blob: 3d7f6c6c44f4686d86237534329a1d6574cd1ba4 [file] [log] [blame] [edit]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Optimized vs unoptimized shader performance tests.
*//*--------------------------------------------------------------------*/
#include "es3pShaderOptimizationTests.hpp"
#include "glsShaderPerformanceMeasurer.hpp"
#include "gluRenderContext.hpp"
#include "gluShaderProgram.hpp"
#include "tcuTestLog.hpp"
#include "tcuVector.hpp"
#include "tcuStringTemplate.hpp"
#include "deSharedPtr.hpp"
#include "deStringUtil.hpp"
#include "deMath.h"
#include "glwFunctions.hpp"
#include <vector>
#include <string>
#include <map>
using de::SharedPtr;
using de::toString;
using glu::ShaderProgram;
using tcu::TestLog;
using tcu::Vec4;
using std::string;
using std::vector;
namespace deqp
{
using gls::ShaderPerformanceMeasurer;
namespace gles3
{
namespace Performance
{
static inline std::map<string, string> singleMap(const string &key, const string &value)
{
std::map<string, string> res;
res[key] = value;
return res;
}
static inline string repeat(const string &str, int numRepeats, const string &delim = "")
{
string result = str;
for (int i = 1; i < numRepeats; i++)
result += delim + str;
return result;
}
static inline string repeatIndexedTemplate(const string &strTempl, int numRepeats, const string &delim = "",
int ndxStart = 0)
{
const tcu::StringTemplate templ(strTempl);
string result;
std::map<string, string> params;
for (int i = 0; i < numRepeats; i++)
{
params["PREV_NDX"] = toString(i + ndxStart - 1);
params["NDX"] = toString(i + ndxStart);
result += (i > 0 ? delim : "") + templ.specialize(params);
}
return result;
}
namespace
{
enum CaseShaderType
{
CASESHADERTYPE_VERTEX = 0,
CASESHADERTYPE_FRAGMENT,
CASESHADERTYPE_LAST
};
static inline string getShaderPrecision(CaseShaderType shaderType)
{
switch (shaderType)
{
case CASESHADERTYPE_VERTEX:
return "highp";
case CASESHADERTYPE_FRAGMENT:
return "highp";
default:
DE_ASSERT(false);
return "";
}
}
struct ProgramData
{
glu::ProgramSources sources;
vector<gls::AttribSpec>
attributes; //!< \note Shouldn't contain a_position; that one is set by gls::ShaderPerformanceMeasurer.
ProgramData(void)
{
}
ProgramData(const glu::ProgramSources &sources_,
const vector<gls::AttribSpec> &attributes_ = vector<gls::AttribSpec>())
: sources(sources_)
, attributes(attributes_)
{
}
ProgramData(const glu::ProgramSources &sources_, const gls::AttribSpec &attribute)
: sources(sources_)
, attributes(1, attribute)
{
}
};
//! Shader boilerplate helper; most cases have similar basic shader structure.
static inline ProgramData defaultProgramData(CaseShaderType shaderType, const string &funcDefs,
const string &mainStatements)
{
const bool isVertexCase = shaderType == CASESHADERTYPE_VERTEX;
const bool isFragmentCase = shaderType == CASESHADERTYPE_FRAGMENT;
const string vtxPrec = getShaderPrecision(CASESHADERTYPE_VERTEX);
const string fragPrec = getShaderPrecision(CASESHADERTYPE_FRAGMENT);
return ProgramData(glu::ProgramSources()
<< glu::VertexSource("#version 300 es\n"
"in " +
vtxPrec +
" vec4 a_position;\n"
"in " +
vtxPrec +
" vec4 a_value;\n"
"out " +
fragPrec + " vec4 v_value;\n" + (isVertexCase ? funcDefs : "") +
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" " +
vtxPrec + " vec4 value = a_value;\n" +
(isVertexCase ? mainStatements : "") +
" v_value = value;\n"
"}\n")
<< glu::FragmentSource("#version 300 es\n"
"layout (location = 0) out " +
fragPrec +
" vec4 o_color;\n"
"in " +
fragPrec + " vec4 v_value;\n" + (isFragmentCase ? funcDefs : "") +
"void main (void)\n"
"{\n"
" " +
fragPrec + " vec4 value = v_value;\n" +
(isFragmentCase ? mainStatements : "") +
" o_color = value;\n"
"}\n"),
gls::AttribSpec("a_value", Vec4(1.0f, 0.0f, 0.0f, 0.0f), Vec4(0.0f, 1.0f, 0.0f, 0.0f),
Vec4(0.0f, 0.0f, 1.0f, 0.0f), Vec4(0.0f, 0.0f, 0.0f, 1.0f)));
