| /*------------------------------------------------------------------------- |
| * drawElements Quality Program OpenGL ES 3.0 Module |
| * ------------------------------------------------- |
| * |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file |
| * \brief Shader derivate function tests. |
| * |
| * \todo [2013-06-25 pyry] Missing features: |
| * - lines and points |
| * - projected coordinates |
| * - continous non-trivial functions (sin, exp) |
| * - non-continous functions (step) |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "es3fShaderDerivateTests.hpp" |
| #include "gluShaderProgram.hpp" |
| #include "gluRenderContext.hpp" |
| #include "gluDrawUtil.hpp" |
| #include "gluPixelTransfer.hpp" |
| #include "gluShaderUtil.hpp" |
| #include "gluStrUtil.hpp" |
| #include "gluTextureUtil.hpp" |
| #include "gluTexture.hpp" |
| #include "tcuStringTemplate.hpp" |
| #include "tcuRenderTarget.hpp" |
| #include "tcuSurface.hpp" |
| #include "tcuTestLog.hpp" |
| #include "tcuVectorUtil.hpp" |
| #include "tcuTextureUtil.hpp" |
| #include "tcuRGBA.hpp" |
| #include "tcuFloat.hpp" |
| #include "tcuInterval.hpp" |
| #include "deRandom.hpp" |
| #include "deUniquePtr.hpp" |
| #include "deString.h" |
| #include "glwEnums.hpp" |
| #include "glwFunctions.hpp" |
| #include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms() |
| |
| #include <sstream> |
| |
| namespace deqp |
| { |
| namespace gles3 |
| { |
| namespace Functional |
| { |
| |
| using std::map; |
| using std::ostringstream; |
| using std::string; |
| using std::vector; |
| using tcu::TestLog; |
| |
| enum |
| { |
| VIEWPORT_WIDTH = 167, |
| VIEWPORT_HEIGHT = 103, |
| FBO_WIDTH = 99, |
| FBO_HEIGHT = 133, |
| MAX_FAILED_MESSAGES = 10 |
| }; |
| |
| enum DerivateFunc |
| { |
| DERIVATE_DFDX = 0, |
| DERIVATE_DFDY, |
| DERIVATE_FWIDTH, |
| |
| DERIVATE_LAST |
| }; |
| |
| enum SurfaceType |
| { |
| SURFACETYPE_DEFAULT_FRAMEBUFFER = 0, |
| SURFACETYPE_UNORM_FBO, |
| SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec. |
| |
| SURFACETYPE_LAST |
| }; |
| |
| // Utilities |
| |
| namespace |
| { |
| |
| class AutoFbo |
| { |
| public: |
| AutoFbo(const glw::Functions &gl) : m_gl(gl), m_fbo(0) |
| { |
| } |
| |
| ~AutoFbo(void) |
| { |
| if (m_fbo) |
| m_gl.deleteFramebuffers(1, &m_fbo); |
| } |
| |
| void gen(void) |
| { |
| DE_ASSERT(!m_fbo); |
| m_gl.genFramebuffers(1, &m_fbo); |
| } |
| |
| uint32_t operator*(void) const |
| { |
| return m_fbo; |
| } |
| |
| private: |
| const glw::Functions &m_gl; |
| uint32_t m_fbo; |
| }; |
| |
| class AutoRbo |
| { |
| public: |
| AutoRbo(const glw::Functions &gl) : m_gl(gl), m_rbo(0) |
| { |
| } |
| |
| ~AutoRbo(void) |
| { |
| if (m_rbo) |
| m_gl.deleteRenderbuffers(1, &m_rbo); |
| } |
| |
| void gen(void) |
| { |
| DE_ASSERT(!m_rbo); |
| m_gl.genRenderbuffers(1, &m_rbo); |
| } |
| |
| uint32_t operator*(void) const |
| { |
| return m_rbo; |
| } |
| |
| private: |
| const glw::Functions &m_gl; |
| uint32_t m_rbo; |
| }; |
| |
| } // namespace |
| |
| static const char *getDerivateFuncName(DerivateFunc func) |
| { |
| switch (func) |
| { |
| case DERIVATE_DFDX: |
| return "dFdx"; |
| case DERIVATE_DFDY: |
| return "dFdy"; |
| case DERIVATE_FWIDTH: |
| return "fwidth"; |
| default: |
| DE_ASSERT(false); |
| return DE_NULL; |
| } |
| } |
| |
| static const char *getDerivateFuncCaseName(DerivateFunc func) |
| { |
| switch (func) |
| { |
| case DERIVATE_DFDX: |
| return "dfdx"; |
| case DERIVATE_DFDY: |
| return "dfdy"; |
| case DERIVATE_FWIDTH: |
| return "fwidth"; |
| default: |
| DE_ASSERT(false); |
| return DE_NULL; |
| } |
| } |
| |
| static inline tcu::BVec4 getDerivateMask(glu::DataType type) |
| { |
| switch (type) |
| { |
| case glu::TYPE_FLOAT: |
| return tcu::BVec4(true, false, false, false); |
| case glu::TYPE_FLOAT_VEC2: |
| return tcu::BVec4(true, true, false, false); |
| case glu::TYPE_FLOAT_VEC3: |
| return tcu::BVec4(true, true, true, false); |
| case glu::TYPE_FLOAT_VEC4: |
| return tcu::BVec4(true, true, true, true); |
| default: |
| DE_ASSERT(false); |
| return tcu::BVec4(true); |
| } |
| } |
| |
| static inline tcu::Vec4 readDerivate(const tcu::ConstPixelBufferAccess &surface, const tcu::Vec4 &derivScale, |
| const tcu::Vec4 &derivBias, int x, int y) |
| { |
| return (surface.getPixel(x, y) - derivBias) / derivScale; |
| } |
| |
| static inline tcu::UVec4 getCompExpBits(const tcu::Vec4 &v) |
| { |
| return tcu::UVec4(tcu::Float32(v[0]).exponentBits(), tcu::Float32(v[1]).exponentBits(), |
| tcu::Float32(v[2]).exponentBits(), tcu::Float32(v[3]).exponentBits()); |
| } |
| |
| float computeFloatingPointError(const float value, const int numAccurateBits) |
| { |
| const int numGarbageBits = 23 - numAccurateBits; |
| const uint32_t mask = (1u << numGarbageBits) - 1u; |
| const int exp = (tcu::Float32(value).exponent() < -3) ? -3 : tcu::Float32(value).exponent(); |
| |
| return tcu::Float32::construct(+1, exp, (1u << 23) | mask).asFloat() - |
| tcu::Float32::construct(+1, exp, 1u << 23).asFloat(); |
| } |
| |
| static int getNumMantissaBits(const glu::Precision precision) |
| { |
| switch (precision) |
| { |
| case glu::PRECISION_HIGHP: |
| return 23; |
| case glu::PRECISION_MEDIUMP: |
| return 10; |
| case glu::PRECISION_LOWP: |
| return 6; |
| default: |
| DE_ASSERT(false); |
| return 0; |
| } |
| } |
| |
| static int getMinExponent(const glu::Precision precision) |
| { |
| switch (precision) |
| { |
| case glu::PRECISION_HIGHP: |
| return -126; |
| case glu::PRECISION_MEDIUMP: |
| return -14; |
| case glu::PRECISION_LOWP: |
| return -8; |
| default: |
| DE_ASSERT(false); |
| return 0; |
| } |
| } |
| |
| static float getSingleULPForExponent(int exp, int numMantissaBits) |
| { |
| if (numMantissaBits > 0) |
| { |
| DE_ASSERT(numMantissaBits <= 23); |
| |
| const int ulpBitNdx = 23 - numMantissaBits; |
| return tcu::Float32::construct(+1, exp, (1 << 23) | (1 << ulpBitNdx)).asFloat() - |
| tcu::Float32::construct(+1, exp, (1 << 23)).asFloat(); |
| } |
| else |
| { |
| DE_ASSERT(numMantissaBits == 0); |
| return tcu::Float32::construct(+1, exp, (1 << 23)).asFloat(); |
| } |
| } |
| |
| static float getSingleULPForValue(float value, int numMantissaBits) |
| { |
| const int exp = tcu::Float32(value).exponent(); |
| return getSingleULPForExponent(exp, numMantissaBits); |
| } |
| |
| static float convertFloatFlushToZeroRtn(float value, int minExponent, int numAccurateBits) |
| { |
| if (value == 0.0f) |
| { |
| return 0.0f; |
| } |
| else |
| { |
| const tcu::Float32 inputFloat = tcu::Float32(value); |
| const int numTruncatedBits = 23 - numAccurateBits; |
| const uint32_t truncMask = (1u << numTruncatedBits) - 1u; |
| |
| if (value > 0.0f) |
| { |
| if (value > 0.0f && tcu::Float32(value).exponent() < minExponent) |
| { |
| // flush to zero if possible |
| return 0.0f; |
| } |
| else |
| { |
| // just mask away non-representable bits |
| return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat(); |
| } |
| } |
| else |
| { |
| if (inputFloat.mantissa() & truncMask) |
| { |
| // decrement one ulp if truncated bits are non-zero (i.e. if value is not representable) |
| return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask) |
| .asFloat() - |
| getSingleULPForExponent(inputFloat.exponent(), numAccurateBits); |
| } |
| else |
| { |
| // value is representable, no need to do anything |
| return value; |
| } |
| } |
| } |
| } |
| |
| static float convertFloatFlushToZeroRtp(float value, int minExponent, int numAccurateBits) |
| { |
| return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits); |
| } |
| |
| static float addErrorUlp(float value, float numUlps, int numMantissaBits) |
| { |
| return value + numUlps * getSingleULPForValue(value, numMantissaBits); |
| } |
| |
| enum |
| { |
| INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation |
| }; |
| |
| static int getInterpolationLostBitsWarning(const glu::Precision precision) |
