blob: 8da87a14e62a9d3622b220289d7640024592f2ac [file] [log] [blame] [edit]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Shader derivate function tests.
*
* \todo [2013-06-25 pyry] Missing features:
* - lines and points
* - projected coordinates
* - continous non-trivial functions (sin, exp)
* - non-continous functions (step)
*//*--------------------------------------------------------------------*/
#include "es3fShaderDerivateTests.hpp"
#include "gluShaderProgram.hpp"
#include "gluRenderContext.hpp"
#include "gluDrawUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "gluShaderUtil.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "gluTexture.hpp"
#include "tcuStringTemplate.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuSurface.hpp"
#include "tcuTestLog.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuRGBA.hpp"
#include "tcuFloat.hpp"
#include "tcuInterval.hpp"
#include "deRandom.hpp"
#include "deUniquePtr.hpp"
#include "deString.h"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms()
#include <sstream>
namespace deqp
{
namespace gles3
{
namespace Functional
{
using std::map;
using std::ostringstream;
using std::string;
using std::vector;
using tcu::TestLog;
enum
{
VIEWPORT_WIDTH = 167,
VIEWPORT_HEIGHT = 103,
FBO_WIDTH = 99,
FBO_HEIGHT = 133,
MAX_FAILED_MESSAGES = 10
};
enum DerivateFunc
{
DERIVATE_DFDX = 0,
DERIVATE_DFDY,
DERIVATE_FWIDTH,
DERIVATE_LAST
};
enum SurfaceType
{
SURFACETYPE_DEFAULT_FRAMEBUFFER = 0,
SURFACETYPE_UNORM_FBO,
SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec.
SURFACETYPE_LAST
};
// Utilities
namespace
{
class AutoFbo
{
public:
AutoFbo(const glw::Functions &gl) : m_gl(gl), m_fbo(0)
{
}
~AutoFbo(void)
{
if (m_fbo)
m_gl.deleteFramebuffers(1, &m_fbo);
}
void gen(void)
{
DE_ASSERT(!m_fbo);
m_gl.genFramebuffers(1, &m_fbo);
}
uint32_t operator*(void) const
{
return m_fbo;
}
private:
const glw::Functions &m_gl;
uint32_t m_fbo;
};
class AutoRbo
{
public:
AutoRbo(const glw::Functions &gl) : m_gl(gl), m_rbo(0)
{
}
~AutoRbo(void)
{
if (m_rbo)
m_gl.deleteRenderbuffers(1, &m_rbo);
}
void gen(void)
{
DE_ASSERT(!m_rbo);
m_gl.genRenderbuffers(1, &m_rbo);
}
uint32_t operator*(void) const
{
return m_rbo;
}
private:
const glw::Functions &m_gl;
uint32_t m_rbo;
};
} // namespace
static const char *getDerivateFuncName(DerivateFunc func)
{
switch (func)
{
case DERIVATE_DFDX:
return "dFdx";
case DERIVATE_DFDY:
return "dFdy";
case DERIVATE_FWIDTH:
return "fwidth";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
static const char *getDerivateFuncCaseName(DerivateFunc func)
{
switch (func)
{
case DERIVATE_DFDX:
return "dfdx";
case DERIVATE_DFDY:
return "dfdy";
case DERIVATE_FWIDTH:
return "fwidth";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
static inline tcu::BVec4 getDerivateMask(glu::DataType type)
{
switch (type)
{
case glu::TYPE_FLOAT:
return tcu::BVec4(true, false, false, false);
case glu::TYPE_FLOAT_VEC2:
return tcu::BVec4(true, true, false, false);
case glu::TYPE_FLOAT_VEC3:
return tcu::BVec4(true, true, true, false);
case glu::TYPE_FLOAT_VEC4:
return tcu::BVec4(true, true, true, true);
default:
DE_ASSERT(false);
return tcu::BVec4(true);
}
}
static inline tcu::Vec4 readDerivate(const tcu::ConstPixelBufferAccess &surface, const tcu::Vec4 &derivScale,
const tcu::Vec4 &derivBias, int x, int y)
{
return (surface.getPixel(x, y) - derivBias) / derivScale;
}
static inline tcu::UVec4 getCompExpBits(const tcu::Vec4 &v)
{
return tcu::UVec4(tcu::Float32(v[0]).exponentBits(), tcu::Float32(v[1]).exponentBits(),
tcu::Float32(v[2]).exponentBits(), tcu::Float32(v[3]).exponentBits());
}
float computeFloatingPointError(const float value, const int numAccurateBits)
{
const int numGarbageBits = 23 - numAccurateBits;
const uint32_t mask = (1u << numGarbageBits) - 1u;
const int exp = (tcu::Float32(value).exponent() < -3) ? -3 : tcu::Float32(value).exponent();
return tcu::Float32::construct(+1, exp, (1u << 23) | mask).asFloat() -
tcu::Float32::construct(+1, exp, 1u << 23).asFloat();
}
static int getNumMantissaBits(const glu::Precision precision)
{
switch (precision)
{
case glu::PRECISION_HIGHP:
return 23;
case glu::PRECISION_MEDIUMP:
return 10;
case glu::PRECISION_LOWP:
return 6;
default:
DE_ASSERT(false);
return 0;
}
}
static int getMinExponent(const glu::Precision precision)
{
switch (precision)
{
case glu::PRECISION_HIGHP:
return -126;
case glu::PRECISION_MEDIUMP:
return -14;
case glu::PRECISION_LOWP:
return -8;
default:
DE_ASSERT(false);
return 0;
}
}
static float getSingleULPForExponent(int exp, int numMantissaBits)
{
if (numMantissaBits > 0)
{
DE_ASSERT(numMantissaBits <= 23);
const int ulpBitNdx = 23 - numMantissaBits;
return tcu::Float32::construct(+1, exp, (1 << 23) | (1 << ulpBitNdx)).asFloat() -
tcu::Float32::construct(+1, exp, (1 << 23)).asFloat();
}
else
{
DE_ASSERT(numMantissaBits == 0);
return tcu::Float32::construct(+1, exp, (1 << 23)).asFloat();
}
}
static float getSingleULPForValue(float value, int numMantissaBits)