}
static inline ProgramData defaultProgramData(CaseShaderType shaderType, const string &mainStatements)
{
return defaultProgramData(shaderType, "", mainStatements);
}
class ShaderOptimizationCase : public TestCase
{
public:
ShaderOptimizationCase(Context &context, const char *name, const char *description, CaseShaderType caseShaderType)
: TestCase(context, tcu::NODETYPE_PERFORMANCE, name, description)
, m_caseShaderType(caseShaderType)
, m_state(STATE_LAST)
, m_measurer(context.getRenderContext(), caseShaderType == CASESHADERTYPE_VERTEX ? gls::CASETYPE_VERTEX :
caseShaderType == CASESHADERTYPE_FRAGMENT ? gls::CASETYPE_FRAGMENT :
gls::CASETYPE_LAST)
, m_unoptimizedResult(-1.0f, -1.0f)
, m_optimizedResult(-1.0f, -1.0f)
{
}
virtual ~ShaderOptimizationCase(void)
{
}
void init(void);
IterateResult iterate(void);
protected:
virtual ProgramData generateProgramData(bool optimized) const = 0;
const CaseShaderType m_caseShaderType;
private:
enum State
{
STATE_INIT_UNOPTIMIZED = 0,
STATE_MEASURE_UNOPTIMIZED,
STATE_INIT_OPTIMIZED,
STATE_MEASURE_OPTIMIZED,
STATE_FINISHED,
STATE_LAST
};
ProgramData &programData(bool optimized)
{
return optimized ? m_optimizedData : m_unoptimizedData;
}
SharedPtr<const ShaderProgram> &program(bool optimized)
{
return optimized ? m_optimizedProgram : m_unoptimizedProgram;
}
ShaderPerformanceMeasurer::Result &result(bool optimized)
{
return optimized ? m_optimizedResult : m_unoptimizedResult;
}
State m_state;
ShaderPerformanceMeasurer m_measurer;
ProgramData m_unoptimizedData;
ProgramData m_optimizedData;
SharedPtr<const ShaderProgram> m_unoptimizedProgram;
SharedPtr<const ShaderProgram> m_optimizedProgram;
ShaderPerformanceMeasurer::Result m_unoptimizedResult;
ShaderPerformanceMeasurer::Result m_optimizedResult;
};
void ShaderOptimizationCase::init(void)
{
const glu::RenderContext &renderCtx = m_context.getRenderContext();
TestLog &log = m_testCtx.getLog();
m_measurer.logParameters(log);
for (int ndx = 0; ndx < 2; ndx++)
{
const bool optimized = ndx == 1;
programData(optimized) = generateProgramData(optimized);
for (int i = 0; i < (int)programData(optimized).attributes.size(); i++)
DE_ASSERT(programData(optimized).attributes[i].name !=
"a_position"); // \note Position attribute is set by m_measurer.
program(optimized) =
SharedPtr<const ShaderProgram>(new ShaderProgram(renderCtx, programData(optimized).sources));
{
const tcu::ScopedLogSection section(log, optimized ? "OptimizedProgram" : "UnoptimizedProgram",
optimized ? "Hand-optimized program" : "Unoptimized program");
log << *program(optimized);
}
if (!program(optimized)->isOk())
TCU_FAIL("Shader compilation failed");
}
m_state = STATE_INIT_UNOPTIMIZED;
}
ShaderOptimizationCase::IterateResult ShaderOptimizationCase::iterate(void)
{
TestLog &log = m_testCtx.getLog();
if (m_state == STATE_INIT_UNOPTIMIZED || m_state == STATE_INIT_OPTIMIZED)
{
const bool optimized = m_state == STATE_INIT_OPTIMIZED;
m_measurer.init(program(optimized)->getProgram(), programData(optimized).attributes, 1);
m_state = optimized ? STATE_MEASURE_OPTIMIZED : STATE_MEASURE_UNOPTIMIZED;
return CONTINUE;
}
else if (m_state == STATE_MEASURE_UNOPTIMIZED || m_state == STATE_MEASURE_OPTIMIZED)
{
m_measurer.iterate();
if (m_measurer.isFinished())
{
const bool optimized = m_state == STATE_MEASURE_OPTIMIZED;
const tcu::ScopedLogSection section(log, optimized ? "OptimizedResult" : "UnoptimizedResult",
optimized ? "Measurement results for hand-optimized program" :
"Measurement result for unoptimized program");
m_measurer.logMeasurementInfo(log);
result(optimized) = m_measurer.getResult();
m_measurer.deinit();
m_state = optimized ? STATE_FINISHED : STATE_INIT_OPTIMIZED;
}
return CONTINUE;
}
else
{
DE_ASSERT(m_state == STATE_FINISHED);
const float unoptimizedRelevantResult = m_caseShaderType == CASESHADERTYPE_VERTEX ?
