Mat2> mat = args.a;
return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
}
};
template <>
class Determinant<3> : public DeterminantBase<3>
{
protected:
ExprP<Ret> doExpand(ExpandContext &, const ArgExprs &args) const
{
ExprP<Mat3> mat = args.a;
return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
}
};
template <>
class Determinant<4> : public DeterminantBase<4>
{
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
ExprP<Mat4> mat = args.a;
ExprP<Mat3> minors[4];
for (int ndx = 0; ndx < 4; ++ndx)
{
ExprP<Vec4> minorColumns[3];
ExprP<Vec3> columns[3];
for (int col = 0; col < 3; ++col)
minorColumns[col] = mat[col < ndx ? col : col + 1];
for (int col = 0; col < 3; ++col)
columns[col] = vec3(minorColumns[0][col + 1], minorColumns[1][col + 1], minorColumns[2][col + 1]);
minors[ndx] = bindExpression("minor", ctx, mat3(columns[0], columns[1], columns[2]));
}
return (mat[0][0] * determinant(minors[0]) - mat[1][0] * determinant(minors[1]) +
mat[2][0] * determinant(minors[2]) - mat[3][0] * determinant(minors[3]));
}
};
template <int Size>
class Inverse;
template <int Size>
ExprP<Matrix<float, Size, Size>> inverse(ExprP<Matrix<float, Size, Size>> mat)
{
return app<Inverse<Size>>(mat);
}
template <>
class Inverse<2> : public DerivedFunc<Signature<Mat2, Mat2>>
{
public:
string getName(void) const
{
return "inverse";
}
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
ExprP<Mat2> mat = args.a;
ExprP<float> det = bindExpression("det", ctx, determinant(mat));
return mat2(vec2(mat[1][1] / det, -mat[0][1] / det), vec2(-mat[1][0] / det, mat[0][0] / det));
}
};
template <>
class Inverse<3> : public DerivedFunc<Signature<Mat3, Mat3>>
{
public:
string getName(void) const
{
return "inverse";
}
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
ExprP<Mat3> mat = args.a;
ExprP<Mat2> invA =
bindExpression("invA", ctx, inverse(mat2(vec2(mat[0][0], mat[0][1]), vec2(mat[1][0], mat[1][1]))));
ExprP<Vec2> matB = bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
ExprP<Vec2> matC = bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
ExprP<float> matD = bindExpression("matD", ctx, mat[2][2]);
ExprP<float> schur = bindExpression("schur", ctx, constant(1.0f) / (matD - dot(matC * invA, matB)));
ExprP<Vec2> t1 = invA * matB;
ExprP<Vec2> t2 = t1 * schur;
ExprP<Mat2> t3 = outerProduct(t2, matC);
ExprP<Mat2> t4 = t3 * invA;
ExprP<Mat2> t5 = invA + t4;
ExprP<Mat2> blockA = bindExpression("blockA", ctx, t5);
ExprP<Vec2> blockB = bindExpression("blockB", ctx, (invA * matB) * -schur);
ExprP<Vec2> blockC = bindExpression("blockC", ctx, (matC * invA) * -schur);
return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]), vec3(blockA[1][0], blockA[1][1], blockC[1]),
vec3(blockB[0], blockB[1], schur));
}
};
template <>
class Inverse<4> : public DerivedFunc<Signature<Mat4, Mat4>>
{
public:
string getName(void) const
{
return "inverse";
}
protected:
ExprP<Ret> doExpand(ExpandContext &ctx, const ArgExprs &args) const
{
ExprP<Mat4> mat = args.a;
ExprP<Mat2> invA =
bindExpression("invA", ctx, inverse(mat2(vec2(mat[0][0], mat[0][1]), vec2(mat[1][0], mat[1][1]))));
ExprP<Mat2> matB = bindExpression("matB", ctx, mat2(vec2(mat[2][0], mat[2][1]), vec2(mat[3][0], mat[3][1])));
ExprP<Mat2> matC = bindExpression("matC", ctx, mat2(vec2(mat[0][2], mat[0][3]), vec2(mat[1][2], mat[1][3])));
ExprP<Mat2> matD = bindExpression("matD", ctx, mat2(vec2(mat[2][2], mat[2][3]), vec2(mat[3][2], mat[3][3])));
ExprP<Mat2> schur = bindExpression("schur", ctx, inverse(matD + -(matC * invA * matB)));
ExprP<Mat2> blockA = bindExpression("blockA", ctx, invA + (invA * matB * schur * matC * invA));
ExprP<Mat2> blockB = bindExpression("blockB", ctx, (-invA) * matB * schur);
ExprP<Mat2> blockC = bindExpression("blockC", ctx, (-schur) * matC * invA);
return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
}
};
class Fma : public DerivedFunc<Signature<float, float, float, float>>
{
public:
string getName(void) const
{
return "fma";
}
string getRequiredExtension(const RenderContext &context) const
{
return (glu::contextSupports(context.getType(), glu::ApiType::core(4, 5))) ? "" : "GL_EXT_gpu_shader5";
}
protected:
ExprP<float> doExpand(ExpandContext &, const ArgExprs &x) const
{
return x.a * x.b + x.c;
}
};
} // namespace Functions
using namespace Functions;
template <typename T>
ExprP<typename T::Element> ContainerExprPBase<T>::operator[](int i) const
{
return Functions::getComponent(exprP<T>(*this), i);
}
ExprP<float> operator+(const ExprP<float> &arg0, const ExprP<float> &arg1)
{
return app<Add>(arg0, arg1);
}
ExprP<float> operator-(const ExprP<float> &arg0, const ExprP<float> &arg1)
{
return app<Sub>(arg0, arg1);
}
ExprP<float> operator-(const ExprP<float> &arg0)
{
return app<Negate>(arg0);
}
ExprP<float> operator*(const ExprP<float> &arg0, const ExprP<float> &arg1)
{
return app<Mul>(arg0, arg1);
}
ExprP<float> operator/(const ExprP<float> &arg0, const ExprP<float> &arg1)
{
return app<Div>(arg0, arg1);
}
template <typename Sig_, int Size>
class GenFunc : public PrimitiveFunc<Signature<typename ContainerOf<typename Sig_::Ret, Size>::Container,
typename ContainerOf<typename Sig_::Arg0, Size>::Container,
typename ContainerOf<typename Sig_::Arg1, Size>::Container,
typename ContainerOf<typename Sig_::Arg2, Size>::Container,
typename ContainerOf<typename Sig_::Arg3, Size>::Container>>
{
public:
typedef typename GenFunc::IArgs IArgs;
typedef typename GenFunc::IRet IRet;
GenFunc(const Func<Sig_> &scalarFunc) : m_func(scalarFunc)
{
}
string getName(void) const
{
return m_func.getName();
}
int getOutParamIndex(void) const
{
return m_func.getOutParamIndex();
}
string getRequiredExtension(const RenderContext &context) const
{
return m_func.getRequiredExtension(context);
}
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
m_func.print(os, args);
}
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
IRet ret;
for (int ndx = 0; ndx < Size; ++ndx)