{
const int exp = tcu::Float32(value).exponent();
return getSingleULPForExponent(exp, numMantissaBits);
}
static float convertFloatFlushToZeroRtn(float value, int minExponent, int numAccurateBits)
{
if (value == 0.0f)
{
return 0.0f;
}
else
{
const tcu::Float32 inputFloat = tcu::Float32(value);
const int numTruncatedBits = 23 - numAccurateBits;
const uint32_t truncMask = (1u << numTruncatedBits) - 1u;
if (value > 0.0f)
{
if (value > 0.0f && tcu::Float32(value).exponent() < minExponent)
{
// flush to zero if possible
return 0.0f;
}
else
{
// just mask away non-representable bits
return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat();
}
}
else
{
if (inputFloat.mantissa() & truncMask)
{
// decrement one ulp if truncated bits are non-zero (i.e. if value is not representable)
return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask)
.asFloat() -
getSingleULPForExponent(inputFloat.exponent(), numAccurateBits);
}
else
{
// value is representable, no need to do anything
return value;
}
}
}
}
static float convertFloatFlushToZeroRtp(float value, int minExponent, int numAccurateBits)
{
return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits);
}
static float addErrorUlp(float value, float numUlps, int numMantissaBits)
{
return value + numUlps * getSingleULPForValue(value, numMantissaBits);
}
enum
{
INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation
};
static int getInterpolationLostBitsWarning(const glu::Precision precision)
{
// number mantissa of bits allowed to be lost in varying interpolation
switch (precision)
{
case glu::PRECISION_HIGHP:
return 9;
case glu::PRECISION_MEDIUMP:
return 3;
case glu::PRECISION_LOWP:
return 3;
default:
DE_ASSERT(false);
return 0;
}
}
static inline tcu::Vec4 getDerivateThreshold(const glu::Precision precision, const tcu::Vec4 &valueMin,
const tcu::Vec4 &valueMax, const tcu::Vec4 &expectedDerivate)
{
const int baseBits = getNumMantissaBits(precision);
const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate);
const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax));
const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp);
const tcu::IVec4 numAccurateBits =
max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0));
return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
}
static inline tcu::Vec4 getDerivateThresholdWarning(const glu::Precision precision, const tcu::Vec4 &valueMin,
const tcu::Vec4 &valueMax, const tcu::Vec4 &expectedDerivate)
{
const int baseBits = getNumMantissaBits(precision);
const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate);
const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax));
const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp);
const tcu::IVec4 numAccurateBits =
max(baseBits - numBitsLost.asInt() - getInterpolationLostBitsWarning(precision), tcu::IVec4(0));
return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
}
namespace
{
struct LogVecComps
{
const tcu::Vec4 &v;
int numComps;
LogVecComps(const tcu::Vec4 &v_, int numComps_) : v(v_), numComps(numComps_)
{
}
};
std::ostream &operator<<(std::ostream &str, const LogVecComps &v)
{
DE_ASSERT(de::inRange(v.numComps, 1, 4));
if (v.numComps == 1)
return str << v.v[0];
else if (v.numComps == 2)
return str << v.v.toWidth<2>();
else if (v.numComps == 3)
return str << v.v.toWidth<3>();
else
return str << v.v;
}
} // namespace
enum VerificationLogging
{
LOG_ALL = 0,
LOG_NOTHING
};
static qpTestResult verifyConstantDerivate(tcu::TestLog &log, const tcu::ConstPixelBufferAccess &result,
const tcu::PixelBufferAccess &errorMask, glu::DataType dataType,
const tcu::Vec4 &reference, const tcu::Vec4 &threshold,
const tcu::Vec4 &scale, const tcu::Vec4 &bias,
VerificationLogging logPolicy = LOG_ALL)
{
const int numComps = glu::getDataTypeFloatScalars(dataType);
const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType));
int numFailedPixels = 0;
if (logPolicy == LOG_ALL)
log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold "
<< LogVecComps(threshold, numComps) << TestLog::EndMessage;
for (int y = 0; y < result.getHeight(); y++)
{
for (int x = 0; x < result.getWidth(); x++)
{
const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y);
const bool isOk =
tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask),
tcu::BVec4(true));
if (!isOk)
{
if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps)
<< ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps) << ", at x = " << x
<< ", y = " << y << TestLog::EndMessage;
numFailedPixels += 1;
errorMask.setPixel(tcu::RGBA::red().toVec(), x, y);
}
}
}
if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
log << TestLog::Message << "..." << TestLog::EndMessage;
if (numFailedPixels > 0 && logPolicy == LOG_ALL)
log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
return (numFailedPixels == 0) ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL;
}
struct Linear2DFunctionEvaluator
{
tcu::Matrix<float, 4, 3> matrix;
// .-----.