| { |
| // number mantissa of bits allowed to be lost in varying interpolation |
| switch (precision) |
| { |
| case glu::PRECISION_HIGHP: |
| return 9; |
| case glu::PRECISION_MEDIUMP: |
| return 3; |
| case glu::PRECISION_LOWP: |
| return 3; |
| default: |
| DE_ASSERT(false); |
| return 0; |
| } |
| } |
| |
| static inline tcu::Vec4 getDerivateThreshold(const glu::Precision precision, const tcu::Vec4 &valueMin, |
| const tcu::Vec4 &valueMax, const tcu::Vec4 &expectedDerivate) |
| { |
| const int baseBits = getNumMantissaBits(precision); |
| const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate); |
| const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax)); |
| const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp); |
| const tcu::IVec4 numAccurateBits = |
| max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0)); |
| |
| return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]), |
| computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]), |
| computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]), |
| computeFloatingPointError(expectedDerivate[3], numAccurateBits[3])); |
| } |
| |
| static inline tcu::Vec4 getDerivateThresholdWarning(const glu::Precision precision, const tcu::Vec4 &valueMin, |
| const tcu::Vec4 &valueMax, const tcu::Vec4 &expectedDerivate) |
| { |
| const int baseBits = getNumMantissaBits(precision); |
| const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate); |
| const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax)); |
| const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp); |
| const tcu::IVec4 numAccurateBits = |
| max(baseBits - numBitsLost.asInt() - getInterpolationLostBitsWarning(precision), tcu::IVec4(0)); |
| |
| return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]), |
| computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]), |
| computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]), |
| computeFloatingPointError(expectedDerivate[3], numAccurateBits[3])); |
| } |
| |
| namespace |
| { |
| |
| struct LogVecComps |
| { |
| const tcu::Vec4 &v; |
| int numComps; |
| |
| LogVecComps(const tcu::Vec4 &v_, int numComps_) : v(v_), numComps(numComps_) |
| { |
| } |
| }; |
| |
| std::ostream &operator<<(std::ostream &str, const LogVecComps &v) |
| { |
| DE_ASSERT(de::inRange(v.numComps, 1, 4)); |
| if (v.numComps == 1) |
| return str << v.v[0]; |
| else if (v.numComps == 2) |
| return str << v.v.toWidth<2>(); |
| else if (v.numComps == 3) |
| return str << v.v.toWidth<3>(); |
| else |
| return str << v.v; |
| } |
| |
| } // namespace |
| |
| enum VerificationLogging |
| { |
| LOG_ALL = 0, |
| LOG_NOTHING |
| }; |
| |
| static qpTestResult verifyConstantDerivate(tcu::TestLog &log, const tcu::ConstPixelBufferAccess &result, |
| const tcu::PixelBufferAccess &errorMask, glu::DataType dataType, |
| const tcu::Vec4 &reference, const tcu::Vec4 &threshold, |
| const tcu::Vec4 &scale, const tcu::Vec4 &bias, |
| VerificationLogging logPolicy = LOG_ALL) |
| { |
| const int numComps = glu::getDataTypeFloatScalars(dataType); |
| const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType)); |
| int numFailedPixels = 0; |
| |
| if (logPolicy == LOG_ALL) |
| log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold " |
| << LogVecComps(threshold, numComps) << TestLog::EndMessage; |
| |
| for (int y = 0; y < result.getHeight(); y++) |
| { |
| for (int x = 0; x < result.getWidth(); x++) |
| { |
| const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y); |
| const bool isOk = |
| tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask), |
| tcu::BVec4(true)); |
| |
| if (!isOk) |
| { |
| if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL) |
| log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps) |
| << ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps) << ", at x = " << x |
| << ", y = " << y << TestLog::EndMessage; |
| numFailedPixels += 1; |
| errorMask.setPixel(tcu::RGBA::red().toVec(), x, y); |
| } |
| } |
| } |
| |
| if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL) |
| log << TestLog::Message << "..." << TestLog::EndMessage; |
| |
| if (numFailedPixels > 0 && logPolicy == LOG_ALL) |
| log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage; |
| |
| return (numFailedPixels == 0) ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL; |
| } |
| |
| struct Linear2DFunctionEvaluator |
| { |
| tcu::Matrix<float, 4, 3> matrix; |
| |
| // .-----. |
| // | s_x | |
| // M x | s_y | |
| // | 1.0 | |
| // '-----' |
| tcu::Vec4 evaluateAt(float screenX, float screenY) const; |
| }; |
| |
| tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt(float screenX, float screenY) const |
| { |
| const tcu::Vec3 position(screenX, screenY, 1.0f); |
| return matrix * position; |
| } |
| |
| static qpTestResult reverifyConstantDerivateWithFlushRelaxations( |
| tcu::TestLog &log, const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask, |
| glu::DataType dataType, glu::Precision precision, const tcu::Vec4 &derivScale, const tcu::Vec4 &derivBias, |
| const tcu::Vec4 &surfaceThreshold, DerivateFunc derivateFunc, const Linear2DFunctionEvaluator &function) |
| { |
| DE_ASSERT(result.getWidth() == errorMask.getWidth()); |
| DE_ASSERT(result.getHeight() == errorMask.getHeight()); |
| DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY); |
| |
| const tcu::IVec4 red(255, 0, 0, 255); |
| const tcu::IVec4 green(0, 255, 0, 255); |
| const float divisionErrorUlps = 2.5f; |
| |
| const int numComponents = glu::getDataTypeFloatScalars(dataType); |
| const int numBits = getNumMantissaBits(precision); |
| const int minExponent = getMinExponent(precision); |
| |
| const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS; |
| int numFailedPixels = 0; |
| |
| tcu::clear(errorMask, green); |
| |
| // search for failed pixels |
| for (int y = 0; y < result.getHeight(); ++y) |
| for (int x = 0; x < result.getWidth(); ++x) |
| { |
| // flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore)) |
| // flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP ) |
| // dx |
| |
| const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y); |
| |
| // sample at the front of the back pixel and the back of the front pixel to cover the whole area of |
| // legal sample positions. In general case this is NOT OK, but we know that the target function is |
| // (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the |
| // maximum difference possible in exponents which are used in error bound calculations. |
| // * non-linearity may happen around zero or with very high function values due to subnorms not |
| // behaving well. |
| const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX) ? |
| (function.evaluateAt((float)x + 2.0f, (float)y + 0.5f)) : |
| (function.evaluateAt((float)x + 0.5f, (float)y + 2.0f)); |
| const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX) ? |
| (function.evaluateAt((float)x - 1.0f, (float)y + 0.5f)) : |
| (function.evaluateAt((float)x + 0.5f, (float)y - 1.0f)); |
| |
| bool anyComponentFailed = false; |
| |
| // check components separately |
| for (int c = 0; c < numComponents; ++c) |
| { |
| // Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding) |
| const tcu::Interval forwardComponent( |
| convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits), |
| minExponent, numBits), |
| convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits), |
| minExponent, numBits)); |
| const tcu::Interval backwardComponent( |
| convertFloatFlushToZeroRtn( |
| addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent, |
| numBits), |
| convertFloatFlushToZeroRtp( |
| addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent, |
| numBits)); |
| const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(), |
| tcu::Float32(forwardComponent.hi()).exponent()), |
| de::max(tcu::Float32(backwardComponent.lo()).exponent(), |