{
ret[ndx] = m_func.apply(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
}
return ret;
}
void doGetUsedFuncs(FuncSet &dst) const
{
m_func.getUsedFuncs(dst);
}
const Func<Sig_> &m_func;
};
template <typename F, int Size>
class VectorizedFunc : public GenFunc<typename F::Sig, Size>
{
public:
VectorizedFunc(void) : GenFunc<typename F::Sig, Size>(instance<F>())
{
}
};
template <typename Sig_, int Size>
class FixedGenFunc
: public PrimitiveFunc<Signature<typename ContainerOf<typename Sig_::Ret, Size>::Container,
typename ContainerOf<typename Sig_::Arg0, Size>::Container, typename Sig_::Arg1,
typename ContainerOf<typename Sig_::Arg2, Size>::Container,
typename ContainerOf<typename Sig_::Arg3, Size>::Container>>
{
public:
typedef typename FixedGenFunc::IArgs IArgs;
typedef typename FixedGenFunc::IRet IRet;
string getName(void) const
{
return this->doGetScalarFunc().getName();
}
protected:
void doPrint(ostream &os, const BaseArgExprs &args) const
{
this->doGetScalarFunc().print(os, args);
}
IRet doApply(const EvalContext &ctx, const IArgs &iargs) const
{
IRet ret;
const Func<Sig_> &func = this->doGetScalarFunc();
for (int ndx = 0; ndx < Size; ++ndx)
ret[ndx] = func.apply(ctx, iargs.a[ndx], iargs.b, iargs.c[ndx], iargs.d[ndx]);
return ret;
}
virtual const Func<Sig_> &doGetScalarFunc(void) const = 0;
};
template <typename F, int Size>
class FixedVecFunc : public FixedGenFunc<typename F::Sig, Size>
{
protected:
const Func<typename F::Sig> &doGetScalarFunc(void) const
{
return instance<F>();
}
};
template <typename Sig>
struct GenFuncs
{
GenFuncs(const Func<Sig> &func_, const GenFunc<Sig, 2> &func2_, const GenFunc<Sig, 3> &func3_,
const GenFunc<Sig, 4> &func4_)
: func(func_)
, func2(func2_)
, func3(func3_)
, func4(func4_)
{
}
const Func<Sig> &func;
const GenFunc<Sig, 2> &func2;
const GenFunc<Sig, 3> &func3;
const GenFunc<Sig, 4> &func4;
};
template <typename F>
GenFuncs<typename F::Sig> makeVectorizedFuncs(void)
{
return GenFuncs<typename F::Sig>(instance<F>(), instance<VectorizedFunc<F, 2>>(), instance<VectorizedFunc<F, 3>>(),
instance<VectorizedFunc<F, 4>>());
}
template <int Size>
ExprP<Vector<float, Size>> operator*(const ExprP<Vector<float, Size>> &arg0, const ExprP<Vector<float, Size>> &arg1)
{
return app<VectorizedFunc<Mul, Size>>(arg0, arg1);
}
template <int Size>
ExprP<Vector<float, Size>> operator*(const ExprP<Vector<float, Size>> &arg0, const ExprP<float> &arg1)
{
return app<FixedVecFunc<Mul, Size>>(arg0, arg1);
}
template <int Size>
ExprP<Vector<float, Size>> operator/(const ExprP<Vector<float, Size>> &arg0, const ExprP<float> &arg1)
{
return app<FixedVecFunc<Div, Size>>(arg0, arg1);
}
template <int Size>
ExprP<Vector<float, Size>> operator-(const ExprP<Vector<float, Size>> &arg0)
{
return app<VectorizedFunc<Negate, Size>>(arg0);
}
template <int Size>
ExprP<Vector<float, Size>> operator-(const ExprP<Vector<float, Size>> &arg0, const ExprP<Vector<float, Size>> &arg1)
{
return app<VectorizedFunc<Sub, Size>>(arg0, arg1);
}
template <int LeftRows, int Middle, int RightCols>
ExprP<Matrix<float, LeftRows, RightCols>> operator*(const ExprP<Matrix<float, LeftRows, Middle>> &left,
const ExprP<Matrix<float, Middle, RightCols>> &right)
{
return app<MatMul<LeftRows, Middle, RightCols>>(left, right);
}
template <int Rows, int Cols>
ExprP<Vector<float, Rows>> operator*(const ExprP<Vector<float, Cols>> &left,
const ExprP<Matrix<float, Rows, Cols>> &right)
{
return app<VecMatMul<Rows, Cols>>(left, right);
}
template <int Rows, int Cols>
ExprP<Vector<float, Cols>> operator*(const ExprP<Matrix<float, Rows, Cols>> &left,
const ExprP<Vector<float, Rows>> &right)
{
return app<MatVecMul<Rows, Cols>>(left, right);
}
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> operator*(const ExprP<Matrix<float, Rows, Cols>> &left, const ExprP<float> &right)
{
return app<ScalarMatFunc<Mul, Rows, Cols>>(left, right);
}
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> operator+(const ExprP<Matrix<float, Rows, Cols>> &left,
const ExprP<Matrix<float, Rows, Cols>> &right)
{
return app<CompMatFunc<Add, Rows, Cols>>(left, right);
}
template <int Rows, int Cols>
ExprP<Matrix<float, Rows, Cols>> operator-(const ExprP<Matrix<float, Rows, Cols>> &mat)
{
return app<MatNeg<Rows, Cols>>(mat);
}
template <typename T>
class Sampling
{
public:
virtual void genFixeds(const FloatFormat &, vector<T> &) const
{
}
virtual T genRandom(const FloatFormat &, Precision, Random &) const
{
return T();
}
virtual double getWeight(void) const
{
return 0.0;
}
};
template <>
class DefaultSampling<Void> : public Sampling<Void>
{
public:
void genFixeds(const FloatFormat &, vector<Void> &dst) const
{
dst.push_back(Void());
}
};
template <>
class DefaultSampling<bool> : public Sampling<bool>
{
public:
void genFixeds(const FloatFormat &, vector<bool> &dst) const
{
dst.push_back(true);
dst.push_back(false);
}
};
template <>
class DefaultSampling<int> : public Sampling<int>
{
public:
int genRandom(const FloatFormat &, Precision prec, Random &rnd) const
{
const int exp = rnd.getInt(0, getNumBits(prec) - 2);
const int sign = rnd.getBool() ? -1 : 1;
return sign * rnd.getInt(0, (int32_t)1 << exp);
}
void genFixeds(const FloatFormat &, vector<int> &dst) const
{
dst.push_back(0);
dst.push_back(-1);
dst.push_back(1);
}
double getWeight(void) const
{
return 1.0;
}
private:
static inline int getNumBits(Precision prec)
{
switch (prec)
{
case glu::PRECISION_LOWP:
return 8;
case glu::PRECISION_MEDIUMP:
return 16;
case glu::PRECISION_HIGHP:
return 32;
default:
DE_ASSERT(false);
return 0;
}
}
};
template <>
class DefaultSampling<float> : public Sampling<float>
{
public:
float genRandom(const FloatFormat &format, Precision prec, Random &rnd) const;
void genFixeds(const FloatFormat &format, vector<float> &dst) const;
double getWeight(void) const
{
return 1.0;
}
};
//! Generate a random float from a reasonable general-purpose distribution.
