blob: 45bd9d146e28ac13118e95a3341fa7f9f14f9509 [file] [log] [blame] [edit]
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Bilinear image comparison.
*//*--------------------------------------------------------------------*/
#include "tcuBilinearImageCompare.hpp"
#include "tcuTexture.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuRGBA.hpp"
namespace tcu
{
namespace
{
enum
{
NUM_SUBPIXEL_BITS = 8 //!< Number of subpixel bits used when doing bilinear interpolation.
};
// \note Algorithm assumes that colors are packed to 32-bit values as dictated by
// tcu::RGBA::*_SHIFT values.
template <int Channel>
static inline uint8_t getChannel(uint32_t color)
{
return (uint8_t)((color >> (Channel * 8)) & 0xff);
}
#if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
inline uint32_t readRGBA8Raw(const ConstPixelBufferAccess &src, uint32_t x, uint32_t y)
{
return *(const uint32_t *)((const uint8_t *)src.getDataPtr() + y * src.getRowPitch() + x * 4);
}
#else
inline uint32_t readRGBA8Raw(const ConstPixelBufferAccess &src, uint32_t x, uint32_t y)
{
return deReverseBytes32(*(const uint32_t *)((const uint8_t *)src.getDataPtr() + y * src.getRowPitch() + x * 4));
}
#endif
inline RGBA readRGBA8(const ConstPixelBufferAccess &src, uint32_t x, uint32_t y)
{
uint32_t raw = readRGBA8Raw(src, x, y);
uint32_t res = 0;
res |= getChannel<0>(raw) << RGBA::RED_SHIFT;
res |= getChannel<1>(raw) << RGBA::GREEN_SHIFT;
res |= getChannel<2>(raw) << RGBA::BLUE_SHIFT;
res |= getChannel<3>(raw) << RGBA::ALPHA_SHIFT;
return RGBA(res);
}
inline uint8_t interpolateChannel(uint32_t fx1, uint32_t fy1, uint8_t p00, uint8_t p01, uint8_t p10, uint8_t p11)
{
const uint32_t fx0 = (1u << NUM_SUBPIXEL_BITS) - fx1;
const uint32_t fy0 = (1u << NUM_SUBPIXEL_BITS) - fy1;
const uint32_t half = 1u << (NUM_SUBPIXEL_BITS * 2 - 1);
const uint32_t sum = fx0 * fy0 * p00 + fx1 * fy0 * p10 + fx0 * fy1 * p01 + fx1 * fy1 * p11;
const uint32_t rounded = (sum + half) >> (NUM_SUBPIXEL_BITS * 2);
DE_ASSERT(de::inRange<uint32_t>(rounded, 0, 0xff));
return (uint8_t)rounded;
}
RGBA bilinearSampleRGBA8(const ConstPixelBufferAccess &access, uint32_t u, uint32_t v)
{
uint32_t x0 = u >> NUM_SUBPIXEL_BITS;
uint32_t y0 = v >> NUM_SUBPIXEL_BITS;
uint32_t x1 = x0 + 1; //de::min(x0+1, (uint32_t)(access.getWidth()-1));
uint32_t y1 = y0 + 1; //de::min(y0+1, (uint32_t)(access.getHeight()-1));
DE_ASSERT(x1 < (uint32_t)access.getWidth());
DE_ASSERT(y1 < (uint32_t)access.getHeight());
uint32_t fx1 = u - (x0 << NUM_SUBPIXEL_BITS);
uint32_t fy1 = v - (y0 << NUM_SUBPIXEL_BITS);
uint32_t p00 = readRGBA8Raw(access, x0, y0);
uint32_t p10 = readRGBA8Raw(access, x1, y0);
uint32_t p01 = readRGBA8Raw(access, x0, y1);
uint32_t p11 = readRGBA8Raw(access, x1, y1);
uint32_t res = 0;
res |= interpolateChannel(fx1, fy1, getChannel<0>(p00), getChannel<0>(p01), getChannel<0>(p10), getChannel<0>(p11))
<< RGBA::RED_SHIFT;
res |= interpolateChannel(fx1, fy1, getChannel<1>(p00), getChannel<1>(p01), getChannel<1>(p10), getChannel<1>(p11))
<< RGBA::GREEN_SHIFT;
res |= interpolateChannel(fx1, fy1, getChannel<2>(p00), getChannel<2>(p01), getChannel<2>(p10), getChannel<2>(p11))
<< RGBA::BLUE_SHIFT;
res |= interpolateChannel(fx1, fy1, getChannel<3>(p00), getChannel<3>(p01), getChannel<3>(p10), getChannel<3>(p11))
<< RGBA::ALPHA_SHIFT;
return RGBA(res);
}
bool comparePixelRGBA8(const ConstPixelBufferAccess &reference, const ConstPixelBufferAccess &result,
const RGBA threshold, int x, int y)
{
const RGBA resPix = readRGBA8(result, (uint32_t)x, (uint32_t)y);
// Step 1: Compare result pixel to 3x3 neighborhood pixels in reference.