| tcu::Float32(backwardComponent.hi()).exponent())); |
| |
| // subtraction in numerator will likely cause a cancellation of the most |
| // significant bits. Apply error bounds. |
| |
| const tcu::Interval numerator(forwardComponent - backwardComponent); |
| const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent(); |
| const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent(); |
| const int numeratorLoBitsLost = de::max( |
| 0, |
| maxValueExp - |
| numeratorLoExp); //!< must clamp to zero since if forward and backward components have different |
| const int numeratorHiBitsLost = de::max( |
| 0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands. |
| const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost); |
| const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost); |
| |
| const tcu::Interval numeratorRange( |
| convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits), |
| convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits)); |
| |
| const tcu::Interval divisionRange = |
| numeratorRange / |
| 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3) |
| const tcu::Interval divisionResultRange( |
| convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits), |
| minExponent, numBits), |
| convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits), |
| minExponent, numBits)); |
| const tcu::Interval finalResultRange(divisionResultRange.lo() - surfaceThreshold[c], |
| divisionResultRange.hi() + surfaceThreshold[c]); |
| |
| if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi()) |
| { |
| // value ok |
| } |
| else |
| { |
| if (numFailedPixels < MAX_FAILED_MESSAGES) |
| log << tcu::TestLog::Message << "Error in pixel at " << x << ", " << y << " with component " |
| << c << " (channel " << ("rgba"[c]) << ")\n" |
| << "\tGot pixel value " << result.getPixelInt(x, y) << "\n" |
| << "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y')) |
| << " ~= " << resultDerivative[c] << "\n" |
| << "\t\tdifference to a valid range: " |
| << ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+")) |
| << ((resultDerivative[c] < finalResultRange.lo()) ? |
| (finalResultRange.lo() - resultDerivative[c]) : |
| (resultDerivative[c] - finalResultRange.hi())) |
| << "\n" |
| << "\tDerivative value range:\n" |
| << "\t\tMin: " << finalResultRange.lo() << "\n" |
| << "\t\tMax: " << finalResultRange.hi() << "\n" |
| << tcu::TestLog::EndMessage; |
| |
| ++numFailedPixels; |
| anyComponentFailed = true; |
| } |
| } |
| |
| if (anyComponentFailed) |
| errorMask.setPixel(red, x, y); |
| } |
| |
| if (numFailedPixels >= MAX_FAILED_MESSAGES) |
| log << TestLog::Message << "..." << TestLog::EndMessage; |
| |
| if (numFailedPixels > 0) |
| log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage; |
| |
| return (numFailedPixels == 0) ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL; |
| } |
| |
| // TriangleDerivateCase |
| |
| class TriangleDerivateCase : public TestCase |
| { |
| public: |
| TriangleDerivateCase(Context &context, const char *name, const char *description); |
| ~TriangleDerivateCase(void); |
| |
| IterateResult iterate(void); |
| |
| protected: |
| virtual void setupRenderState(uint32_t program) |
| { |
| DE_UNREF(program); |
| } |
| virtual qpTestResult verify(const tcu::ConstPixelBufferAccess &result, |
| const tcu::PixelBufferAccess &errorMask) = DE_NULL; |
| |
| tcu::IVec2 getViewportSize(void) const; |
| tcu::Vec4 getSurfaceThreshold(void) const; |
| |
| glu::DataType m_dataType; |
| glu::Precision m_precision; |
| |
| glu::DataType m_coordDataType; |
| glu::Precision m_coordPrecision; |
| |
| std::string m_fragmentSrc; |
| |
| tcu::Vec4 m_coordMin; |
| tcu::Vec4 m_coordMax; |
| tcu::Vec4 m_derivScale; |
| tcu::Vec4 m_derivBias; |
| |
| SurfaceType m_surfaceType; |
| int m_numSamples; |
| uint32_t m_hint; |
| |
| bool m_useAsymmetricCoords; |
| }; |
| |
| TriangleDerivateCase::TriangleDerivateCase(Context &context, const char *name, const char *description) |
| : TestCase(context, name, description) |
| , m_dataType(glu::TYPE_LAST) |
| , m_precision(glu::PRECISION_LAST) |
| , m_coordDataType(glu::TYPE_LAST) |
| , m_coordPrecision(glu::PRECISION_LAST) |
| , m_surfaceType(SURFACETYPE_DEFAULT_FRAMEBUFFER) |
| , m_numSamples(0) |
| , m_hint(GL_DONT_CARE) |
| , m_useAsymmetricCoords(false) |
| { |
| DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0); |
| } |
| |
| TriangleDerivateCase::~TriangleDerivateCase(void) |
| { |
| TriangleDerivateCase::deinit(); |
| } |
| |
| static std::string genVertexSource(glu::DataType coordType, glu::Precision precision) |
| { |
| DE_ASSERT(glu::isDataTypeFloatOrVec(coordType)); |
| |
| const char *vertexTmpl = "#version 300 es\n" |
| "in highp vec4 a_position;\n" |
| "in ${PRECISION} ${DATATYPE} a_coord;\n" |
| "out ${PRECISION} ${DATATYPE} v_coord;\n" |
| "void main (void)\n" |
| "{\n" |
| " gl_Position = a_position;\n" |
| " v_coord = a_coord;\n" |
| "}\n"; |
| |
| map<string, string> vertexParams; |
| |
| vertexParams["PRECISION"] = glu::getPrecisionName(precision); |
| vertexParams["DATATYPE"] = glu::getDataTypeName(coordType); |
| |
| return tcu::StringTemplate(vertexTmpl).specialize(vertexParams); |
| } |
| |
| inline tcu::IVec2 TriangleDerivateCase::getViewportSize(void) const |
| { |
| if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER) |
| { |
| const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH); |
| const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT); |
| return tcu::IVec2(width, height); |
| } |
| else |
| return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT); |
| } |
| |
| TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate(void) |
| { |
| const glw::Functions &gl = m_context.getRenderContext().getFunctions(); |
| const glu::ShaderProgram program( |
| m_context.getRenderContext(), |
| glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc)); |
| de::Random rnd(deStringHash(getName()) ^ 0xbbc24); |
| const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER; |
| const uint32_t fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8; |
| const tcu::IVec2 viewportSize = getViewportSize(); |
| const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x()); |
| const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y()); |
| AutoFbo fbo(gl); |
| AutoRbo rbo(gl); |
| tcu::TextureLevel result; |
| |
| m_testCtx.getLog() << program; |
| |
| if (!program.isOk()) |
| TCU_FAIL("Compile failed"); |
| |
| if (useFbo) |
| { |
| m_testCtx.getLog() << TestLog::Message << "Rendering to FBO, format = " << glu::getTextureFormatStr(fboFormat) |
| << ", samples = " << m_numSamples << TestLog::EndMessage; |
| |
| fbo.gen(); |
| rbo.gen(); |
| |
| gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo); |
| gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y()); |
| gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo); |
| gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo); |
| TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); |
| } |
| else |
| { |
| const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat(); |
| |
| m_testCtx.getLog() << TestLog::Message << "Rendering to default framebuffer\n" |
| << "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits |
| << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits << TestLog::EndMessage; |
| } |
| |
| m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n" |
| << (m_useAsymmetricCoords ? "v_coord.x = in.x * (x+y)/2\n" : "v_coord.x = in.x * x\n") |
| << (m_useAsymmetricCoords ? "v_coord.y = in.y * (x+y)/2\n" : "v_coord.y = in.y * y\n") |
| << "v_coord.z = in.z * (x+y)/2\n" |
| << "v_coord.w = in.w * (1 - (x+y)/2)\n" |
| << TestLog::EndMessage << TestLog::Message << "u_scale: " << m_derivScale |
| << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)" |
| << TestLog::EndMessage << TestLog::Message << "Viewport: " << viewportSize.x() << "x" |