float DefaultSampling<float>::genRandom(const FloatFormat &format, Precision, Random &rnd) const
{
const int minExp = format.getMinExp();
const int maxExp = format.getMaxExp();
const bool haveSubnormal = format.hasSubnormal() != tcu::NO;
// Choose exponent so that the cumulative distribution is cubic.
// This makes the probability distribution quadratic, with the peak centered on zero.
const double minRoot = deCbrt(minExp - 0.5 - (haveSubnormal ? 1.0 : 0.0));
const double maxRoot = deCbrt(maxExp + 0.5);
const int fractionBits = format.getFractionBits();
const int exp = int(deRoundEven(dePow(rnd.getDouble(minRoot, maxRoot), 3.0)));
float base = 0.0f; // integral power of two
float quantum = 0.0f; // smallest representable difference in the binade
float significand = 0.0f; // Significand.
DE_ASSERT(fractionBits < std::numeric_limits<float>::digits);
// Generate some occasional special numbers
switch (rnd.getInt(0, 64))
{
case 0:
return 0;
case 1:
return TCU_INFINITY;
case 2:
return -TCU_INFINITY;
case 3:
return TCU_NAN;
default:
break;
}
if (exp >= minExp)
{
// Normal number
base = deFloatLdExp(1.0f, exp);
quantum = deFloatLdExp(1.0f, exp - fractionBits);
}
else
{
// Subnormal
base = 0.0f;
quantum = deFloatLdExp(1.0f, minExp - fractionBits);
}
switch (rnd.getInt(0, 16))
{
case 0: // The highest number in this binade, significand is all bits one.
significand = base - quantum;
break;
case 1: // Significand is one.
significand = quantum;
break;
case 2: // Significand is zero.
significand = 0.0;
break;
default: // Random (evenly distributed) significand.
{
uint64_t intFraction = rnd.getUint64() & ((1ull << fractionBits) - 1);
significand = float(intFraction) * quantum;
}
}
// Produce positive numbers more often than negative.
return (rnd.getInt(0, 3) == 0 ? -1.0f : 1.0f) * (base + significand);
}
//! Generate a standard set of floats that should always be tested.
void DefaultSampling<float>::genFixeds(const FloatFormat &format, vector<float> &dst) const
{
const int minExp = format.getMinExp();
const int maxExp = format.getMaxExp();
const int fractionBits = format.getFractionBits();
const float minQuantum = deFloatLdExp(1.0f, minExp - fractionBits);
const float minNormalized = deFloatLdExp(1.0f, minExp);
const float maxQuantum = deFloatLdExp(1.0f, maxExp - fractionBits);
// NaN
dst.push_back(TCU_NAN);
// Zero
dst.push_back(0.0f);
for (int sign = -1; sign <= 1; sign += 2)
{
// Smallest subnormal
dst.push_back((float)sign * minQuantum);
// Largest subnormal
dst.push_back((float)sign * (minNormalized - minQuantum));
// Smallest normalized
dst.push_back((float)sign * minNormalized);
// Next smallest normalized
dst.push_back((float)sign * (minNormalized + minQuantum));
dst.push_back((float)sign * 0.5f);
dst.push_back((float)sign * 1.0f);
dst.push_back((float)sign * 2.0f);
// Largest number
dst.push_back((float)sign * (deFloatLdExp(1.0f, maxExp) + (deFloatLdExp(1.0f, maxExp) - maxQuantum)));
dst.push_back((float)sign * TCU_INFINITY);
}
}
template <typename T, int Size>
class DefaultSampling<Vector<T, Size>> : public Sampling<Vector<T, Size>>
{
public:
typedef Vector<T, Size> Value;
Value genRandom(const FloatFormat &fmt, Precision prec, Random &rnd) const
{
Value ret;
for (int ndx = 0; ndx < Size; ++ndx)
ret[ndx] = instance<DefaultSampling<T>>().genRandom(fmt, prec, rnd);
return ret;
}
void genFixeds(const FloatFormat &fmt, vector<Value> &dst) const
{
vector<T> scalars;
instance<DefaultSampling<T>>().genFixeds(fmt, scalars);
for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
dst.push_back(Value(scalars[scalarNdx]));
}
double getWeight(void) const
{
return dePow(instance<DefaultSampling<T>>().getWeight(), Size);
}
};
template <typename T, int Rows, int Columns>
class DefaultSampling<Matrix<T, Rows, Columns>> : public Sampling<Matrix<T, Rows, Columns>>
{
public:
typedef Matrix<T, Rows, Columns> Value;
Value genRandom(const FloatFormat &fmt, Precision prec, Random &rnd) const
{
Value ret;
for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
for (int colNdx = 0; colNdx < Columns; ++colNdx)
ret(rowNdx, colNdx) = instance<DefaultSampling<T>>().genRandom(fmt, prec, rnd);
return ret;
}
void genFixeds(const FloatFormat &fmt, vector<Value> &dst) const
{
vector<T> scalars;
instance<DefaultSampling<T>>().genFixeds(fmt, scalars);
for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
dst.push_back(Value(scalars[scalarNdx]));
if (Columns == Rows)
{
Value mat(0.0);
T x = T(1.0f);
mat[0][0] = x;
for (int ndx = 0; ndx < Columns; ++ndx)
{
mat[Columns - 1 - ndx][ndx] = x;
x *= T(2.0f);
}
dst.push_back(mat);
}
}
double getWeight(void) const
{
return dePow(instance<DefaultSampling<T>>().getWeight(), Rows * Columns);
}
};
struct Context
{
Context(const string &name_, TestContext &testContext_, RenderContext &renderContext_,
const FloatFormat &floatFormat_, const FloatFormat &highpFormat_, Precision precision_,
ShaderType shaderType_, size_t numRandoms_)
: name(name_)
, testContext(testContext_)