{
const uint32_t x0 = (uint32_t)de::max(x - 1, 0);
const uint32_t x1 = (uint32_t)x;
const uint32_t x2 = (uint32_t)de::min(x + 1, reference.getWidth() - 1);
const uint32_t y0 = (uint32_t)de::max(y - 1, 0);
const uint32_t y1 = (uint32_t)y;
const uint32_t y2 = (uint32_t)de::min(y + 1, reference.getHeight() - 1);
if (compareThreshold(resPix, readRGBA8(reference, x1, y1), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x0, y1), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x2, y1), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x0, y0), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x1, y0), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x2, y0), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x0, y2), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x1, y2), threshold) ||
compareThreshold(resPix, readRGBA8(reference, x2, y2), threshold))
return true;
}
// Step 2: Compare using bilinear sampling.
{
// \todo [pyry] Optimize sample positions!
static const uint32_t s_offsets[][2] = {{226, 186}, {335, 235}, {279, 334}, {178, 272}, {112, 202}, {306, 117},
{396, 299}, {206, 382}, {146, 96}, {423, 155}, {361, 412}, {84, 339},
{48, 130}, {367, 43}, {455, 367}, {105, 439}, {83, 46}, {217, 24},
{461, 71}, {450, 459}, {239, 469}, {67, 267}, {459, 255}, {13, 416},
{10, 192}, {141, 502}, {503, 304}, {380, 506}};
for (int sampleNdx = 0; sampleNdx < DE_LENGTH_OF_ARRAY(s_offsets); sampleNdx++)
{
const int u = (x << NUM_SUBPIXEL_BITS) + (int)s_offsets[sampleNdx][0] - (1 << NUM_SUBPIXEL_BITS);
const int v = (y << NUM_SUBPIXEL_BITS) + (int)s_offsets[sampleNdx][1] - (1 << NUM_SUBPIXEL_BITS);
if (!de::inBounds(u, 0, (reference.getWidth() - 1) << NUM_SUBPIXEL_BITS) ||
!de::inBounds(v, 0, (reference.getHeight() - 1) << NUM_SUBPIXEL_BITS))
continue;
if (compareThreshold(resPix, bilinearSampleRGBA8(reference, (uint32_t)u, (uint32_t)v), threshold))
return true;
}
}
return false;
}
bool bilinearCompareRGBA8(const ConstPixelBufferAccess &reference, const ConstPixelBufferAccess &result,
const PixelBufferAccess &errorMask, const RGBA threshold)
{
DE_ASSERT(reference.getFormat() == TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8) &&
result.getFormat() == TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8));
// Clear error mask first to green (faster this way).
clear(errorMask, Vec4(0.0f, 1.0f, 0.0f, 1.0f));
bool allOk = true;
for (int y = 0; y < reference.getHeight(); y++)
{
for (int x = 0; x < reference.getWidth(); x++)
{
if (!comparePixelRGBA8(reference, result, threshold, x, y) &&
!comparePixelRGBA8(result, reference, threshold, x, y))
{
allOk = false;
errorMask.setPixel(Vec4(1.0f, 0.0f, 0.0f, 1.0f), x, y);
}
}
}
return allOk;
}
} // namespace
bool bilinearCompare(const ConstPixelBufferAccess &reference, const ConstPixelBufferAccess &result,
const PixelBufferAccess &errorMask, const RGBA threshold)
{
DE_ASSERT(reference.getWidth() == result.getWidth() && reference.getHeight() == result.getHeight() &&
reference.getDepth() == result.getDepth() && reference.getFormat() == result.getFormat());
DE_ASSERT(reference.getWidth() == errorMask.getWidth() && reference.getHeight() == errorMask.getHeight() &&
reference.getDepth() == errorMask.getDepth());
if (reference.getFormat() == TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8))
return bilinearCompareRGBA8(reference, result, errorMask, threshold);
else
throw InternalError("Unsupported format for bilinear comparison");
}
} // namespace tcu