| << viewportSize.y() << TestLog::EndMessage << TestLog::Message |
| << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage; |
| |
| // Draw |
| { |
| const float positions[] = {-1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, |
| 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f}; |
| float coords[] = {m_coordMin.x(), |
| m_coordMin.y(), |
| m_coordMin.z(), |
| m_coordMax.w(), |
| m_coordMin.x(), |
| m_coordMax.y(), |
| (m_coordMin.z() + m_coordMax.z()) * 0.5f, |
| (m_coordMin.w() + m_coordMax.w()) * 0.5f, |
| m_coordMax.x(), |
| m_coordMin.y(), |
| (m_coordMin.z() + m_coordMax.z()) * 0.5f, |
| (m_coordMin.w() + m_coordMax.w()) * 0.5f, |
| m_coordMax.x(), |
| m_coordMax.y(), |
| m_coordMax.z(), |
| m_coordMin.w()}; |
| |
| // For linear tests we want varying data x and y to vary along both axes |
| // to get nonzero x for dfdy and nonzero y for dfdx. To make the gradient |
| // the same for both triangles we set vertices 2 and 3 to middle values. |
| // This way the values go from min -> (max+min) / 2 or (max+min) / 2 -> max |
| // depending on the triangle, but the derivative is the same for both. |
| if (m_useAsymmetricCoords) |
| { |
| coords[4] = coords[8] = (m_coordMin.x() + m_coordMax.x()) * 0.5f; |
| coords[5] = coords[9] = (m_coordMin.y() + m_coordMax.y()) * 0.5f; |
| } |
| |
| const glu::VertexArrayBinding vertexArrays[] = {glu::va::Float("a_position", 4, 4, 0, &positions[0]), |
| glu::va::Float("a_coord", 4, 4, 0, &coords[0])}; |
| const uint16_t indices[] = {0, 2, 1, 2, 3, 1}; |
| |
| gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f); |
| gl.clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); |
| gl.disable(GL_DITHER); |
| |
| gl.useProgram(program.getProgram()); |
| |
| { |
| const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale"); |
| const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias"); |
| |
| switch (m_dataType) |
| { |
| case glu::TYPE_FLOAT: |
| gl.uniform1f(scaleLoc, m_derivScale.x()); |
| gl.uniform1f(biasLoc, m_derivBias.x()); |
| break; |
| |
| case glu::TYPE_FLOAT_VEC2: |
| gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr()); |
| gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr()); |
| break; |
| |
| case glu::TYPE_FLOAT_VEC3: |
| gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr()); |
| gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr()); |
| break; |
| |
| case glu::TYPE_FLOAT_VEC4: |
| gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr()); |
| gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr()); |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| |
| gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram()); |
| setupRenderState(program.getProgram()); |
| |
| gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint); |
| GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state"); |
| |
| gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y()); |
| glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays), |
| &vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); |
| GLU_EXPECT_NO_ERROR(gl.getError(), "Draw"); |
| } |
| |
| // Read back results |
| { |
| const bool isMSAA = useFbo && m_numSamples > 0; |
| AutoFbo resFbo(gl); |
| AutoRbo resRbo(gl); |
| |
| // Resolve if necessary |
| if (isMSAA) |
| { |
| resFbo.gen(); |
| resRbo.gen(); |
| |
| gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo); |
| gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y()); |
| gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo); |
| gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo); |
| TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); |
| |
| gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(), |
| GL_COLOR_BUFFER_BIT, GL_NEAREST); |
| GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit"); |
| |
| gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo); |
| } |
| |
| switch (m_surfaceType) |
| { |
| case SURFACETYPE_DEFAULT_FRAMEBUFFER: |
| case SURFACETYPE_UNORM_FBO: |
| result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), |
| viewportSize.x(), viewportSize.y()); |
| glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result); |
| break; |
| |
| case SURFACETYPE_FLOAT_FBO: |
| { |
| const tcu::TextureFormat dataFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT); |
| const tcu::TextureFormat transferFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32); |
| |
| result.setStorage(dataFormat, viewportSize.x(), viewportSize.y()); |
| glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, |
| tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(), |
| result.getDepth(), result.getAccess().getDataPtr())); |
| break; |
| } |
| |
| default: |
| DE_ASSERT(false); |
| } |
| |
| GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels"); |
| } |
| |
| // Verify |
| { |
| tcu::Surface errorMask(result.getWidth(), result.getHeight()); |
| tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toVec()); |
| |
| const qpTestResult testResult = verify(result.getAccess(), errorMask.getAccess()); |
| const char *failStr = "Fail"; |
| |
| m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images") |
| << TestLog::Image("Rendered", "Rendered image", result); |
| |
| if (testResult != QP_TEST_RESULT_PASS) |
| m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask); |
| |
| m_testCtx.getLog() << TestLog::EndImageSet; |
| |
| if (testResult == QP_TEST_RESULT_PASS) |
| failStr = "Pass"; |
| else if (testResult == QP_TEST_RESULT_QUALITY_WARNING) |
| failStr = "QualityWarning"; |
| |
| m_testCtx.setTestResult(testResult, failStr); |
| } |
| |
| return STOP; |
| } |
| |
| tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold(void) const |
| { |
| switch (m_surfaceType) |
| { |
| case SURFACETYPE_DEFAULT_FRAMEBUFFER: |
| { |
| const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat(); |
| const tcu::IVec4 channelBits(pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits, |
| pixelFormat.alphaBits); |
| const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits); |
| const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f; |
| |
| return normThreshold; |
| } |
| |
| case SURFACETYPE_UNORM_FBO: |
| return tcu::IVec4(1).asFloat() / 255.0f; |
| case SURFACETYPE_FLOAT_FBO: |
| return tcu::Vec4(0.0f); |
| default: |
| DE_ASSERT(false); |
| return tcu::Vec4(0.0f); |
| } |
| } |
| |
| // ConstantDerivateCase |
| |
| class ConstantDerivateCase : public TriangleDerivateCase |
| { |
| public: |
| ConstantDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func, |
| glu::DataType type); |
| ~ConstantDerivateCase(void) |
| { |
| } |
| |
| void init(void); |
| |
| protected: |
| qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask); |
| |
| private: |
| DerivateFunc m_func; |
| }; |
| |
| ConstantDerivateCase::ConstantDerivateCase(Context &context, const char *name, const char *description, |
| DerivateFunc func, glu::DataType type) |
| : TriangleDerivateCase(context, name, description) |
| , m_func(func) |
| { |
| m_dataType = type; |
| m_precision = glu::PRECISION_HIGHP; |
| m_coordDataType = m_dataType; |
| m_coordPrecision = m_precision; |
| } |
| |
| void ConstantDerivateCase::init(void) |
| { |
| const char *fragmentTmpl = "#version 300 es\n" |
| "layout(location = 0) out mediump vec4 o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"; |
| map<string, string> fragmentParams; |
| fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); |
| fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); |
| fragmentParams["FUNC"] = getDerivateFuncName(m_func); |
| fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" : |
| /* TYPE_FLOAT */ "7.7"; |
| fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : |
| /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; |
| |
| m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams); |
| |
| m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f); |