, renderContext(renderContext_)
, floatFormat(floatFormat_)
, highpFormat(highpFormat_)
, precision(precision_)
, shaderType(shaderType_)
, numRandoms(numRandoms_)
{
}
string name;
TestContext &testContext;
RenderContext &renderContext;
FloatFormat floatFormat;
FloatFormat highpFormat;
Precision precision;
ShaderType shaderType;
size_t numRandoms;
};
template <typename In0_ = Void, typename In1_ = Void, typename In2_ = Void, typename In3_ = Void>
struct InTypes
{
typedef In0_ In0;
typedef In1_ In1;
typedef In2_ In2;
typedef In3_ In3;
};
template <typename In>
int numInputs(void)
{
return (!isTypeValid<typename In::In0>() ? 0 :
!isTypeValid<typename In::In1>() ? 1 :
!isTypeValid<typename In::In2>() ? 2 :
!isTypeValid<typename In::In3>() ? 3 :
4);
}
template <typename Out0_, typename Out1_ = Void>
struct OutTypes
{
typedef Out0_ Out0;
typedef Out1_ Out1;
};
template <typename Out>
int numOutputs(void)
{
return (!isTypeValid<typename Out::Out0>() ? 0 : !isTypeValid<typename Out::Out1>() ? 1 : 2);
}
template <typename In>
struct Inputs
{
vector<typename In::In0> in0;
vector<typename In::In1> in1;
vector<typename In::In2> in2;
vector<typename In::In3> in3;
};
template <typename Out>
struct Outputs
{
Outputs(size_t size) : out0(size), out1(size)
{
}
vector<typename Out::Out0> out0;
vector<typename Out::Out1> out1;
};
template <typename In, typename Out>
struct Variables
{
VariableP<typename In::In0> in0;
VariableP<typename In::In1> in1;
VariableP<typename In::In2> in2;
VariableP<typename In::In3> in3;
VariableP<typename Out::Out0> out0;
VariableP<typename Out::Out1> out1;
};
template <typename In>
struct Samplings
{
Samplings(const Sampling<typename In::In0> &in0_, const Sampling<typename In::In1> &in1_,
const Sampling<typename In::In2> &in2_, const Sampling<typename In::In3> &in3_)
: in0(in0_)
, in1(in1_)
, in2(in2_)
, in3(in3_)
{
}
const Sampling<typename In::In0> &in0;
const Sampling<typename In::In1> &in1;
const Sampling<typename In::In2> &in2;
const Sampling<typename In::In3> &in3;
};
template <typename In>
struct DefaultSamplings : Samplings<In>
{
DefaultSamplings(void)
: Samplings<In>(instance<DefaultSampling<typename In::In0>>(), instance<DefaultSampling<typename In::In1>>(),
instance<DefaultSampling<typename In::In2>>(), instance<DefaultSampling<typename In::In3>>())
{
}
};
class PrecisionCase : public TestCase
{
public:
IterateResult iterate(void);
protected:
PrecisionCase(const Context &context, const string &name, const string &extension = "")
: TestCase(context.testContext, name.c_str(), name.c_str())
, m_ctx(context)
, m_status()
, m_rnd(0xdeadbeefu + context.testContext.getCommandLine().getBaseSeed())
, m_extension(extension)
{
}
RenderContext &getRenderContext(void) const
{
return m_ctx.renderContext;
}
const FloatFormat &getFormat(void) const
{
return m_ctx.floatFormat;
}
TestLog &log(void) const
{
return m_testCtx.getLog();
}
virtual void runTest(void) = 0;
template <typename In, typename Out>
void testStatement(const Variables<In, Out> &variables, const Inputs<In> &inputs, const Statement &stmt);
template <typename T>
Symbol makeSymbol(const Variable<T> &variable)
{
return Symbol(variable.getName(), getVarTypeOf<T>(m_ctx.precision));
}
Context m_ctx;
ResultCollector m_status;
Random m_rnd;
const string m_extension;
};
IterateResult PrecisionCase::iterate(void)
{
runTest();
m_status.setTestContextResult(m_testCtx);
return STOP;
}
template <typename In, typename Out>
void PrecisionCase::testStatement(const Variables<In, Out> &variables, const Inputs<In> &inputs, const Statement &stmt)
{
using namespace ShaderExecUtil;
typedef typename In::In0 In0;
typedef typename In::In1 In1;
typedef typename In::In2 In2;
typedef typename In::In3 In3;
typedef typename Out::Out0 Out0;
typedef typename Out::Out1 Out1;
const FloatFormat &fmt = getFormat();
const int inCount = numInputs<In>();
const int outCount = numOutputs<Out>();
const size_t numValues = (inCount > 0) ? inputs.in0.size() : 1;
Outputs<Out> outputs(numValues);
ShaderSpec spec;
const FloatFormat highpFmt = m_ctx.highpFormat;
const int maxMsgs = 100;
int numErrors = 0;
Environment env; // Hoisted out of the inner loop for optimization.
switch (inCount)
{
case 4:
DE_ASSERT(inputs.in3.size() == numValues);
// Fallthrough
case 3:
DE_ASSERT(inputs.in2.size() == numValues);
// Fallthrough
case 2:
DE_ASSERT(inputs.in1.size() == numValues);
// Fallthrough
case 1:
DE_ASSERT(inputs.in0.size() == numValues);
// Fallthrough
default:
break;
}
// Print out the statement and its definitions
log() << TestLog::Message << "Statement: " << stmt << TestLog::EndMessage;
{
ostringstream oss;
FuncSet funcs;
stmt.getUsedFuncs(funcs);
for (FuncSet::const_iterator it = funcs.begin(); it != funcs.end(); ++it)
{
(*it)->printDefinition(oss);
}
if (!funcs.empty())
log() << TestLog::Message << "Reference definitions:\n" << oss.str() << TestLog::EndMessage;
}
// Initialize ShaderSpec from precision, variables and statement.