m_unoptimizedResult.megaVertPerSec :
m_unoptimizedResult.megaFragPerSec;
const float optimizedRelevantResult = m_caseShaderType == CASESHADERTYPE_VERTEX ?
m_optimizedResult.megaVertPerSec :
m_optimizedResult.megaFragPerSec;
const char *const relevantResultName = m_caseShaderType == CASESHADERTYPE_VERTEX ? "vertex" : "fragment";
const float ratio = unoptimizedRelevantResult / optimizedRelevantResult;
const int handOptimizationGain = (int)deFloatRound(100.0f / ratio) - 100;
log << TestLog::Message << "Unoptimized / optimized " << relevantResultName << " performance ratio: " << ratio
<< TestLog::EndMessage;
if (handOptimizationGain >= 0)
log << TestLog::Message << "Note: " << handOptimizationGain
<< "% performance gain was achieved with hand-optimized version" << TestLog::EndMessage;
else
log << TestLog::Message << "Note: hand-optimization degraded performance by " << -handOptimizationGain
<< "%" << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(ratio, 2).c_str());
return STOP;
}
}
class LoopUnrollCase : public ShaderOptimizationCase
{
public:
enum CaseType
{
CASETYPE_INDEPENDENT = 0,
CASETYPE_DEPENDENT,
CASETYPE_LAST
};
LoopUnrollCase(Context &context, const char *name, const char *description, CaseShaderType caseShaderType,
CaseType caseType, int numRepetitions)
: ShaderOptimizationCase(context, name, description, caseShaderType)
, m_numRepetitions(numRepetitions)
, m_caseType(caseType)
{
}
protected:
ProgramData generateProgramData(bool optimized) const
{
const string repetition =
optimized ? repeatIndexedTemplate("\t" + expressionTemplate(m_caseType) + ";\n", m_numRepetitions) :
loop(m_numRepetitions, expressionTemplate(m_caseType));
return defaultProgramData(m_caseShaderType, "\t" + getShaderPrecision(m_caseShaderType) +
" vec4 valueOrig = value;\n" + repetition);
}
private:
const int m_numRepetitions;
const CaseType m_caseType;
static inline string expressionTemplate(CaseType caseType)
{
switch (caseType)
{
case CASETYPE_INDEPENDENT:
return "value += sin(float(${NDX}+1)*valueOrig)";
case CASETYPE_DEPENDENT:
return "value = sin(value)";
default:
DE_ASSERT(false);
return "";
}
}
static inline string loop(int iterations, const string &innerExpr)
{
return "\tfor (int i = 0; i < " + toString(iterations) + "; i++)\n\t\t" +
tcu::StringTemplate(innerExpr).specialize(singleMap("NDX", "i")) + ";\n";
}
};
class LoopInvariantCodeMotionCase : public ShaderOptimizationCase
{
public:
LoopInvariantCodeMotionCase(Context &context, const char *name, const char *description,
CaseShaderType caseShaderType, int numLoopIterations)
: ShaderOptimizationCase(context, name, description, caseShaderType)
, m_numLoopIterations(numLoopIterations)
{
}
protected:
ProgramData generateProgramData(bool optimized) const
{
float scale = 0.0f;
for (int i = 0; i < m_numLoopIterations; i++)
scale += 3.2f * (float)i + 4.6f;
scale = 1.0f / scale;
const string precision = getShaderPrecision(m_caseShaderType);
const string statements = optimized ? " " + precision +