| m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f); |
| } |
| |
| qpTestResult ConstantDerivateCase::verify(const tcu::ConstPixelBufferAccess &result, |
| const tcu::PixelBufferAccess &errorMask) |
| { |
| const tcu::Vec4 reference(0.0f); // Derivate of constant argument should always be 0 |
| const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale); |
| |
| return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, m_derivScale, |
| m_derivBias); |
| } |
| |
| // LinearDerivateCase |
| |
| class LinearDerivateCase : public TriangleDerivateCase |
| { |
| public: |
| LinearDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func, |
| glu::DataType type, glu::Precision precision, uint32_t hint, SurfaceType surfaceType, |
| int numSamples, const char *fragmentSrcTmpl); |
| ~LinearDerivateCase(void) |
| { |
| } |
| |
| void init(void); |
| |
| protected: |
| qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask); |
| |
| private: |
| DerivateFunc m_func; |
| std::string m_fragmentTmpl; |
| }; |
| |
| LinearDerivateCase::LinearDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func, |
| glu::DataType type, glu::Precision precision, uint32_t hint, |
| SurfaceType surfaceType, int numSamples, const char *fragmentSrcTmpl) |
| : TriangleDerivateCase(context, name, description) |
| , m_func(func) |
| , m_fragmentTmpl(fragmentSrcTmpl) |
| { |
| m_dataType = type; |
| m_precision = precision; |
| m_coordDataType = m_dataType; |
| m_coordPrecision = m_precision; |
| m_hint = hint; |
| m_surfaceType = surfaceType; |
| m_numSamples = numSamples; |
| m_useAsymmetricCoords = true; |
| } |
| |
| void LinearDerivateCase::init(void) |
| { |
| const tcu::IVec2 viewportSize = getViewportSize(); |
| const float w = float(viewportSize.x()); |
| const float h = float(viewportSize.y()); |
| const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO; |
| map<string, string> fragmentParams; |
| |
| fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4); |
| fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision); |
| fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); |
| fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); |
| fragmentParams["FUNC"] = getDerivateFuncName(m_func); |
| |
| if (packToInt) |
| { |
| fragmentParams["CAST_TO_OUTPUT"] = |
| m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" : |
| /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))"; |
| } |
| else |
| { |
| fragmentParams["CAST_TO_OUTPUT"] = |
| m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : |
| /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; |
| } |
| |
| m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams); |
| |
| switch (m_precision) |
| { |
| case glu::PRECISION_HIGHP: |
| m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f); |
| m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f); |
| break; |
| |
| case glu::PRECISION_MEDIUMP: |
| m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f); |
| m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f); |
| break; |
| |
| case glu::PRECISION_LOWP: |
| m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f); |
| m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f); |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| } |
| |
| if (m_surfaceType == SURFACETYPE_FLOAT_FBO) |
| { |
| // No scale or bias used for accuracy. |
| m_derivScale = tcu::Vec4(1.0f); |
| m_derivBias = tcu::Vec4(0.0f); |
| } |
| else |
| { |
| // Compute scale - bias that normalizes to 0..1 range. |
| const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w * 0.5f, -w * 0.5f); |
| const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h * 0.5f, -h * 0.5f); |
| |
| switch (m_func) |
| { |
| case DERIVATE_DFDX: |
| m_derivScale = 0.5f / dx; |
| break; |
| |
| case DERIVATE_DFDY: |
| m_derivScale = 0.5f / dy; |
| break; |
| |
| case DERIVATE_FWIDTH: |
| m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy)); |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| } |
| |
| m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); |
| } |
| } |
| |
| qpTestResult LinearDerivateCase::verify(const tcu::ConstPixelBufferAccess &result, |
| const tcu::PixelBufferAccess &errorMask) |
| { |
| const tcu::Vec4 xScale = tcu::Vec4(0.5f, 0.5f, 0.5f, -0.5f); |
| const tcu::Vec4 yScale = tcu::Vec4(0.5f, 0.5f, 0.5f, -0.5f); |
| |
| const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale); |
| |
| if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY) |
| { |
| const bool isX = m_func == DERIVATE_DFDX; |
| const float div = isX ? float(result.getWidth()) : float(result.getHeight()); |
| const tcu::Vec4 scale = isX ? xScale : yScale; |
| tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div); |
| const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin, m_coordMax, reference); |
| const tcu::Vec4 opThresholdW = getDerivateThresholdWarning(m_precision, m_coordMin, m_coordMax, reference); |
| const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold); |
| const tcu::Vec4 thresholdW = max(surfaceThreshold, opThresholdW); |
| const int numComps = glu::getDataTypeFloatScalars(m_dataType); |
| |
| /* adjust the reference value for the correct dfdx or dfdy sample adjacency */ |
| reference = reference * scale; |
| |
| m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n" |
| << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " |
| << LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage; |
| |
| // short circuit if result is strictly within the normal value error bounds. |
| // This improves performance significantly. |
| if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, |
| m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS) |
| { |
| m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid." |
| << tcu::TestLog::EndMessage; |
| |
| return QP_TEST_RESULT_PASS; |
| } |
| |
| // Check with relaxed threshold value |
| if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, thresholdW, |
| m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS) |
| { |
| m_testCtx.getLog() << tcu::TestLog::Message |
| << "No incorrect derivatives found, result valid with quality warning." |
| << tcu::TestLog::EndMessage; |
| |
| return QP_TEST_RESULT_QUALITY_WARNING; |
| } |
| |
| // some pixels exceed error bounds calculated for normal values. Verify that these |
| // potentially invalid pixels are in fact valid due to (for example) subnorm flushing. |
| |
| m_testCtx.getLog() << tcu::TestLog::Message |
| << "Initial verification failed, verifying image by calculating accurate error bounds for " |
| "each result pixel.\n" |
| << "\tVerifying each result derivative is within its range of legal result values." |
| << tcu::TestLog::EndMessage; |
| |
| { |
| const tcu::IVec2 viewportSize = getViewportSize(); |
| const float w = float(viewportSize.x()); |
| const float h = float(viewportSize.y()); |
| const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin); |
| Linear2DFunctionEvaluator function; |
| |
| function.matrix.setRow(0, |
| tcu::Vec3((valueRamp.x() / w) / 2.0f, (valueRamp.x() / h) / 2.0f, m_coordMin.x())); |
| function.matrix.setRow(1, |
| tcu::Vec3((valueRamp.y() / w) / 2.0f, (valueRamp.y() / h) / 2.0f, m_coordMin.y())); |
| function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) / |
| 2.0f); |
| function.matrix.setRow( |
| 3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f); |
| |
| return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask, m_dataType, |
| m_precision, m_derivScale, m_derivBias, |
| surfaceThreshold, m_func, function); |
| } |
| } |
| else |
| { |
| DE_ASSERT(m_func == DERIVATE_FWIDTH); |
| const float w = float(result.getWidth()); |
| const float h = float(result.getHeight()); |
| |
| const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale; |
| const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale; |
| const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy); |