{
ostringstream os;
os << "precision " << glu::getPrecisionName(m_ctx.precision) << " float;\n";
spec.globalDeclarations = os.str();
}
spec.version = getContextTypeGLSLVersion(getRenderContext().getType());
if (!m_extension.empty())
spec.globalDeclarations = "#extension " + m_extension + " : require\n";
spec.inputs.resize(inCount);
switch (inCount)
{
case 4:
spec.inputs[3] = makeSymbol(*variables.in3);
// Fallthrough
case 3:
spec.inputs[2] = makeSymbol(*variables.in2);
// Fallthrough
case 2:
spec.inputs[1] = makeSymbol(*variables.in1);
// Fallthrough
case 1:
spec.inputs[0] = makeSymbol(*variables.in0);
// Fallthrough
default:
break;
}
spec.outputs.resize(outCount);
switch (outCount)
{
case 2:
spec.outputs[1] = makeSymbol(*variables.out1); // Fallthrough
case 1:
spec.outputs[0] = makeSymbol(*variables.out0);
default:
break;
}
spec.source = de::toString(stmt);
// Run the shader with inputs.
{
UniquePtr<ShaderExecutor> executor(createExecutor(getRenderContext(), m_ctx.shaderType, spec));
const void *inputArr[] = {
&inputs.in0.front(),
&inputs.in1.front(),
&inputs.in2.front(),
&inputs.in3.front(),
};
void *outputArr[] = {
&outputs.out0.front(),
&outputs.out1.front(),
};
executor->log(log());
if (!executor->isOk())
TCU_FAIL("Shader compilation failed");
executor->useProgram();
executor->execute(int(numValues), inputArr, outputArr);
}
// Initialize environment with unused values so we don't need to bind in inner loop.
{
const typename Traits<In0>::IVal in0;
const typename Traits<In1>::IVal in1;
const typename Traits<In2>::IVal in2;
const typename Traits<In3>::IVal in3;
const typename Traits<Out0>::IVal reference0;
const typename Traits<Out1>::IVal reference1;
env.bind(*variables.in0, in0);
env.bind(*variables.in1, in1);
env.bind(*variables.in2, in2);
env.bind(*variables.in3, in3);
env.bind(*variables.out0, reference0);
env.bind(*variables.out1, reference1);
}
// For each input tuple, compute output reference interval and compare
// shader output to the reference.
for (size_t valueNdx = 0; valueNdx < numValues; valueNdx++)
{
bool result = true;
bool inExpectedRange;
bool inWarningRange;
const char *failStr = "Fail";
typename Traits<Out0>::IVal reference0;
typename Traits<Out1>::IVal reference1;
if (valueNdx % (size_t)TOUCH_WATCHDOG_VALUE_FREQUENCY == 0)
m_testCtx.touchWatchdog();
env.lookup(*variables.in0) = convert<In0>(fmt, round(fmt, inputs.in0[valueNdx]));
env.lookup(*variables.in1) = convert<In1>(fmt, round(fmt, inputs.in1[valueNdx]));
env.lookup(*variables.in2) = convert<In2>(fmt, round(fmt, inputs.in2[valueNdx]));
env.lookup(*variables.in3) = convert<In3>(fmt, round(fmt, inputs.in3[valueNdx]));
{
EvalContext ctx(fmt, m_ctx.precision, env);
stmt.execute(ctx);
}
switch (outCount)
{
case 2:
reference1 = convert<Out1>(highpFmt, env.lookup(*variables.out1));
inExpectedRange = contains(reference1, outputs.out1[valueNdx]);
inWarningRange = containsWarning(reference1, outputs.out1[valueNdx]);
if (!inExpectedRange && inWarningRange)
{
m_status.addResult(QP_TEST_RESULT_QUALITY_WARNING, "Shader output 1 has low-quality shader precision");
failStr = "QualityWarning";
result = false;
}
else if (!inExpectedRange)
{
m_status.addResult(QP_TEST_RESULT_FAIL, "Shader output 1 is outside acceptable range");
failStr = "Fail";
result = false;
}
// Fallthrough
case 1:
reference0 = convert<Out0>(highpFmt, env.lookup(*variables.out0));
inExpectedRange = contains(reference0, outputs.out0[valueNdx]);
inWarningRange = containsWarning(reference0, outputs.out0[valueNdx]);
if (!inExpectedRange && inWarningRange)
{
m_status.addResult(QP_TEST_RESULT_QUALITY_WARNING, "Shader output 0 has low-quality shader precision");
failStr = "QualityWarning";
result = false;
}
else if (!inExpectedRange)
{
m_status.addResult(QP_TEST_RESULT_FAIL, "Shader output 0 is outside acceptable range");
failStr = "Fail";
result = false;
}
default:
break;
}
if (!result)
++numErrors;
if ((!result && numErrors <= maxMsgs) || GLS_LOG_ALL_RESULTS)
{
MessageBuilder builder = log().message();
builder << (result ? "Passed" : failStr) << " sample:\n";
if (inCount > 0)
{
builder << "\t" << variables.in0->getName() << " = " << valueToString(highpFmt, inputs.in0[valueNdx])
<< "\n";
}
if (inCount > 1)
{
builder << "\t" << variables.in1->getName() << " = " << valueToString(highpFmt, inputs.in1[valueNdx])
<< "\n";
}
if (inCount > 2)
{
builder << "\t" << variables.in2->getName() << " = " << valueToString(highpFmt, inputs.in2[valueNdx])
<< "\n";
}
if (inCount > 3)
{
builder << "\t" << variables.in3->getName() << " = " << valueToString(highpFmt, inputs.in3[valueNdx])
<< "\n";
}
if (outCount > 0)
{
builder << "\t" << variables.out0->getName() << " = " << valueToString(highpFmt, outputs.out0[valueNdx])
<< "\n"
<< "\tExpected range: " << intervalToString<typename Out::Out0>(highpFmt, reference0) << "\n";
}
if (outCount > 1)
{
builder << "\t" << variables.out1->getName() << " = " << valueToString(highpFmt, outputs.out1[valueNdx])
<< "\n"
<< "\tExpected range: " << intervalToString<typename Out::Out1>(highpFmt, reference1) << "\n";
}
builder << TestLog::EndMessage;
}
}
if (numErrors > maxMsgs)
{
log() << TestLog::Message << "(Skipped " << (numErrors - maxMsgs) << " messages.)" << TestLog::EndMessage;
}
if (numErrors == 0)
{
log() << TestLog::Message << "All " << numValues << " inputs passed." << TestLog::EndMessage;
}
else
{
log() << TestLog::Message << numErrors << "/" << numValues << " inputs failed or had quality warnings."