// | s_x |
// M x | s_y |
// | 1.0 |
// '-----'
tcu::Vec4 evaluateAt(float screenX, float screenY) const;
};
tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt(float screenX, float screenY) const
{
const tcu::Vec3 position(screenX, screenY, 1.0f);
return matrix * position;
}
static qpTestResult reverifyConstantDerivateWithFlushRelaxations(
tcu::TestLog &log, const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask,
glu::DataType dataType, glu::Precision precision, const tcu::Vec4 &derivScale, const tcu::Vec4 &derivBias,
const tcu::Vec4 &surfaceThreshold, DerivateFunc derivateFunc, const Linear2DFunctionEvaluator &function)
{
DE_ASSERT(result.getWidth() == errorMask.getWidth());
DE_ASSERT(result.getHeight() == errorMask.getHeight());
DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY);
const tcu::IVec4 red(255, 0, 0, 255);
const tcu::IVec4 green(0, 255, 0, 255);
const float divisionErrorUlps = 2.5f;
const int numComponents = glu::getDataTypeFloatScalars(dataType);
const int numBits = getNumMantissaBits(precision);
const int minExponent = getMinExponent(precision);
const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS;
int numFailedPixels = 0;
tcu::clear(errorMask, green);
// search for failed pixels
for (int y = 0; y < result.getHeight(); ++y)
for (int x = 0; x < result.getWidth(); ++x)
{
// flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore))
// flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP )
// dx
const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y);
// sample at the front of the back pixel and the back of the front pixel to cover the whole area of
// legal sample positions. In general case this is NOT OK, but we know that the target function is
// (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the
// maximum difference possible in exponents which are used in error bound calculations.
// * non-linearity may happen around zero or with very high function values due to subnorms not
// behaving well.
const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX) ?
(function.evaluateAt((float)x + 2.0f, (float)y + 0.5f)) :
(function.evaluateAt((float)x + 0.5f, (float)y + 2.0f));
const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX) ?
(function.evaluateAt((float)x - 1.0f, (float)y + 0.5f)) :
(function.evaluateAt((float)x + 0.5f, (float)y - 1.0f));
bool anyComponentFailed = false;
// check components separately
for (int c = 0; c < numComponents; ++c)
{
// Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding)
const tcu::Interval forwardComponent(
convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits),
minExponent, numBits),
convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits),
minExponent, numBits));
const tcu::Interval backwardComponent(
convertFloatFlushToZeroRtn(
addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent,
numBits),
convertFloatFlushToZeroRtp(
addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent,
numBits));
const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(),
tcu::Float32(forwardComponent.hi()).exponent()),
de::max(tcu::Float32(backwardComponent.lo()).exponent(),
tcu::Float32(backwardComponent.hi()).exponent()));
// subtraction in numerator will likely cause a cancellation of the most
// significant bits. Apply error bounds.
const tcu::Interval numerator(forwardComponent - backwardComponent);
const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent();
const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent();
const int numeratorLoBitsLost = de::max(
0,
maxValueExp -
numeratorLoExp); //!< must clamp to zero since if forward and backward components have different
const int numeratorHiBitsLost = de::max(
0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands.
const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost);
const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost);
const tcu::Interval numeratorRange(
convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits),
convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits));
const tcu::Interval divisionRange =
numeratorRange /
3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3)
const tcu::Interval divisionResultRange(
convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits),
minExponent, numBits),
convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits),
minExponent, numBits));
const tcu::Interval finalResultRange(divisionResultRange.lo() - surfaceThreshold[c],
divisionResultRange.hi() + surfaceThreshold[c]);
if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi())
{
// value ok
}
else
{
if (numFailedPixels < MAX_FAILED_MESSAGES)
log << tcu::TestLog::Message << "Error in pixel at " << x << ", " << y << " with component "
<< c << " (channel " << ("rgba"[c]) << ")\n"
<< "\tGot pixel value " << result.getPixelInt(x, y) << "\n"
<< "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y'))
<< " ~= " << resultDerivative[c] << "\n"
<< "\t\tdifference to a valid range: "
<< ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+"))
<< ((resultDerivative[c] < finalResultRange.lo()) ?
(finalResultRange.lo() - resultDerivative[c]) :
(resultDerivative[c] - finalResultRange.hi()))
<< "\n"
<< "\tDerivative value range:\n"
<< "\t\tMin: " << finalResultRange.lo() << "\n"
<< "\t\tMax: " << finalResultRange.hi() << "\n"
<< tcu::TestLog::EndMessage;
++numFailedPixels;
anyComponentFailed = true;
}
}
if (anyComponentFailed)
errorMask.setPixel(red, x, y);
}
if (numFailedPixels >= MAX_FAILED_MESSAGES)
log << TestLog::Message << "..." << TestLog::EndMessage;
if (numFailedPixels > 0)
log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
return (numFailedPixels == 0) ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL;
}
// TriangleDerivateCase
class TriangleDerivateCase : public TestCase
{
public:
TriangleDerivateCase(Context &context, const char *name, const char *description);
~TriangleDerivateCase(void);
IterateResult iterate(void);
protected:
virtual void setupRenderState(uint32_t program)
{
DE_UNREF(program);
}
virtual qpTestResult verify(const tcu::ConstPixelBufferAccess &result,
const tcu::PixelBufferAccess &errorMask) = DE_NULL;
tcu::IVec2 getViewportSize(void) const;
tcu::Vec4 getSurfaceThreshold(void) const;
glu::DataType m_dataType;
glu::Precision m_precision;
glu::DataType m_coordDataType;
glu::Precision m_coordPrecision;
std::string m_fragmentSrc;
tcu::Vec4 m_coordMin;
tcu::Vec4 m_coordMax;
tcu::Vec4 m_derivScale;
tcu::Vec4 m_derivBias;
SurfaceType m_surfaceType;
int m_numSamples;
uint32_t m_hint;
bool m_useAsymmetricCoords;
};
TriangleDerivateCase::TriangleDerivateCase(Context &context, const char *name, const char *description)
: TestCase(context, name, description)
, m_dataType(glu::TYPE_LAST)
, m_precision(glu::PRECISION_LAST)
, m_coordDataType(glu::TYPE_LAST)
, m_coordPrecision(glu::PRECISION_LAST)
, m_surfaceType(SURFACETYPE_DEFAULT_FRAMEBUFFER)
, m_numSamples(0)
, m_hint(GL_DONT_CARE)
, m_useAsymmetricCoords(false)
{
DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0);