| const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin * xScale, m_coordMax * xScale, dx); |
| const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin * yScale, m_coordMax * yScale, dy); |
| const tcu::Vec4 dxThresholdW = |
| getDerivateThresholdWarning(m_precision, m_coordMin * xScale, m_coordMax * xScale, dx); |
| const tcu::Vec4 dyThresholdW = |
| getDerivateThresholdWarning(m_precision, m_coordMin * yScale, m_coordMax * yScale, dy); |
| const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold)); |
| const tcu::Vec4 thresholdW = max(surfaceThreshold, max(dxThresholdW, dyThresholdW)); |
| qpTestResult testResult = QP_TEST_RESULT_FAIL; |
| |
| testResult = verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, |
| m_derivScale, m_derivBias); |
| |
| // return if result is pass |
| if (testResult == QP_TEST_RESULT_PASS) |
| return testResult; |
| |
| // re-check with relaxed threshold |
| testResult = verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, thresholdW, |
| m_derivScale, m_derivBias); |
| |
| // if with relaxed threshold test is passing then mark the result with quality warning. |
| if (testResult == QP_TEST_RESULT_PASS) |
| testResult = QP_TEST_RESULT_QUALITY_WARNING; |
| |
| return testResult; |
| } |
| } |
| |
| // TextureDerivateCase |
| |
| class TextureDerivateCase : public TriangleDerivateCase |
| { |
| public: |
| TextureDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func, |
| glu::DataType type, glu::Precision precision, uint32_t hint, SurfaceType surfaceType, |
| int numSamples); |
| ~TextureDerivateCase(void); |
| |
| void init(void); |
| void deinit(void); |
| |
| protected: |
| void setupRenderState(uint32_t program); |
| qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask); |
| |
| private: |
| DerivateFunc m_func; |
| |
| tcu::Vec4 m_texValueMin; |
| tcu::Vec4 m_texValueMax; |
| glu::Texture2D *m_texture; |
| }; |
| |
| TextureDerivateCase::TextureDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func, |
| glu::DataType type, glu::Precision precision, uint32_t hint, |
| SurfaceType surfaceType, int numSamples) |
| : TriangleDerivateCase(context, name, description) |
| , m_func(func) |
| , m_texture(DE_NULL) |
| { |
| m_dataType = type; |
| m_precision = precision; |
| m_coordDataType = glu::TYPE_FLOAT_VEC2; |
| m_coordPrecision = glu::PRECISION_HIGHP; |
| m_hint = hint; |
| m_surfaceType = surfaceType; |
| m_numSamples = numSamples; |
| } |
| |
| TextureDerivateCase::~TextureDerivateCase(void) |
| { |
| delete m_texture; |
| } |
| |
| void TextureDerivateCase::init(void) |
| { |
| // Generate shader |
| { |
| const char *fragmentTmpl = "#version 300 es\n" |
| "in highp vec2 v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} sampler2D u_sampler;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n" |
| " ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"; |
| |
| const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO; |
| map<string, string> fragmentParams; |
| |
| fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4); |
| fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision); |
| fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); |
| fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); |
| fragmentParams["FUNC"] = getDerivateFuncName(m_func); |
| fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" : |
| /* TYPE_FLOAT */ ".x"; |
| |
| if (packToInt) |
| { |
| fragmentParams["CAST_TO_OUTPUT"] = |
| m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" : |
| /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))"; |
| } |
| else |
| { |
| fragmentParams["CAST_TO_OUTPUT"] = |
| m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : |
| m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : |
| m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : |
| /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; |
| } |
| |
| m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams); |
| } |
| |
| // Texture size matches viewport and nearest sampling is used. Thus texture sampling |
| // is equal to just interpolating the texture value range. |
| |
| // Determine value range for texture. |
| |
| switch (m_precision) |
| { |
| case glu::PRECISION_HIGHP: |
| m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f); |
| m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f); |
| break; |
| |
| case glu::PRECISION_MEDIUMP: |
| m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f); |
| m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f); |
| break; |
| |
| case glu::PRECISION_LOWP: |
| m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f); |
| m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f); |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| } |
| |
| // Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F. |
| { |
| const tcu::IVec2 viewportSize = getViewportSize(); |
| DE_ASSERT(!m_texture); |
| m_texture = new glu::Texture2D(m_context.getRenderContext(), |
| m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(), |
| viewportSize.y()); |
| m_texture->getRefTexture().allocLevel(0); |
| } |
| |
| // Texture coordinates |
| m_coordMin = tcu::Vec4(0.0f); |
| m_coordMax = tcu::Vec4(1.0f); |
| |
| // Fill with gradients. |
| { |
| const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0); |
| for (int y = 0; y < level0.getHeight(); y++) |
| { |
| for (int x = 0; x < level0.getWidth(); x++) |
| { |
| const float xf = (float(x) + 0.5f) / float(level0.getWidth()); |
| const float yf = (float(y) + 0.5f) / float(level0.getHeight()); |
| // Make x and y data to have dependency to both axes so that dfdx(tex).y and dfdy(tex).x are nonzero. |
| const tcu::Vec4 s = |
| tcu::Vec4(xf + yf / 2.0f, yf + xf / 2.0f, (xf + yf) / 2.0f, 1.0f - (xf + yf) / 2.0f); |
| |
| level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin) * s, x, y); |
| } |
| } |
| } |
| |
| m_texture->upload(); |
| |
| if (m_surfaceType == SURFACETYPE_FLOAT_FBO) |
| { |
| // No scale or bias used for accuracy. |
| m_derivScale = tcu::Vec4(1.0f); |
| m_derivBias = tcu::Vec4(0.0f); |
| } |
| else |
| { |
| // Compute scale - bias that normalizes to 0..1 range. |
| const tcu::IVec2 viewportSize = getViewportSize(); |
| const float w = float(viewportSize.x()); |
| const float h = float(viewportSize.y()); |
| const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w * 0.5f, -w * 0.5f); |
| const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h * 0.5f, -h * 0.5f); |
| |
| switch (m_func) |
| { |
| case DERIVATE_DFDX: |
| m_derivScale = 0.5f / dx; |
| break; |
| |
| case DERIVATE_DFDY: |
| m_derivScale = 0.5f / dy; |
| break; |
| |
| case DERIVATE_FWIDTH: |
| m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy)); |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| } |
| |
| m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); |
| } |
| } |
| |
| void TextureDerivateCase::deinit(void) |
| { |
| delete m_texture; |
| m_texture = DE_NULL; |
| } |
| |
| void TextureDerivateCase::setupRenderState(uint32_t program) |
| { |
| const glw::Functions &gl = m_context.getRenderContext().getFunctions(); |
| const int texUnit = 1; |
| |
| gl.activeTexture(GL_TEXTURE0 + texUnit); |
| gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture()); |
| gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); |
| gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); |
| gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); |
| gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); |
| |
| gl.uniform1i(gl.getUniformLocation(program, "u_sampler"), texUnit); |
| } |
| |
| qpTestResult TextureDerivateCase::verify(const tcu::ConstPixelBufferAccess &result, |
| const tcu::PixelBufferAccess &errorMask) |
| { |
| // \note Edges are ignored in comparison |
| if (result.getWidth() < 2 || result.getHeight() < 2) |
| throw tcu::NotSupportedError("Too small viewport"); |