<< TestLog::EndMessage;
}
}
template <typename T>
struct InputLess
{
bool operator()(const T &val1, const T &val2) const
{
return val1 < val2;
}
};
template <typename T>
bool inputLess(const T &val1, const T &val2)
{
return InputLess<T>()(val1, val2);
}
template <>
struct InputLess<float>
{
bool operator()(const float &val1, const float &val2) const
{
if (deIsNaN(val1))
return false;
if (deIsNaN(val2))
return true;
return val1 < val2;
}
};
template <typename T, int Size>
struct InputLess<Vector<T, Size>>
{
bool operator()(const Vector<T, Size> &vec1, const Vector<T, Size> &vec2) const
{
for (int ndx = 0; ndx < Size; ++ndx)
{
if (inputLess(vec1[ndx], vec2[ndx]))
return true;
if (inputLess(vec2[ndx], vec1[ndx]))
return false;
}
return false;
}
};
template <typename T, int Rows, int Cols>
struct InputLess<Matrix<T, Rows, Cols>>
{
bool operator()(const Matrix<T, Rows, Cols> &mat1, const Matrix<T, Rows, Cols> &mat2) const
{
for (int col = 0; col < Cols; ++col)
{
if (inputLess(mat1[col], mat2[col]))
return true;
if (inputLess(mat2[col], mat1[col]))
return false;
}
return false;
}
};
template <typename In>
struct InTuple : public Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
{
InTuple(const typename In::In0 &in0, const typename In::In1 &in1, const typename In::In2 &in2,
const typename In::In3 &in3)
: Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>(in0, in1, in2, in3)
{
}
};
template <typename In>
struct InputLess<InTuple<In>>
{
bool operator()(const InTuple<In> &in1, const InTuple<In> &in2) const
{
if (inputLess(in1.a, in2.a))
return true;
if (inputLess(in2.a, in1.a))
return false;
if (inputLess(in1.b, in2.b))
return true;
if (inputLess(in2.b, in1.b))
return false;
if (inputLess(in1.c, in2.c))
return true;
if (inputLess(in2.c, in1.c))
return false;
if (inputLess(in1.d, in2.d))
return true;
return false;
}
};
template <typename In>
Inputs<In> generateInputs(const Samplings<In> &samplings, const FloatFormat &floatFormat, Precision intPrecision,
size_t numSamples, Random &rnd)
{
Inputs<In> ret;
Inputs<In> fixedInputs;
set<InTuple<In>, InputLess<InTuple<In>>> seenInputs;
samplings.in0.genFixeds(floatFormat, fixedInputs.in0);
samplings.in1.genFixeds(floatFormat, fixedInputs.in1);
samplings.in2.genFixeds(floatFormat, fixedInputs.in2);
samplings.in3.genFixeds(floatFormat, fixedInputs.in3);
for (size_t ndx0 = 0; ndx0 < fixedInputs.in0.size(); ++ndx0)
{
for (size_t ndx1 = 0; ndx1 < fixedInputs.in1.size(); ++ndx1)
{
for (size_t ndx2 = 0; ndx2 < fixedInputs.in2.size(); ++ndx2)
{
for (size_t ndx3 = 0; ndx3 < fixedInputs.in3.size(); ++ndx3)
{
const InTuple<In> tuple(fixedInputs.in0[ndx0], fixedInputs.in1[ndx1], fixedInputs.in2[ndx2],
fixedInputs.in3[ndx3]);
seenInputs.insert(tuple);
ret.in0.push_back(tuple.a);
ret.in1.push_back(tuple.b);
ret.in2.push_back(tuple.c);
ret.in3.push_back(tuple.d);
}
}
}
}
for (size_t ndx = 0; ndx < numSamples; ++ndx)
{
const typename In::In0 in0 = samplings.in0.genRandom(floatFormat, intPrecision, rnd);
const typename In::In1 in1 = samplings.in1.genRandom(floatFormat, intPrecision, rnd);
const typename In::In2 in2 = samplings.in2.genRandom(floatFormat, intPrecision, rnd);
const typename In::In3 in3 = samplings.in3.genRandom(floatFormat, intPrecision, rnd);
const InTuple<In> tuple(in0, in1, in2, in3);
if (de::contains(seenInputs, tuple))
continue;
seenInputs.insert(tuple);
ret.in0.push_back(in0);
ret.in1.push_back(in1);
ret.in2.push_back(in2);
ret.in3.push_back(in3);
}
return ret;
}
class FuncCaseBase : public PrecisionCase
{
public:
IterateResult iterate(void);
protected:
FuncCaseBase(const Context &context, const string &name, const FuncBase &func)
: PrecisionCase(context, name, func.getRequiredExtension(context.renderContext))
{
}
};
IterateResult FuncCaseBase::iterate(void)
{
MovePtr<ContextInfo> info(ContextInfo::create(getRenderContext()));
if (!m_extension.empty() && !info->isExtensionSupported(m_extension.c_str()) &&
!glu::contextSupports(getRenderContext().getType(), glu::ApiType::core(4, 5)))
throw NotSupportedError("Unsupported extension: " + m_extension);
runTest();
m_status.setTestContextResult(m_testCtx);
return STOP;
}
template <typename Sig>
class FuncCase : public FuncCaseBase
{
public:
typedef Func<Sig> CaseFunc;
typedef typename Sig::Ret Ret;
typedef typename Sig::Arg0 Arg0;
typedef typename Sig::Arg1 Arg1;
typedef typename Sig::Arg2 Arg2;
typedef typename Sig::Arg3 Arg3;
typedef InTypes<Arg0, Arg1, Arg2, Arg3> In;
typedef OutTypes<Ret> Out;
FuncCase(const Context &context, const string &name, const CaseFunc &func)
: FuncCaseBase(context, name, func)
, m_func(func)
{
}
protected:
void runTest(void);
virtual const Samplings<In> &getSamplings(void)
{
return instance<DefaultSamplings<In>>();
}
private:
const CaseFunc &m_func;
};
template <typename Sig>
void FuncCase<Sig>::runTest(void)
{
const Inputs<In> inputs(
generateInputs(getSamplings(), m_ctx.floatFormat, m_ctx.precision, m_ctx.numRandoms, m_rnd));
Variables<In, Out> variables;
variables.out0 = variable<Ret>("out0");
variables.out1 = variable<Void>("out1");
variables.in0 = variable<Arg0>("in0");
variables.in1 = variable<Arg1>("in1");
variables.in2 = variable<Arg2>("in2");
variables.in3 = variable<Arg3>("in3");
{
ExprP<Ret> expr = applyVar(m_func, variables.in0, variables.in1, variables.in2, variables.in3);
StatementP stmt = variableAssignment(variables.out0, expr);
this->testStatement(variables, inputs, *stmt);
}
}
template <typename Sig>
class InOutFuncCase : public FuncCaseBase
{
public:
typedef Func<Sig> CaseFunc;
typedef typename Sig::Ret Ret;
typedef typename Sig::Arg0 Arg0;
typedef typename Sig::Arg1 Arg1;
typedef typename Sig::Arg2 Arg2;
typedef typename Sig::Arg3 Arg3;
typedef InTypes<Arg0, Arg2, Arg3> In;
typedef OutTypes<Ret, Arg1> Out;
InOutFuncCase(const Context &context, const string &name, const CaseFunc &func)
: FuncCaseBase(context, name, func)
, m_func(func)
{
}
protected:
void runTest(void);
virtual const Samplings<In> &getSamplings(void)
{
return instance<DefaultSamplings<In>>();
}
private:
const CaseFunc &m_func;
};
template <typename Sig>
void InOutFuncCase<Sig>::runTest(void)
{
const Inputs<In> inputs(
generateInputs(getSamplings(), m_ctx.floatFormat, m_ctx.precision, m_ctx.numRandoms, m_rnd));
Variables<In, Out> variables;
variables.out0 = variable<Ret>("out0");
variables.out1 = variable<Arg1>("out1");
variables.in0 = variable<Arg0>("in0");
variables.in1 = variable<Arg2>("in1");
variables.in2 = variable<Arg3>("in2");
variables.in3 = variable<Void>("in3");
{
ExprP<Ret> expr = applyVar(m_func, variables.in0, variables.out1, variables.in1, variables.in2);
StatementP stmt = variableAssignment(variables.out0, expr);
this->testStatement(variables, inputs, *stmt);
}
}
template <typename Sig>
PrecisionCase *createFuncCase(const Context &context, const string &name, const Func<Sig> &func)
{
switch (func.getOutParamIndex())
{
case -1:
return new FuncCase<Sig>(context, name, func);
case 1:
return new InOutFuncCase<Sig>(context, name, func);
default:
DE_FATAL("Impossible");
}
return DE_NULL;
}
class CaseFactory
{
public:
virtual ~CaseFactory(void)
{
}
virtual MovePtr<TestNode> createCase(const Context &ctx) const = 0;
virtual string getName(void) const = 0;
virtual string getDesc(void) const = 0;
};
class FuncCaseFactory : public CaseFactory
{
public:
virtual const FuncBase &getFunc(void) const = 0;
string getName(void) const
{
return de::toLower(getFunc().getName());
}
string getDesc(void) const
{
return "Function '" + getFunc().getName() + "'";
}
};
template <typename Sig>
class GenFuncCaseFactory : public CaseFactory
{
public:
GenFuncCaseFactory(const GenFuncs<Sig> &funcs, const string &name) : m_funcs(funcs), m_name(de::toLower(name))
{
}
MovePtr<TestNode> createCase(const Context &ctx) const
{
TestCaseGroup *group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
group->addChild(createFuncCase(ctx, "scalar", m_funcs.func));
group->addChild(createFuncCase(ctx, "vec2", m_funcs.func2));
group->addChild(createFuncCase(ctx, "vec3", m_funcs.func3));
group->addChild(createFuncCase(ctx, "vec4", m_funcs.func4));
return MovePtr<TestNode>(group);
}
string getName(void) const
{
return m_name;
}
string getDesc(void) const
{
return "Function '" + m_funcs.func.getName() + "'";
}
private:
const GenFuncs<Sig> m_funcs;
string m_name;
};
template <template <int> class GenF>
class TemplateFuncCaseFactory : public FuncCaseFactory
{
public:
MovePtr<TestNode> createCase(const Context &ctx) const
{
TestCaseGroup *group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
group->addChild(createFuncCase(ctx, "scalar", instance<GenF<1>>()));
group->addChild(createFuncCase(ctx, "vec2", instance<GenF<2>>()));
group->addChild(createFuncCase(ctx, "vec3", instance<GenF<3>>()));
group->addChild(createFuncCase(ctx, "vec4", instance<GenF<4>>()));
return MovePtr<TestNode>(group);
}
const FuncBase &getFunc(void) const
{
return instance<GenF<1>>();
}
};
template <template <int> class GenF>
class SquareMatrixFuncCaseFactory : public FuncCaseFactory
{
public:
MovePtr<TestNode> createCase(const Context &ctx) const
{
TestCaseGroup *group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
group->addChild(createFuncCase(ctx, "mat2", instance<GenF<2>>()));
#if 0
// disabled until we get reasonable results
group->addChild(createFuncCase(ctx, "mat3", instance<GenF<3> >()));
group->addChild(createFuncCase(ctx, "mat4", instance<GenF<4> >()));
#endif
return MovePtr<TestNode>(group);
}
const FuncBase &getFunc(void) const
{
return instance<GenF<2>>();
}
};
template <template <int, int> class GenF>
class MatrixFuncCaseFactory : public FuncCaseFactory
{
public:
MovePtr<TestNode> createCase(const Context &ctx) const
{
TestCaseGroup *const group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
this->addCase<2, 2>(ctx, group);
this->addCase<3, 2>(ctx, group);
this->addCase<4, 2>(ctx, group);
this->addCase<2, 3>(ctx, group);
this->addCase<3, 3>(ctx, group);
this->addCase<4, 3>(ctx, group);
this->addCase<2, 4>(ctx, group);
this->addCase<3, 4>(ctx, group);
this->addCase<4, 4>(ctx, group);
return MovePtr<TestNode>(group);
}
const FuncBase &getFunc(void) const
{
return instance<GenF<2, 2>>();
}
private:
template <int Rows, int Cols>
void addCase(const Context &ctx, TestCaseGroup *group) const
{
const char *const name = dataTypeNameOf<Matrix<float, Rows, Cols>>();
group->addChild(createFuncCase(ctx, name, instance<GenF<Rows, Cols>>()));
}
};
template <typename Sig>
class SimpleFuncCaseFactory : public CaseFactory
{
public:
SimpleFuncCaseFactory(const Func<Sig> &func) : m_func(func)
{
}
MovePtr<TestNode> createCase(const Context &ctx) const
{
return MovePtr<TestNode>(createFuncCase(ctx, ctx.name.c_str(), m_func));
}
string getName(void) const
{
return de::toLower(m_func.getName());
}
string getDesc(void) const
{
return "Function '" + getName() + "'";
}
private:
const Func<Sig> &m_func;
};
template <typename F>
SharedPtr<SimpleFuncCaseFactory<typename F::Sig>> createSimpleFuncCaseFactory(void)
{