" vec4 valueOrig = value;\n"
" " +
precision +
" vec4 y = sin(cos(sin(valueOrig)));\n"
" for (int i = 0; i < " +
toString(m_numLoopIterations) +
"; i++)\n"
" {\n"
" " +
precision +
" float x = 3.2*float(i) + 4.6;\n"
" value += x*y;\n"
" }\n"
" value *= " +
toString(scale) + ";\n"
:
" " + precision +
" vec4 valueOrig = value;\n"
" for (int i = 0; i < " +
toString(m_numLoopIterations) +
"; i++)\n"
" {\n"
" " +
precision +
" float x = 3.2*float(i) + 4.6;\n"
" " +
precision +
" vec4 y = sin(cos(sin(valueOrig)));\n"
" value += x*y;\n"
" }\n"
" value *= " +
toString(scale) + ";\n";
return defaultProgramData(m_caseShaderType, statements);
}
private:
const int m_numLoopIterations;
};
class FunctionInliningCase : public ShaderOptimizationCase
{
public:
FunctionInliningCase(Context &context, const char *name, const char *description, CaseShaderType caseShaderType,
int callNestingDepth)
: ShaderOptimizationCase(context, name, description, caseShaderType)
, m_callNestingDepth(callNestingDepth)
{
}
protected:
ProgramData generateProgramData(bool optimized) const
{
const string precision = getShaderPrecision(m_caseShaderType);
const string expression = "value*vec4(0.8, 0.7, 0.6, 0.9)";
const string maybeFuncDefs = optimized ? "" : funcDefinitions(m_callNestingDepth, precision, expression);
const string mainValueStatement =
(optimized ? "\tvalue = " + expression : "\tvalue = func" + toString(m_callNestingDepth - 1) + "(value)") +
";\n";
return defaultProgramData(m_caseShaderType, maybeFuncDefs, mainValueStatement);
}
private:
const int m_callNestingDepth;
static inline string funcDefinitions(int callNestingDepth, const string &precision, const string &expression)
{
string result = precision + " vec4 func0 (" + precision + " vec4 value) { return " + expression + "; }\n";
for (int i = 1; i < callNestingDepth; i++)
result += precision + " vec4 func" + toString(i) + " (" + precision + " vec4 v) { return func" +
toString(i - 1) + "(v); }\n";
return result;
}
};
class ConstantPropagationCase : public ShaderOptimizationCase
{
public:
enum CaseType
{
CASETYPE_BUILT_IN_FUNCTIONS = 0,
CASETYPE_ARRAY,
CASETYPE_STRUCT,
CASETYPE_LAST
};
ConstantPropagationCase(Context &context, const char *name, const char *description, CaseShaderType caseShaderType,
CaseType caseType, bool useConstantExpressionsOnly)
: ShaderOptimizationCase(context, name, description, caseShaderType)
, m_caseType(caseType)
, m_useConstantExpressionsOnly(useConstantExpressionsOnly)
{
}
protected:
ProgramData generateProgramData(bool optimized) const
{
const bool isVertexCase = m_caseShaderType == CASESHADERTYPE_VERTEX;
const string precision = getShaderPrecision(m_caseShaderType);
const string statements =
m_caseType == CASETYPE_BUILT_IN_FUNCTIONS ?
builtinFunctionsCaseStatements(optimized, m_useConstantExpressionsOnly, precision, isVertexCase) :
m_caseType == CASETYPE_ARRAY ?
arrayCaseStatements(optimized, m_useConstantExpressionsOnly, precision, isVertexCase) :
m_caseType == CASETYPE_STRUCT ?