| |
| tcu::ConstPixelBufferAccess compareArea = |
| tcu::getSubregion(result, 1, 1, result.getWidth() - 2, result.getHeight() - 2); |
| tcu::PixelBufferAccess maskArea = |
| tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth() - 2, errorMask.getHeight() - 2); |
| const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.5f, 0.5f, -0.5f); |
| const tcu::Vec4 yScale = tcu::Vec4(0.5f, 1.0f, 0.5f, -0.5f); |
| const float w = float(result.getWidth()); |
| const float h = float(result.getHeight()); |
| |
| const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale); |
| |
| if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY) |
| { |
| const bool isX = m_func == DERIVATE_DFDX; |
| const float div = isX ? w : h; |
| const tcu::Vec4 scale = isX ? xScale : yScale; |
| tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div); |
| const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin, m_texValueMax, reference); |
| const tcu::Vec4 opThresholdW = |
| getDerivateThresholdWarning(m_precision, m_texValueMin, m_texValueMax, reference); |
| const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold); |
| const tcu::Vec4 thresholdW = max(surfaceThreshold, opThresholdW); |
| const int numComps = glu::getDataTypeFloatScalars(m_dataType); |
| |
| /* adjust the reference value for the correct dfdx or dfdy sample adjacency */ |
| reference = reference * scale; |
| |
| m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n" |
| << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " |
| << LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage; |
| |
| // short circuit if result is strictly within the normal value error bounds. |
| // This improves performance significantly. |
| if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold, |
| m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS) |
| { |
| m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid." |
| << tcu::TestLog::EndMessage; |
| |
| return QP_TEST_RESULT_PASS; |
| } |
| |
| m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n" |
| << "\tValid derivative is " << LogVecComps(reference, numComps) << " with Warning threshold " |
| << LogVecComps(thresholdW, numComps) << tcu::TestLog::EndMessage; |
| |
| // Re-check with relaxed threshold |
| if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, thresholdW, |
| m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS) |
| { |
| m_testCtx.getLog() << tcu::TestLog::Message |
| << "No incorrect derivatives found, result valid with quality warning." |
| << tcu::TestLog::EndMessage; |
| |
| return QP_TEST_RESULT_QUALITY_WARNING; |
| } |
| |
| // some pixels exceed error bounds calculated for normal values. Verify that these |
| // potentially invalid pixels are in fact valid due to (for example) subnorm flushing. |
| |
| m_testCtx.getLog() << tcu::TestLog::Message |
| << "Initial verification failed, verifying image by calculating accurate error bounds for " |
| "each result pixel.\n" |
| << "\tVerifying each result derivative is within its range of legal result values." |
| << tcu::TestLog::EndMessage; |
| |
| { |
| const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin); |
| Linear2DFunctionEvaluator function; |
| |
| function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, (valueRamp.x() / h) / 2.0f, m_texValueMin.x())); |
| function.matrix.setRow(1, tcu::Vec3((valueRamp.y() / w) / 2.0f, valueRamp.y() / h, m_texValueMin.y())); |
| function.matrix.setRow( |
| 2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f); |
| function.matrix.setRow( |
| 3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f); |
| |
| return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea, m_dataType, |
| m_precision, m_derivScale, m_derivBias, |
| surfaceThreshold, m_func, function); |
| } |
| } |
| else |
| { |
| DE_ASSERT(m_func == DERIVATE_FWIDTH); |
| const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale; |
| const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale; |
| const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy); |
| const tcu::Vec4 dxThreshold = |
| getDerivateThreshold(m_precision, m_texValueMin * xScale, m_texValueMax * xScale, dx); |
| const tcu::Vec4 dyThreshold = |
| getDerivateThreshold(m_precision, m_texValueMin * yScale, m_texValueMax * yScale, dy); |
| const tcu::Vec4 dxThresholdW = |
| getDerivateThresholdWarning(m_precision, m_texValueMin * xScale, m_texValueMax * xScale, dx); |
| const tcu::Vec4 dyThresholdW = |
| getDerivateThresholdWarning(m_precision, m_texValueMin * yScale, m_texValueMax * yScale, dy); |
| const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold)); |
| const tcu::Vec4 thresholdW = max(surfaceThreshold, max(dxThresholdW, dyThresholdW)); |
| qpTestResult testResult = QP_TEST_RESULT_FAIL; |
| |
| testResult = verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold, |
| m_derivScale, m_derivBias); |
| |
| if (testResult == QP_TEST_RESULT_PASS) |
| return testResult; |
| |
| // Re-Check with relaxed threshold |
| testResult = verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, |
| thresholdW, m_derivScale, m_derivBias); |
| |
| // If test is passing with relaxed threshold then mark quality warning |
| if (testResult == QP_TEST_RESULT_PASS) |
| testResult = QP_TEST_RESULT_QUALITY_WARNING; |
| |
| return testResult; |
| } |
| } |
| |
| ShaderDerivateTests::ShaderDerivateTests(Context &context) |
| : TestCaseGroup(context, "derivate", "Derivate Function Tests") |
| { |
| } |
| |
| ShaderDerivateTests::~ShaderDerivateTests(void) |
| { |
| } |
| |
| struct FunctionSpec |
| { |
| std::string name; |
| DerivateFunc function; |
| glu::DataType dataType; |
| glu::Precision precision; |
| |
| FunctionSpec(const std::string &name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_) |
| : name(name_) |
| , function(function_) |
| , dataType(dataType_) |
| , precision(precision_) |
| { |
| } |
| }; |
| |
| void ShaderDerivateTests::init(void) |
| { |
| static const struct |
| { |
| const char *name; |
| const char *description; |
| const char *source; |
| } s_linearDerivateCases[] = { |
| {"linear", "Basic derivate of linearly interpolated argument", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"in_function", "Derivate of linear function argument", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "\n" |
| "${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n" |
| "{\n" |
| " return ${FUNC}(v_coord) * u_scale + u_bias;\n" |
| "}\n" |
| "\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"static_if", "Derivate of linearly interpolated value in static if", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res;\n" |
| " if (false)\n" |
| " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n" |
| " else\n" |
| " res = ${FUNC}(v_coord) * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"static_loop", "Derivate of linearly interpolated value in static loop", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n" |
| " for (int i = 0; i < 2; i++)\n" |
| " res += ${FUNC}(v_coord * float(i));\n" |
| " res = res * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"static_switch", "Derivate of linearly interpolated value in static switch", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res;\n" |
| " switch (1)\n" |
| " {\n" |
| " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n" |
| " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n" |
| " }\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"uniform_if", "Derivate of linearly interpolated value in uniform if", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "uniform bool ub_true;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res;\n" |
| " if (ub_true)" |
| " res = ${FUNC}(v_coord) * u_scale + u_bias;\n" |
| " else\n" |
| " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"uniform_loop", "Derivate of linearly interpolated value in uniform loop", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "uniform int ui_two;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n" |