}
TriangleDerivateCase::~TriangleDerivateCase(void)
{
TriangleDerivateCase::deinit();
}
static std::string genVertexSource(glu::DataType coordType, glu::Precision precision)
{
DE_ASSERT(glu::isDataTypeFloatOrVec(coordType));
const char *vertexTmpl = "#version 300 es\n"
"in highp vec4 a_position;\n"
"in ${PRECISION} ${DATATYPE} a_coord;\n"
"out ${PRECISION} ${DATATYPE} v_coord;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_coord = a_coord;\n"
"}\n";
map<string, string> vertexParams;
vertexParams["PRECISION"] = glu::getPrecisionName(precision);
vertexParams["DATATYPE"] = glu::getDataTypeName(coordType);
return tcu::StringTemplate(vertexTmpl).specialize(vertexParams);
}
inline tcu::IVec2 TriangleDerivateCase::getViewportSize(void) const
{
if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER)
{
const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH);
const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT);
return tcu::IVec2(width, height);
}
else
return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT);
}
TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const glu::ShaderProgram program(
m_context.getRenderContext(),
glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc));
de::Random rnd(deStringHash(getName()) ^ 0xbbc24);
const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER;
const uint32_t fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8;
const tcu::IVec2 viewportSize = getViewportSize();
const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x());
const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y());
AutoFbo fbo(gl);
AutoRbo rbo(gl);
tcu::TextureLevel result;
m_testCtx.getLog() << program;
if (!program.isOk())
TCU_FAIL("Compile failed");
if (useFbo)
{
m_testCtx.getLog() << TestLog::Message << "Rendering to FBO, format = " << glu::getTextureFormatStr(fboFormat)
<< ", samples = " << m_numSamples << TestLog::EndMessage;
fbo.gen();
rbo.gen();
gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo);
gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y());
gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo);
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo);
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
}
else
{
const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
m_testCtx.getLog() << TestLog::Message << "Rendering to default framebuffer\n"
<< "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits
<< ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits << TestLog::EndMessage;
}
m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n"
<< (m_useAsymmetricCoords ? "v_coord.x = in.x * (x+y)/2\n" : "v_coord.x = in.x * x\n")
<< (m_useAsymmetricCoords ? "v_coord.y = in.y * (x+y)/2\n" : "v_coord.y = in.y * y\n")
<< "v_coord.z = in.z * (x+y)/2\n"
<< "v_coord.w = in.w * (1 - (x+y)/2)\n"
<< TestLog::EndMessage << TestLog::Message << "u_scale: " << m_derivScale
<< ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)"
<< TestLog::EndMessage << TestLog::Message << "Viewport: " << viewportSize.x() << "x"
<< viewportSize.y() << TestLog::EndMessage << TestLog::Message
<< "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage;
// Draw
{
const float positions[] = {-1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f};
float coords[] = {m_coordMin.x(),
m_coordMin.y(),
m_coordMin.z(),
m_coordMax.w(),
m_coordMin.x(),
m_coordMax.y(),
(m_coordMin.z() + m_coordMax.z()) * 0.5f,
(m_coordMin.w() + m_coordMax.w()) * 0.5f,
m_coordMax.x(),
m_coordMin.y(),
(m_coordMin.z() + m_coordMax.z()) * 0.5f,
(m_coordMin.w() + m_coordMax.w()) * 0.5f,
m_coordMax.x(),
m_coordMax.y(),
m_coordMax.z(),
m_coordMin.w()};
// For linear tests we want varying data x and y to vary along both axes
// to get nonzero x for dfdy and nonzero y for dfdx. To make the gradient
// the same for both triangles we set vertices 2 and 3 to middle values.
// This way the values go from min -> (max+min) / 2 or (max+min) / 2 -> max
// depending on the triangle, but the derivative is the same for both.
if (m_useAsymmetricCoords)
{
coords[4] = coords[8] = (m_coordMin.x() + m_coordMax.x()) * 0.5f;
coords[5] = coords[9] = (m_coordMin.y() + m_coordMax.y()) * 0.5f;
}
const glu::VertexArrayBinding vertexArrays[] = {glu::va::Float("a_position", 4, 4, 0, &positions[0]),
glu::va::Float("a_coord", 4, 4, 0, &coords[0])};
const uint16_t indices[] = {0, 2, 1, 2, 3, 1};
gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
gl.disable(GL_DITHER);
gl.useProgram(program.getProgram());
{
const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale");
const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias");
switch (m_dataType)
{
case glu::TYPE_FLOAT:
gl.uniform1f(scaleLoc, m_derivScale.x());
gl.uniform1f(biasLoc, m_derivBias.x());
break;
case glu::TYPE_FLOAT_VEC2:
gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr());
gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr());
break;
case glu::TYPE_FLOAT_VEC3:
gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr());
gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr());
break;
case glu::TYPE_FLOAT_VEC4:
gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr());
gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr());
break;
default:
DE_ASSERT(false);
}
}
gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram());
setupRenderState(program.getProgram());
gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint);
GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state");
gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y());
glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays),
&vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
}
// Read back results
{
const bool isMSAA = useFbo && m_numSamples > 0;
AutoFbo resFbo(gl);
AutoRbo resRbo(gl);
// Resolve if necessary
if (isMSAA)
{
resFbo.gen();
resRbo.gen();
gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo);
gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y());
gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo);
gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo);
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(),
GL_COLOR_BUFFER_BIT, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit");
gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo);
}
switch (m_surfaceType)
{
case SURFACETYPE_DEFAULT_FRAMEBUFFER:
case SURFACETYPE_UNORM_FBO:
result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
viewportSize.x(), viewportSize.y());
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result);
break;
case SURFACETYPE_FLOAT_FBO:
{
const tcu::TextureFormat dataFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
const tcu::TextureFormat transferFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32);
result.setStorage(dataFormat, viewportSize.x(), viewportSize.y());
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY,
tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(),
result.getDepth(), result.getAccess().getDataPtr()));
break;
}
default:
DE_ASSERT(false);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
}
// Verify
{
tcu::Surface errorMask(result.getWidth(), result.getHeight());
tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toVec());
const qpTestResult testResult = verify(result.getAccess(), errorMask.getAccess());
const char *failStr = "Fail";
m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images")
<< TestLog::Image("Rendered", "Rendered image", result);
if (testResult != QP_TEST_RESULT_PASS)
m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask);
m_testCtx.getLog() << TestLog::EndImageSet;
if (testResult == QP_TEST_RESULT_PASS)
failStr = "Pass";
else if (testResult == QP_TEST_RESULT_QUALITY_WARNING)
failStr = "QualityWarning";
m_testCtx.setTestResult(testResult, failStr);
}
return STOP;
}
tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold(void) const
{
switch (m_surfaceType)
{
case SURFACETYPE_DEFAULT_FRAMEBUFFER:
{
const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
const tcu::IVec4 channelBits(pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits,
pixelFormat.alphaBits);
const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits);
const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f;
return normThreshold;
}
case SURFACETYPE_UNORM_FBO:
return tcu::IVec4(1).asFloat() / 255.0f;
case SURFACETYPE_FLOAT_FBO:
return tcu::Vec4(0.0f);
default:
DE_ASSERT(false);
return tcu::Vec4(0.0f);
}
}
// ConstantDerivateCase
class ConstantDerivateCase : public TriangleDerivateCase
{
public:
ConstantDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
glu::DataType type);
~ConstantDerivateCase(void)
{
}
void init(void);
protected:
qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask);
private:
DerivateFunc m_func;
};
ConstantDerivateCase::ConstantDerivateCase(Context &context, const char *name, const char *description,
DerivateFunc func, glu::DataType type)
: TriangleDerivateCase(context, name, description)
, m_func(func)
{
m_dataType = type;
m_precision = glu::PRECISION_HIGHP;
m_coordDataType = m_dataType;
m_coordPrecision = m_precision;
}
void ConstantDerivateCase::init(void)
{
const char *fragmentTmpl = "#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n";
map<string, string> fragmentParams;
fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
fragmentParams["FUNC"] = getDerivateFuncName(m_func);
fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" :
/* TYPE_FLOAT */ "7.7";
fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
/* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f);
m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f);
}
qpTestResult ConstantDerivateCase::verify(const tcu::ConstPixelBufferAccess &result,
const tcu::PixelBufferAccess &errorMask)
{
const tcu::Vec4 reference(0.0f); // Derivate of constant argument should always be 0
const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale);
return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, m_derivScale,
m_derivBias);
}
// LinearDerivateCase
class LinearDerivateCase : public TriangleDerivateCase
{
public:
LinearDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
glu::DataType type, glu::Precision precision, uint32_t hint, SurfaceType surfaceType,
int numSamples, const char *fragmentSrcTmpl);
~LinearDerivateCase(void)
{
}
void init(void);
protected:
qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask);
private:
DerivateFunc m_func;
std::string m_fragmentTmpl;
};
LinearDerivateCase::LinearDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
glu::DataType type, glu::Precision precision, uint32_t hint,
SurfaceType surfaceType, int numSamples, const char *fragmentSrcTmpl)
: TriangleDerivateCase(context, name, description)
, m_func(func)
, m_fragmentTmpl(fragmentSrcTmpl)
{
m_dataType = type;
m_precision = precision;
m_coordDataType = m_dataType;
m_coordPrecision = m_precision;
m_hint = hint;
m_surfaceType = surfaceType;
m_numSamples = numSamples;
m_useAsymmetricCoords = true;
}
void LinearDerivateCase::init(void)
{
const tcu::IVec2 viewportSize = getViewportSize();
const float w = float(viewportSize.x());
const float h = float(viewportSize.y());
const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
map<string, string> fragmentParams;
fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
fragmentParams["FUNC"] = getDerivateFuncName(m_func);
if (packToInt)
{
fragmentParams["CAST_TO_OUTPUT"] =
m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
/* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
}
else
{
fragmentParams["CAST_TO_OUTPUT"] =
m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
/* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
}
m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams);
switch (m_precision)
{
case glu::PRECISION_HIGHP:
m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
break;
case glu::PRECISION_MEDIUMP:
m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
break;
case glu::PRECISION_LOWP:
m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
break;
default:
DE_ASSERT(false);
}
if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
{
// No scale or bias used for accuracy.
m_derivScale = tcu::Vec4(1.0f);
m_derivBias = tcu::Vec4(0.0f);
}
else
{
// Compute scale - bias that normalizes to 0..1 range.
const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w * 0.5f, -w * 0.5f);
const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h * 0.5f, -h * 0.5f);
switch (m_func)
{
case DERIVATE_DFDX:
m_derivScale = 0.5f / dx;
break;
case DERIVATE_DFDY:
m_derivScale = 0.5f / dy;
break;
case DERIVATE_FWIDTH:
m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
break;
default:
DE_ASSERT(false);
}
m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
qpTestResult LinearDerivateCase::verify(const tcu::ConstPixelBufferAccess &result,
const tcu::PixelBufferAccess &errorMask)
{
const tcu::Vec4 xScale = tcu::Vec4(0.5f, 0.5f, 0.5f, -0.5f);
const tcu::Vec4 yScale = tcu::Vec4(0.5f, 0.5f, 0.5f, -0.5f);
const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
{
const bool isX = m_func == DERIVATE_DFDX;
const float div = isX ? float(result.getWidth()) : float(result.getHeight());
const tcu::Vec4 scale = isX ? xScale : yScale;
tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div);
const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin, m_coordMax, reference);
const tcu::Vec4 opThresholdW = getDerivateThresholdWarning(m_precision, m_coordMin, m_coordMax, reference);
const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
const tcu::Vec4 thresholdW = max(surfaceThreshold, opThresholdW);
const int numComps = glu::getDataTypeFloatScalars(m_dataType);
/* adjust the reference value for the correct dfdx or dfdy sample adjacency */
reference = reference * scale;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n"
<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold "
<< LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage;
// short circuit if result is strictly within the normal value error bounds.