structCaseStatements(optimized, m_useConstantExpressionsOnly, precision, isVertexCase) :
deFatalStr("Invalid CaseType");
return defaultProgramData(m_caseShaderType, statements);
}
private:
const CaseType m_caseType;
const bool m_useConstantExpressionsOnly;
static inline string builtinFunctionsCaseStatements(bool optimized, bool constantExpressionsOnly,
const string &precision, bool useHeavierWorkload)
{
const string constMaybe = constantExpressionsOnly ? "const " : "";
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? " value = vec4(0.4, 0.5, 0.6, 0.7) * value; // NOTE: factor doesn't necessarily match "
"the one in unoptimized shader, but shouldn't make a difference performance-wise\n"
:
" " + constMaybe + precision +
" vec4 a = vec4(sin(0.7), cos(0.2), sin(0.9), abs(-0.5));\n"
" " +
constMaybe + precision +
" vec4 b = cos(a) + fract(3.0*a.xzzw);\n"
" " +
constMaybe +
"bvec4 c = bvec4(true, false, true, true);\n"
" " +
constMaybe + precision +
" vec4 d = exp(b + vec4(c));\n"
" " +
constMaybe + precision + " vec4 e0 = inversesqrt(mix(d+a, d+b, a));\n" +
repeatIndexedTemplate(" " + constMaybe + precision +
" vec4 e${NDX} = sin(sin(sin(sin(e${PREV_NDX}))));\n",
numSinRows, "", 1) +
" " + constMaybe + precision + " vec4 f = abs(e" + toString(numSinRows) + ");\n" +
" value = f*value;\n";
}
static inline string arrayCaseStatements(bool optimized, bool constantExpressionsOnly, const string &precision,
bool useHeavierWorkload)
{
const string constMaybe = constantExpressionsOnly ? "const " : "";
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? " value = vec4(0.4, 0.5, 0.6, 0.7) * value; // NOTE: factor doesn't necessarily match "
"the one in unoptimized shader, but shouldn't make a difference performance-wise\n"
:
" const int arrLen = 4;\n" +
(constantExpressionsOnly ? " const " + precision +
" vec4 arr[arrLen] =\n"
" vec4[](vec4(0.1, 0.5, 0.9, 1.3),\n"
" vec4(0.2, 0.6, 1.0, 1.4),\n"
" vec4(0.3, 0.7, 1.1, 1.5),\n"
" vec4(0.4, 0.8, 1.2, 1.6));\n"
:
" " + precision +
" vec4 arr[arrLen];\n"
" arr[0] = vec4(0.1, 0.5, 0.9, 1.3);\n"
" arr[1] = vec4(0.2, 0.6, 1.0, 1.4);\n"
" arr[2] = vec4(0.3, 0.7, 1.1, 1.5);\n"
" arr[3] = vec4(0.4, 0.8, 1.2, 1.6);\n") +
" " + constMaybe + precision +
" vec4 a = (arr[0] + arr[1] + arr[2] + arr[3]) * (1.0 / float(arr.length()));\n"
" " +
constMaybe + precision + " vec4 b0 = cos(sin(a));\n" +
repeatIndexedTemplate(" " + constMaybe + precision +
" vec4 b${NDX} = sin(sin(sin(sin(b${PREV_NDX}))));\n",
numSinRows, "", 1) +
" " + constMaybe + precision + " vec4 c = abs(b" + toString(numSinRows) + ");\n" +
" value = c*value;\n";
}
static inline string structCaseStatements(bool optimized, bool constantExpressionsOnly, const string &precision,
bool useHeavierWorkload)
{
const string constMaybe = constantExpressionsOnly ? "const " : "";
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? " value = vec4(0.4, 0.5, 0.6, 0.7) * value; // NOTE: factor doesn't necessarily match "
"the one in unoptimized shader, but shouldn't make a difference performance-wise\n"
:
" struct S\n"
" {\n"
" " +
precision +
" vec4 a;\n"
" " +
precision +
" vec4 b;\n"
" " +
precision +
" vec4 c;\n"
" " +
precision +
" vec4 d;\n"
" };\n"
"\n"
" " +
constMaybe +
"S s =\n"
" S(vec4(0.1, 0.5, 0.9, 1.3),\n"
" vec4(0.2, 0.6, 1.0, 1.4),\n"
" vec4(0.3, 0.7, 1.1, 1.5),\n"
" vec4(0.4, 0.8, 1.2, 1.6));\n"
" " +
constMaybe + precision +
" vec4 a = (s.a + s.b + s.c + s.d) * 0.25;\n"
" " +
constMaybe + precision + " vec4 b0 = cos(sin(a));\n" +
repeatIndexedTemplate(" " + constMaybe + precision +
" vec4 b${NDX} = sin(sin(sin(sin(b${PREV_NDX}))));\n",
numSinRows, "", 1) +
" " + constMaybe + precision + " vec4 c = abs(b" + toString(numSinRows) + ");\n" +
" value = c*value;\n";
}
};
class CommonSubexpressionCase : public ShaderOptimizationCase
{
public:
enum CaseType
{
CASETYPE_SINGLE_STATEMENT = 0,
CASETYPE_MULTIPLE_STATEMENTS,
CASETYPE_STATIC_BRANCH,
CASETYPE_LOOP,
CASETYPE_LAST
};
CommonSubexpressionCase(Context &context, const char *name, const char *description, CaseShaderType caseShaderType,
CaseType caseType)
: ShaderOptimizationCase(context, name, description, caseShaderType)
, m_caseType(caseType)
{
}
protected:
ProgramData generateProgramData(bool optimized) const
{
const bool isVertexCase = m_caseShaderType == CASESHADERTYPE_VERTEX;
const string precision = getShaderPrecision(m_caseShaderType);
const string statements = m_caseType == CASETYPE_SINGLE_STATEMENT ?