return SharedPtr<SimpleFuncCaseFactory<typename F::Sig>>(new SimpleFuncCaseFactory<typename F::Sig>(instance<F>()));
}
class BuiltinFuncs : public CaseFactories
{
public:
const vector<const CaseFactory *> getFactories(void) const
{
vector<const CaseFactory *> ret;
for (size_t ndx = 0; ndx < m_factories.size(); ++ndx)
ret.push_back(m_factories[ndx].get());
return ret;
}
void addFactory(SharedPtr<const CaseFactory> fact)
{
m_factories.push_back(fact);
}
private:
vector<SharedPtr<const CaseFactory>> m_factories;
};
template <typename F>
void addScalarFactory(BuiltinFuncs &funcs, string name = "")
{
if (name.empty())
name = instance<F>().getName();
funcs.addFactory(
SharedPtr<const CaseFactory>(new GenFuncCaseFactory<typename F::Sig>(makeVectorizedFuncs<F>(), name)));
}
MovePtr<const CaseFactories> createES3BuiltinCases(void)
{
MovePtr<BuiltinFuncs> funcs(new BuiltinFuncs());
addScalarFactory<Add>(*funcs);
addScalarFactory<Sub>(*funcs);
addScalarFactory<Mul>(*funcs);
addScalarFactory<Div>(*funcs);
addScalarFactory<Radians>(*funcs);
addScalarFactory<Degrees>(*funcs);
addScalarFactory<Sin>(*funcs);
addScalarFactory<Cos>(*funcs);
addScalarFactory<Tan>(*funcs);
addScalarFactory<ASin>(*funcs);
addScalarFactory<ACos>(*funcs);
addScalarFactory<ATan2>(*funcs, "atan2");
addScalarFactory<ATan>(*funcs);
addScalarFactory<Sinh>(*funcs);
addScalarFactory<Cosh>(*funcs);
addScalarFactory<Tanh>(*funcs);
addScalarFactory<ASinh>(*funcs);
addScalarFactory<ACosh>(*funcs);
addScalarFactory<ATanh>(*funcs);
addScalarFactory<Pow>(*funcs);
addScalarFactory<Exp>(*funcs);
addScalarFactory<Log>(*funcs);
addScalarFactory<Exp2>(*funcs);
addScalarFactory<Log2>(*funcs);
addScalarFactory<Sqrt>(*funcs);
addScalarFactory<InverseSqrt>(*funcs);
addScalarFactory<Abs>(*funcs);
addScalarFactory<Sign>(*funcs);
addScalarFactory<Floor>(*funcs);
addScalarFactory<Trunc>(*funcs);
addScalarFactory<Round>(*funcs);
addScalarFactory<RoundEven>(*funcs);
addScalarFactory<Ceil>(*funcs);
addScalarFactory<Fract>(*funcs);
addScalarFactory<Mod>(*funcs);
funcs->addFactory(createSimpleFuncCaseFactory<Modf>());
addScalarFactory<Min>(*funcs);
addScalarFactory<Max>(*funcs);
addScalarFactory<Clamp>(*funcs);
addScalarFactory<Mix>(*funcs);
addScalarFactory<Step>(*funcs);
addScalarFactory<SmoothStep>(*funcs);
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot>()));
funcs->addFactory(createSimpleFuncCaseFactory<Cross>());
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant>()));
funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse>()));
return MovePtr<const CaseFactories>(funcs.release());
}
MovePtr<const CaseFactories> createES31BuiltinCases(void)
{
MovePtr<BuiltinFuncs> funcs(new BuiltinFuncs());
addScalarFactory<FrExp>(*funcs);
addScalarFactory<LdExp>(*funcs);
addScalarFactory<Fma>(*funcs);
return MovePtr<const CaseFactories>(funcs.release());
}
struct PrecisionTestContext
{
PrecisionTestContext(TestContext &testCtx_, RenderContext &renderCtx_, const FloatFormat &highp_,
const FloatFormat &mediump_, const FloatFormat &lowp_, const vector<ShaderType> &shaderTypes_,
int numRandoms_)
: testCtx(testCtx_)
, renderCtx(renderCtx_)
, shaderTypes(shaderTypes_)
, numRandoms(numRandoms_)
{
formats[glu::PRECISION_HIGHP] = &highp_;
formats[glu::PRECISION_MEDIUMP] = &mediump_;
formats[glu::PRECISION_LOWP] = &lowp_;
}
TestContext &testCtx;
RenderContext &renderCtx;
const FloatFormat *formats[glu::PRECISION_LAST];
vector<ShaderType> shaderTypes;
int numRandoms;
};
TestCaseGroup *createFuncGroup(const PrecisionTestContext &ctx, const CaseFactory &factory)
{
TestCaseGroup *const group = new TestCaseGroup(ctx.testCtx, factory.getName().c_str(), factory.getDesc().c_str());
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; ++precNdx)
{
const Precision precision = Precision(precNdx);
const string precName(glu::getPrecisionName(precision));
const FloatFormat &fmt = *de::getSizedArrayElement<glu::PRECISION_LAST>(ctx.formats, precNdx);
const FloatFormat &highpFmt = *de::getSizedArrayElement<glu::PRECISION_LAST>(ctx.formats, glu::PRECISION_HIGHP);
for (size_t shaderNdx = 0; shaderNdx < ctx.shaderTypes.size(); ++shaderNdx)
{
const ShaderType shaderType = ctx.shaderTypes[shaderNdx];
const string shaderName(glu::getShaderTypeName(shaderType));
const string name = precName + "_" + shaderName;
const Context caseCtx(name, ctx.testCtx, ctx.renderCtx, fmt, highpFmt, precision, shaderType,
ctx.numRandoms);
group->addChild(factory.createCase(caseCtx).release());
}
}
return group;
}
void addBuiltinPrecisionTests(TestContext &testCtx, RenderContext &renderCtx, const CaseFactories &cases,
const vector<ShaderType> &shaderTypes, TestCaseGroup &dstGroup)
{
const int userRandoms = testCtx.getCommandLine().getTestIterationCount();
const int defRandoms = 16384;
const int numRandoms = userRandoms > 0 ? userRandoms : defRandoms;
const FloatFormat highp(-126, 127, 23, true,
tcu::MAYBE, // subnormals
tcu::YES, // infinities
tcu::MAYBE); // NaN
// \todo [2014-04-01 lauri] Check these once Khronos bug 11840 is resolved.
const FloatFormat mediump(-13, 13, 9, false);
// A fixed-point format is just a floating point format with a fixed
// exponent and support for subnormals.
const FloatFormat lowp(0, 0, 7, false, tcu::YES);
const PrecisionTestContext ctx(testCtx, renderCtx, highp, mediump, lowp, shaderTypes, numRandoms);
for (size_t ndx = 0; ndx < cases.getFactories().size(); ++ndx)
dstGroup.addChild(createFuncGroup(ctx, *cases.getFactories()[ndx]));
}
} // namespace BuiltinPrecisionTests
} // namespace gls
} // namespace deqp