// This improves performance significantly.
if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold,
m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
{
m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid."
<< tcu::TestLog::EndMessage;
return QP_TEST_RESULT_PASS;
}
// Check with relaxed threshold value
if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, thresholdW,
m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
{
m_testCtx.getLog() << tcu::TestLog::Message
<< "No incorrect derivatives found, result valid with quality warning."
<< tcu::TestLog::EndMessage;
return QP_TEST_RESULT_QUALITY_WARNING;
}
// some pixels exceed error bounds calculated for normal values. Verify that these
// potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
m_testCtx.getLog() << tcu::TestLog::Message
<< "Initial verification failed, verifying image by calculating accurate error bounds for "
"each result pixel.\n"
<< "\tVerifying each result derivative is within its range of legal result values."
<< tcu::TestLog::EndMessage;
{
const tcu::IVec2 viewportSize = getViewportSize();
const float w = float(viewportSize.x());
const float h = float(viewportSize.y());
const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin);
Linear2DFunctionEvaluator function;
function.matrix.setRow(0,
tcu::Vec3((valueRamp.x() / w) / 2.0f, (valueRamp.x() / h) / 2.0f, m_coordMin.x()));
function.matrix.setRow(1,
tcu::Vec3((valueRamp.y() / w) / 2.0f, (valueRamp.y() / h) / 2.0f, m_coordMin.y()));
function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) /
2.0f);
function.matrix.setRow(
3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f);
return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask, m_dataType,
m_precision, m_derivScale, m_derivBias,
surfaceThreshold, m_func, function);
}
}
else
{
DE_ASSERT(m_func == DERIVATE_FWIDTH);
const float w = float(result.getWidth());
const float h = float(result.getHeight());
const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale;
const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale;
const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin * xScale, m_coordMax * xScale, dx);
const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin * yScale, m_coordMax * yScale, dy);
const tcu::Vec4 dxThresholdW =
getDerivateThresholdWarning(m_precision, m_coordMin * xScale, m_coordMax * xScale, dx);
const tcu::Vec4 dyThresholdW =
getDerivateThresholdWarning(m_precision, m_coordMin * yScale, m_coordMax * yScale, dy);
const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
const tcu::Vec4 thresholdW = max(surfaceThreshold, max(dxThresholdW, dyThresholdW));
qpTestResult testResult = QP_TEST_RESULT_FAIL;
testResult = verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold,
m_derivScale, m_derivBias);
// return if result is pass
if (testResult == QP_TEST_RESULT_PASS)
return testResult;
// re-check with relaxed threshold
testResult = verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, thresholdW,
m_derivScale, m_derivBias);
// if with relaxed threshold test is passing then mark the result with quality warning.
if (testResult == QP_TEST_RESULT_PASS)
testResult = QP_TEST_RESULT_QUALITY_WARNING;
return testResult;
}
}
// TextureDerivateCase
class TextureDerivateCase : public TriangleDerivateCase
{
public:
TextureDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
glu::DataType type, glu::Precision precision, uint32_t hint, SurfaceType surfaceType,
int numSamples);
~TextureDerivateCase(void);
void init(void);
void deinit(void);
protected:
void setupRenderState(uint32_t program);
qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask);
private:
DerivateFunc m_func;
tcu::Vec4 m_texValueMin;
tcu::Vec4 m_texValueMax;
glu::Texture2D *m_texture;
};
TextureDerivateCase::TextureDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
glu::DataType type, glu::Precision precision, uint32_t hint,
SurfaceType surfaceType, int numSamples)
: TriangleDerivateCase(context, name, description)
, m_func(func)
, m_texture(DE_NULL)
{
m_dataType = type;
m_precision = precision;
m_coordDataType = glu::TYPE_FLOAT_VEC2;
m_coordPrecision = glu::PRECISION_HIGHP;
m_hint = hint;
m_surfaceType = surfaceType;
m_numSamples = numSamples;
}
TextureDerivateCase::~TextureDerivateCase(void)
{
delete m_texture;
}
void TextureDerivateCase::init(void)
{
// Generate shader
{
const char *fragmentTmpl = "#version 300 es\n"
"in highp vec2 v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} sampler2D u_sampler;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n"
" ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n";
const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
map<string, string> fragmentParams;
fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
fragmentParams["FUNC"] = getDerivateFuncName(m_func);
fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" :
/* TYPE_FLOAT */ ".x";
if (packToInt)
{
fragmentParams["CAST_TO_OUTPUT"] =
m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
/* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
}
else
{
fragmentParams["CAST_TO_OUTPUT"] =
m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
/* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
}
m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
}
// Texture size matches viewport and nearest sampling is used. Thus texture sampling
// is equal to just interpolating the texture value range.
// Determine value range for texture.
switch (m_precision)
{
case glu::PRECISION_HIGHP:
m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
break;
case glu::PRECISION_MEDIUMP:
m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
break;
case glu::PRECISION_LOWP:
m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
break;
default:
DE_ASSERT(false);
}
// Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F.
{
const tcu::IVec2 viewportSize = getViewportSize();
DE_ASSERT(!m_texture);
m_texture = new glu::Texture2D(m_context.getRenderContext(),
m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(),
viewportSize.y());
m_texture->getRefTexture().allocLevel(0);
}
// Texture coordinates
m_coordMin = tcu::Vec4(0.0f);
m_coordMax = tcu::Vec4(1.0f);
// Fill with gradients.