singleStatementCaseStatements(optimized, precision, isVertexCase) :
m_caseType == CASETYPE_MULTIPLE_STATEMENTS ?
multipleStatementsCaseStatements(optimized, precision, isVertexCase) :
m_caseType == CASETYPE_STATIC_BRANCH ?
staticBranchCaseStatements(optimized, precision, isVertexCase) :
m_caseType == CASETYPE_LOOP ? loopCaseStatements(optimized, precision, isVertexCase) :
deFatalStr("Invalid CaseType");
return defaultProgramData(m_caseShaderType, statements);
}
private:
const CaseType m_caseType;
static inline string singleStatementCaseStatements(bool optimized, const string &precision, bool useHeavierWorkload)
{
const int numTopLevelRepeats = useHeavierWorkload ? 4 : 1;
return optimized ? " " + precision +
" vec4 s = sin(value);\n"
" " +
precision +
" vec4 cs = cos(s);\n"
" " +
precision +
" vec4 d = fract(s + cs) + sqrt(s + exp(cs));\n"
" value = " +
repeat("d", numTopLevelRepeats, "+") + ";\n"
:
" value = " +
repeat("fract(sin(value) + cos(sin(value))) + sqrt(sin(value) + exp(cos(sin(value))))",
numTopLevelRepeats, "\n\t + ") +
";\n";
}
static inline string multipleStatementsCaseStatements(bool optimized, const string &precision,
bool useHeavierWorkload)
{
const int numTopLevelRepeats = useHeavierWorkload ? 4 : 2;
DE_ASSERT(numTopLevelRepeats >= 2);
return optimized ? " " + precision +
" vec4 a = sin(value) + cos(exp(value));\n"
" " +
precision +
" vec4 b = cos(cos(a));\n"
" a = fract(exp(sqrt(b)));\n"
"\n" +
repeat("\tvalue += a*b;\n", numTopLevelRepeats)
:
repeatIndexedTemplate(" " + precision +
" vec4 a${NDX} = sin(value) + cos(exp(value));\n"
" " +
precision +
" vec4 b${NDX} = cos(cos(a${NDX}));\n"
" a${NDX} = fract(exp(sqrt(b${NDX})));\n"
"\n",
numTopLevelRepeats) +
repeatIndexedTemplate(" value += a${NDX}*b${NDX};\n", numTopLevelRepeats);
}
static inline string staticBranchCaseStatements(bool optimized, const string &precision, bool useHeavierWorkload)
{
const int numTopLevelRepeats = useHeavierWorkload ? 4 : 2;
DE_ASSERT(numTopLevelRepeats >= 2);
if (optimized)
{
return " " + precision +
" vec4 a = sin(value) + cos(exp(value));\n"
" " +
precision +
" vec4 b = cos(a);\n"
" b = cos(b);\n"
" a = fract(exp(sqrt(b)));\n"
"\n" +
repeat(" value += a*b;\n", numTopLevelRepeats);
}
else
{
string result;
for (int i = 0; i < numTopLevelRepeats; i++)
{
result += " " + precision + " vec4 a" + toString(i) +
" = sin(value) + cos(exp(value));\n"
" " +
precision + " vec4 b" + toString(i) + " = cos(a" + toString(i) + ");\n";
if (i % 3 == 0)
result += " if (1 < 2)\n"
" b" +
toString(i) + " = cos(b" + toString(i) + ");\n";
else if (i % 3 == 1)
result += " b" + toString(i) + " = cos(b" + toString(i) + ");\n";
else if (i % 3 == 2)
result += " if (2 < 1);\n"
" else\n"
" b" +
toString(i) + " = cos(b" + toString(i) + ");\n";
else
DE_ASSERT(false);
result += " a" + toString(i) + " = fract(exp(sqrt(b" + toString(i) + ")));\n\n";