| " for (int i = 0; i < ui_two; i++)\n" |
| " res += ${FUNC}(v_coord * float(i));\n" |
| " res = res * u_scale + u_bias;\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| {"uniform_switch", "Derivate of linearly interpolated value in uniform switch", |
| |
| "#version 300 es\n" |
| "in ${PRECISION} ${DATATYPE} v_coord;\n" |
| "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_scale;\n" |
| "uniform ${PRECISION} ${DATATYPE} u_bias;\n" |
| "uniform int ui_one;\n" |
| "void main (void)\n" |
| "{\n" |
| " ${PRECISION} ${DATATYPE} res;\n" |
| " switch (ui_one)\n" |
| " {\n" |
| " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n" |
| " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n" |
| " }\n" |
| " o_color = ${CAST_TO_OUTPUT};\n" |
| "}\n"}, |
| }; |
| |
| static const struct |
| { |
| const char *name; |
| SurfaceType surfaceType; |
| int numSamples; |
| } s_fboConfigs[] = { |
| {"fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0}, |
| {"fbo_msaa2", SURFACETYPE_UNORM_FBO, 2}, |
| {"fbo_msaa4", SURFACETYPE_UNORM_FBO, 4}, |
| {"fbo_float", SURFACETYPE_FLOAT_FBO, 0}, |
| }; |
| |
| static const struct |
| { |
| const char *name; |
| uint32_t hint; |
| } s_hints[] = { |
| {"fastest", GL_FASTEST}, |
| {"nicest", GL_NICEST}, |
| }; |
| |
| static const struct |
| { |
| const char *name; |
| SurfaceType surfaceType; |
| int numSamples; |
| } s_hintFboConfigs[] = {{"default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0}, |
| {"fbo_msaa4", SURFACETYPE_UNORM_FBO, 4}, |
| {"fbo_float", SURFACETYPE_FLOAT_FBO, 0}}; |
| |
| static const struct |
| { |
| const char *name; |
| SurfaceType surfaceType; |
| int numSamples; |
| uint32_t hint; |
| } s_textureConfigs[] = { |
| {"basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE}, |
| {"msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE}, |
| {"float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST}, |
| {"float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST}, |
| }; |
| |
| // .dfdx, .dfdy, .fwidth |
| for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++) |
| { |
| const DerivateFunc function = DerivateFunc(funcNdx); |
| tcu::TestCaseGroup *const functionGroup = |
| new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function)); |
| addChild(functionGroup); |
| |
| // .constant - no precision variants, checks that derivate of constant arguments is 0 |
| { |
| tcu::TestCaseGroup *const constantGroup = |
| new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument"); |
| functionGroup->addChild(constantGroup); |
| |
| for (int vecSize = 1; vecSize <= 4; vecSize++) |
| { |
| const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; |
| constantGroup->addChild( |
| new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType)); |
| } |
| } |
| |
| // Cases based on LinearDerivateCase |
| for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++) |
| { |
| tcu::TestCaseGroup *const linearCaseGroup = new tcu::TestCaseGroup( |
| m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description); |
| const char *source = s_linearDerivateCases[caseNdx].source; |
| functionGroup->addChild(linearCaseGroup); |
| |
| for (int vecSize = 1; vecSize <= 4; vecSize++) |
| { |
| for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) |
| { |
| const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; |
| const glu::Precision precision = glu::Precision(precNdx); |
| const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER; |
| const int numSamples = 0; |
| const uint32_t hint = GL_DONT_CARE; |
| ostringstream caseName; |
| |
| if (caseNdx != 0 && precision == glu::PRECISION_LOWP) |
| continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB. |
| |
| caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); |
| |
| linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, |
| dataType, precision, hint, surfaceType, numSamples, |
| source)); |
| } |
| } |
| } |
| |
| // Fbo cases |
| for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++) |
| { |
| tcu::TestCaseGroup *const fboGroup = |
| new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO"); |
| const char *source = s_linearDerivateCases[0].source; // use source from .linear group |
| const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType; |
| const int numSamples = s_fboConfigs[caseNdx].numSamples; |
| functionGroup->addChild(fboGroup); |
| |
| for (int vecSize = 1; vecSize <= 4; vecSize++) |
| { |
| for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) |
| { |
| const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; |
| const glu::Precision precision = glu::Precision(precNdx); |
| const uint32_t hint = GL_DONT_CARE; |
| ostringstream caseName; |
| |
| if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) |
| continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. |
| |
| caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); |
| |
| fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, |
| precision, hint, surfaceType, numSamples, source)); |
| } |
| } |
| } |
| |
| // .fastest, .nicest |
| for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++) |
| { |
| tcu::TestCaseGroup *const hintGroup = |
| new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints"); |
| const char *source = s_linearDerivateCases[0].source; // use source from .linear group |
| const uint32_t hint = s_hints[hintCaseNdx].hint; |
| functionGroup->addChild(hintGroup); |
| |
| for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++) |
| { |
| tcu::TestCaseGroup *const fboGroup = |
| new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, ""); |
| const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType; |
| const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples; |
| hintGroup->addChild(fboGroup); |
| |
| for (int vecSize = 1; vecSize <= 4; vecSize++) |
| { |
| for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) |
| { |
| const glu::DataType dataType = |
| vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; |
| const glu::Precision precision = glu::Precision(precNdx); |
| ostringstream caseName; |
| |
| if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) |
| continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. |
| |
| caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); |
| |
| fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, |
| dataType, precision, hint, surfaceType, numSamples, |
| source)); |
| } |
| } |
| } |
| } |
| |
| // .texture |
| { |
| tcu::TestCaseGroup *const textureGroup = |
| new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result"); |
| functionGroup->addChild(textureGroup); |
| |
| for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++) |
| { |
| tcu::TestCaseGroup *const caseGroup = |
| new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, ""); |
| const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType; |
| const int numSamples = s_textureConfigs[texCaseNdx].numSamples; |
| const uint32_t hint = s_textureConfigs[texCaseNdx].hint; |
| textureGroup->addChild(caseGroup); |
| |
| for (int vecSize = 1; vecSize <= 4; vecSize++) |
| { |
| for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) |
| { |
| const glu::DataType dataType = |
| vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; |
| const glu::Precision precision = glu::Precision(precNdx); |
| ostringstream caseName; |
| |
| if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) |
| continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. |
| |
| caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); |
| |
| caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function, |
| dataType, precision, hint, surfaceType, |
| numSamples)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace Functional |
| } // namespace gles3 |
| } // namespace deqp |