{
const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0);
for (int y = 0; y < level0.getHeight(); y++)
{
for (int x = 0; x < level0.getWidth(); x++)
{
const float xf = (float(x) + 0.5f) / float(level0.getWidth());
const float yf = (float(y) + 0.5f) / float(level0.getHeight());
// Make x and y data to have dependency to both axes so that dfdx(tex).y and dfdy(tex).x are nonzero.
const tcu::Vec4 s =
tcu::Vec4(xf + yf / 2.0f, yf + xf / 2.0f, (xf + yf) / 2.0f, 1.0f - (xf + yf) / 2.0f);
level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin) * s, x, y);
}
}
}
m_texture->upload();
if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
{
// No scale or bias used for accuracy.
m_derivScale = tcu::Vec4(1.0f);
m_derivBias = tcu::Vec4(0.0f);
}
else
{
// Compute scale - bias that normalizes to 0..1 range.
const tcu::IVec2 viewportSize = getViewportSize();
const float w = float(viewportSize.x());
const float h = float(viewportSize.y());
const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w * 0.5f, -w * 0.5f);
const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h * 0.5f, -h * 0.5f);
switch (m_func)
{
case DERIVATE_DFDX:
m_derivScale = 0.5f / dx;
break;
case DERIVATE_DFDY:
m_derivScale = 0.5f / dy;
break;
case DERIVATE_FWIDTH:
m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
break;
default:
DE_ASSERT(false);
}
m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
void TextureDerivateCase::deinit(void)
{
delete m_texture;
m_texture = DE_NULL;
}
void TextureDerivateCase::setupRenderState(uint32_t program)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int texUnit = 1;
gl.activeTexture(GL_TEXTURE0 + texUnit);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.uniform1i(gl.getUniformLocation(program, "u_sampler"), texUnit);
}
qpTestResult TextureDerivateCase::verify(const tcu::ConstPixelBufferAccess &result,
const tcu::PixelBufferAccess &errorMask)
{
// \note Edges are ignored in comparison
if (result.getWidth() < 2 || result.getHeight() < 2)
throw tcu::NotSupportedError("Too small viewport");
tcu::ConstPixelBufferAccess compareArea =
tcu::getSubregion(result, 1, 1, result.getWidth() - 2, result.getHeight() - 2);
tcu::PixelBufferAccess maskArea =
tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth() - 2, errorMask.getHeight() - 2);
const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.5f, 0.5f, -0.5f);
const tcu::Vec4 yScale = tcu::Vec4(0.5f, 1.0f, 0.5f, -0.5f);
const float w = float(result.getWidth());
const float h = float(result.getHeight());
const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
{
const bool isX = m_func == DERIVATE_DFDX;
const float div = isX ? w : h;
const tcu::Vec4 scale = isX ? xScale : yScale;
tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div);
const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin, m_texValueMax, reference);
const tcu::Vec4 opThresholdW =
getDerivateThresholdWarning(m_precision, m_texValueMin, m_texValueMax, reference);
const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
const tcu::Vec4 thresholdW = max(surfaceThreshold, opThresholdW);
const int numComps = glu::getDataTypeFloatScalars(m_dataType);
/* adjust the reference value for the correct dfdx or dfdy sample adjacency */
reference = reference * scale;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n"
<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold "
<< LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage;
// short circuit if result is strictly within the normal value error bounds.
// This improves performance significantly.
if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold,
m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
{
m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid."
<< tcu::TestLog::EndMessage;
return QP_TEST_RESULT_PASS;
}
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n"
<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with Warning threshold "
<< LogVecComps(thresholdW, numComps) << tcu::TestLog::EndMessage;
// Re-check with relaxed threshold
if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, thresholdW,
m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
{
m_testCtx.getLog() << tcu::TestLog::Message
<< "No incorrect derivatives found, result valid with quality warning."
<< tcu::TestLog::EndMessage;
return QP_TEST_RESULT_QUALITY_WARNING;
}
// some pixels exceed error bounds calculated for normal values. Verify that these
// potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
m_testCtx.getLog() << tcu::TestLog::Message
<< "Initial verification failed, verifying image by calculating accurate error bounds for "
"each result pixel.\n"
<< "\tVerifying each result derivative is within its range of legal result values."