}
result += repeatIndexedTemplate(" value += a${NDX}*b${NDX};\n", numTopLevelRepeats);
return result;
}
}
static inline string loopCaseStatements(bool optimized, const string &precision, bool useHeavierWorkload)
{
const int numLoopIterations = useHeavierWorkload ? 32 : 4;
return optimized ? " " + precision +
" vec4 acc = value;\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" acc = sin(acc);\n"
"\n"
" value += acc;\n"
" value += acc;\n"
:
" " + precision +
" vec4 acc0 = value;\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" acc0 = sin(acc0);\n"
"\n"
" " +
precision +
" vec4 acc1 = value;\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" acc1 = sin(acc1);\n"
"\n"
" value += acc0;\n"
" value += acc1;\n";
}
};
class DeadCodeEliminationCase : public ShaderOptimizationCase
{
public:
enum CaseType
{
CASETYPE_DEAD_BRANCH_SIMPLE = 0,
CASETYPE_DEAD_BRANCH_COMPLEX,
CASETYPE_DEAD_BRANCH_COMPLEX_NO_CONST,
CASETYPE_DEAD_BRANCH_FUNC_CALL,
CASETYPE_UNUSED_VALUE_BASIC,
CASETYPE_UNUSED_VALUE_LOOP,
CASETYPE_UNUSED_VALUE_DEAD_BRANCH,
CASETYPE_UNUSED_VALUE_AFTER_RETURN,
CASETYPE_UNUSED_VALUE_MUL_ZERO,
CASETYPE_LAST
};
DeadCodeEliminationCase(Context &context, const char *name, const char *description, CaseShaderType caseShaderType,
CaseType caseType)
: ShaderOptimizationCase(context, name, description, caseShaderType)
, m_caseType(caseType)
{
}
protected:
ProgramData generateProgramData(bool optimized) const
{
const bool isVertexCase = m_caseShaderType == CASESHADERTYPE_VERTEX;
const string precision = getShaderPrecision(m_caseShaderType);
const string funcDefs = m_caseType == CASETYPE_DEAD_BRANCH_FUNC_CALL ?
deadBranchFuncCallCaseFuncDefs(optimized, precision) :
m_caseType == CASETYPE_UNUSED_VALUE_AFTER_RETURN ?
unusedValueAfterReturnCaseFuncDefs(optimized, precision, isVertexCase) :
"";
const string statements = m_caseType == CASETYPE_DEAD_BRANCH_SIMPLE ?
deadBranchSimpleCaseStatements(optimized, isVertexCase) :
m_caseType == CASETYPE_DEAD_BRANCH_COMPLEX ?
deadBranchComplexCaseStatements(optimized, precision, true, isVertexCase) :
m_caseType == CASETYPE_DEAD_BRANCH_COMPLEX_NO_CONST ?
deadBranchComplexCaseStatements(optimized, precision, false, isVertexCase) :
m_caseType == CASETYPE_DEAD_BRANCH_FUNC_CALL ?
deadBranchFuncCallCaseStatements(optimized, isVertexCase) :
m_caseType == CASETYPE_UNUSED_VALUE_BASIC ?
unusedValueBasicCaseStatements(optimized, precision, isVertexCase) :
m_caseType == CASETYPE_UNUSED_VALUE_LOOP ?
unusedValueLoopCaseStatements(optimized, precision, isVertexCase) :
m_caseType == CASETYPE_UNUSED_VALUE_DEAD_BRANCH ?
unusedValueDeadBranchCaseStatements(optimized, precision, isVertexCase) :
m_caseType == CASETYPE_UNUSED_VALUE_AFTER_RETURN ?
unusedValueAfterReturnCaseStatements() :
m_caseType == CASETYPE_UNUSED_VALUE_MUL_ZERO ?