<< tcu::TestLog::EndMessage;
{
const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin);
Linear2DFunctionEvaluator function;
function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, (valueRamp.x() / h) / 2.0f, m_texValueMin.x()));
function.matrix.setRow(1, tcu::Vec3((valueRamp.y() / w) / 2.0f, valueRamp.y() / h, m_texValueMin.y()));
function.matrix.setRow(
2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f);
function.matrix.setRow(
3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f);
return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
m_precision, m_derivScale, m_derivBias,
surfaceThreshold, m_func, function);
}
}
else
{
DE_ASSERT(m_func == DERIVATE_FWIDTH);
const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale;
const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale;
const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
const tcu::Vec4 dxThreshold =
getDerivateThreshold(m_precision, m_texValueMin * xScale, m_texValueMax * xScale, dx);
const tcu::Vec4 dyThreshold =
getDerivateThreshold(m_precision, m_texValueMin * yScale, m_texValueMax * yScale, dy);
const tcu::Vec4 dxThresholdW =
getDerivateThresholdWarning(m_precision, m_texValueMin * xScale, m_texValueMax * xScale, dx);
const tcu::Vec4 dyThresholdW =
getDerivateThresholdWarning(m_precision, m_texValueMin * yScale, m_texValueMax * yScale, dy);
const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
const tcu::Vec4 thresholdW = max(surfaceThreshold, max(dxThresholdW, dyThresholdW));
qpTestResult testResult = QP_TEST_RESULT_FAIL;
testResult = verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold,
m_derivScale, m_derivBias);
if (testResult == QP_TEST_RESULT_PASS)
return testResult;
// Re-Check with relaxed threshold
testResult = verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference,
thresholdW, m_derivScale, m_derivBias);
// If test is passing with relaxed threshold then mark quality warning
if (testResult == QP_TEST_RESULT_PASS)
testResult = QP_TEST_RESULT_QUALITY_WARNING;
return testResult;
}
}
ShaderDerivateTests::ShaderDerivateTests(Context &context)
: TestCaseGroup(context, "derivate", "Derivate Function Tests")
{
}
ShaderDerivateTests::~ShaderDerivateTests(void)
{
}
struct FunctionSpec
{
std::string name;
DerivateFunc function;
glu::DataType dataType;
glu::Precision precision;
FunctionSpec(const std::string &name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_)
: name(name_)
, function(function_)
, dataType(dataType_)
, precision(precision_)
{
}
};
void ShaderDerivateTests::init(void)
{
static const struct
{
const char *name;
const char *description;
const char *source;
} s_linearDerivateCases[] = {
{"linear", "Basic derivate of linearly interpolated argument",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"in_function", "Derivate of linear function argument",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"\n"
"${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n"
"{\n"
" return ${FUNC}(v_coord) * u_scale + u_bias;\n"
"}\n"
"\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"static_if", "Derivate of linearly interpolated value in static if",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" if (false)\n"
" res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
" else\n"
" res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"static_loop", "Derivate of linearly interpolated value in static loop",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
" for (int i = 0; i < 2; i++)\n"
" res += ${FUNC}(v_coord * float(i));\n"
" res = res * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"static_switch", "Derivate of linearly interpolated value in static switch",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" switch (1)\n"
" {\n"
" case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
" case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
" }\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"uniform_if", "Derivate of linearly interpolated value in uniform if",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"uniform bool ub_true;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" if (ub_true)"
" res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
" else\n"
" res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"uniform_loop", "Derivate of linearly interpolated value in uniform loop",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"uniform int ui_two;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
" for (int i = 0; i < ui_two; i++)\n"
" res += ${FUNC}(v_coord * float(i));\n"
" res = res * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
{"uniform_switch", "Derivate of linearly interpolated value in uniform switch",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"uniform int ui_one;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" switch (ui_one)\n"
" {\n"
" case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
" case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
" }\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"},
};
static const struct
{
const char *name;
SurfaceType surfaceType;
int numSamples;
} s_fboConfigs[] = {
{"fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0},
{"fbo_msaa2", SURFACETYPE_UNORM_FBO, 2},
{"fbo_msaa4", SURFACETYPE_UNORM_FBO, 4},
{"fbo_float", SURFACETYPE_FLOAT_FBO, 0},
};
static const struct
{
const char *name;
uint32_t hint;
} s_hints[] = {
{"fastest", GL_FASTEST},
{"nicest", GL_NICEST},
};
static const struct
{
const char *name;
SurfaceType surfaceType;
int numSamples;
} s_hintFboConfigs[] = {{"default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0},
{"fbo_msaa4", SURFACETYPE_UNORM_FBO, 4},
{"fbo_float", SURFACETYPE_FLOAT_FBO, 0}};
static const struct
{
const char *name;
SurfaceType surfaceType;
int numSamples;
uint32_t hint;
} s_textureConfigs[] = {
{"basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE},
{"msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE},
{"float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST},
{"float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST},
};
// .dfdx, .dfdy, .fwidth
for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++)
{
const DerivateFunc function = DerivateFunc(funcNdx);
tcu::TestCaseGroup *const functionGroup =
new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function));
addChild(functionGroup);
// .constant - no precision variants, checks that derivate of constant arguments is 0
{
tcu::TestCaseGroup *const constantGroup =
new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument");
functionGroup->addChild(constantGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
constantGroup->addChild(
new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType));
}
}
// Cases based on LinearDerivateCase
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++)
{
tcu::TestCaseGroup *const linearCaseGroup = new tcu::TestCaseGroup(
m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description);
const char *source = s_linearDerivateCases[caseNdx].source;
functionGroup->addChild(linearCaseGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER;
const int numSamples = 0;
const uint32_t hint = GL_DONT_CARE;
ostringstream caseName;
if (caseNdx != 0 && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function,
dataType, precision, hint, surfaceType, numSamples,
source));
}
}
}
// Fbo cases
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++)
{
tcu::TestCaseGroup *const fboGroup =
new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO");
const char *source = s_linearDerivateCases[0].source; // use source from .linear group
const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType;
const int numSamples = s_fboConfigs[caseNdx].numSamples;
functionGroup->addChild(fboGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
const uint32_t hint = GL_DONT_CARE;
ostringstream caseName;
if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType,
precision, hint, surfaceType, numSamples, source));
}
}
}
// .fastest, .nicest
for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++)
{
tcu::TestCaseGroup *const hintGroup =
new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints");
const char *source = s_linearDerivateCases[0].source; // use source from .linear group
const uint32_t hint = s_hints[hintCaseNdx].hint;
functionGroup->addChild(hintGroup);
for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++)
{
tcu::TestCaseGroup *const fboGroup =
new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, "");
const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType;
const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples;
hintGroup->addChild(fboGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType =
vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
ostringstream caseName;
if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function,
dataType, precision, hint, surfaceType, numSamples,
source));
}
}
}
}
// .texture
{
tcu::TestCaseGroup *const textureGroup =
new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result");
functionGroup->addChild(textureGroup);
for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++)
{
tcu::TestCaseGroup *const caseGroup =
new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, "");
const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType;
const int numSamples = s_textureConfigs[texCaseNdx].numSamples;
const uint32_t hint = s_textureConfigs[texCaseNdx].hint;
textureGroup->addChild(caseGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType =
vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
ostringstream caseName;
if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function,
dataType, precision, hint, surfaceType,
numSamples));
}
}
}
}
}
}
} // namespace Functional
} // namespace gles3
} // namespace deqp