unusedValueMulZeroCaseStatements(optimized, precision, isVertexCase) :
deFatalStr("Invalid CaseType");
return defaultProgramData(m_caseShaderType, funcDefs, statements);
}
private:
const CaseType m_caseType;
static inline string deadBranchSimpleCaseStatements(bool optimized, bool useHeavierWorkload)
{
const int numLoopIterations = useHeavierWorkload ? 16 : 4;
return optimized ? " value = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
:
" value = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" if (2 < 1)\n"
" {\n"
" value = cos(exp(sin(value))*log(sqrt(value)));\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" value = sin(value);\n"
" }\n";
}
static inline string deadBranchComplexCaseStatements(bool optimized, const string &precision, bool useConst,
bool useHeavierWorkload)
{
const string constMaybe = useConst ? "const " : "";
const int numLoopIterations = useHeavierWorkload ? 16 : 4;
return optimized ? " value = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
:
" value = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" " +
constMaybe + precision +
" vec4 a = vec4(sin(0.7), cos(0.2), sin(0.9), abs(-0.5));\n"
" " +
constMaybe + precision +
" vec4 b = cos(a) + fract(3.0*a.xzzw);\n"
" " +
constMaybe +
"bvec4 c = bvec4(true, false, true, true);\n"
" " +
constMaybe + precision +
" vec4 d = exp(b + vec4(c));\n"
" " +
constMaybe + precision +
" vec4 e = 1.8*abs(sin(sin(inversesqrt(mix(d+a, d+b, a)))));\n"
" if (e.x > 1.0)\n"
" {\n"
" value = cos(exp(sin(value))*log(sqrt(value)));\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" value = sin(value);\n"
" }\n";
}
static inline string deadBranchFuncCallCaseFuncDefs(bool optimized, const string &precision)
{
return optimized ? "" : precision + " float func (" + precision + " float x) { return 2.0*x; }\n";
}
static inline string deadBranchFuncCallCaseStatements(bool optimized, bool useHeavierWorkload)
{
const int numLoopIterations = useHeavierWorkload ? 16 : 4;
return optimized ? " value = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
:
" value = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" if (func(0.3) > 1.0)\n"
" {\n"
" value = cos(exp(sin(value))*log(sqrt(value)));\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" value = sin(value);\n"
" }\n";
}
static inline string unusedValueBasicCaseStatements(bool optimized, const string &precision,
bool useHeavierWorkload)
{
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? " " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" value = used;\n"
:
" " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" " +
precision + " vec4 unused = cos(exp(sin(value))*log(sqrt(value))) + used;\n" +
repeat(" unused = sin(sin(sin(sin(unused))));\n", numSinRows) + " value = used;\n";
}
static inline string unusedValueLoopCaseStatements(bool optimized, const string &precision, bool useHeavierWorkload)
{
const int numLoopIterations = useHeavierWorkload ? 16 : 4;
return optimized ? " " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" value = used;\n"
:
" " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" " +
precision +
" vec4 unused = cos(exp(sin(value))*log(sqrt(value)));\n"
" for (int i = 0; i < " +
toString(numLoopIterations) +
"; i++)\n"
" unused = sin(unused + used);\n"
" value = used;\n";
}
static inline string unusedValueAfterReturnCaseFuncDefs(bool optimized, const string &precision,
bool useHeavierWorkload)
{
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? precision + " vec4 func (" + precision +
" vec4 v)\n"
"{\n"
" " +
precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * v;\n"
" return used;\n"
"}\n"
:
precision + " vec4 func (" + precision +
" vec4 v)\n"
"{\n"
" " +
precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * v;\n"
" " +
precision + " vec4 unused = cos(exp(sin(v))*log(sqrt(v)));\n" +
repeat(" unused = sin(sin(sin(sin(unused))));\n", numSinRows) +
" return used;\n"
" used = used*unused;"
" return used;\n"
"}\n";
}
static inline string unusedValueAfterReturnCaseStatements(void)
{
return " value = func(value);\n";
}
static inline string unusedValueDeadBranchCaseStatements(bool optimized, const string &precision,
bool useHeavierWorkload)
{
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? " " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" value = used;\n"
:
" " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" " +
precision + " vec4 unused = cos(exp(sin(value))*log(sqrt(value)));\n" +
repeat(" unused = sin(sin(sin(sin(unused))));\n", numSinRows) +
" if (2 < 1)\n"
" used = used*unused;\n"
" value = used;\n";
}
static inline string unusedValueMulZeroCaseStatements(bool optimized, const string &precision,
bool useHeavierWorkload)
{
const int numSinRows = useHeavierWorkload ? 12 : 1;
return optimized ? " " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" value = used;\n"
:
" " + precision +
" vec4 used = vec4(0.6, 0.7, 0.8, 0.9) * value;\n"
" " +
precision + " vec4 unused = cos(exp(sin(value))*log(sqrt(value)));\n" +
repeat(" unused = sin(sin(sin(sin(unused))));\n", numSinRows) +
" value = used + unused*float(1-1);\n";
}
};
} // namespace
ShaderOptimizationTests::ShaderOptimizationTests(Context &context)
: TestCaseGroup(context, "optimization", "Shader Optimization Performance Tests")
{
}
ShaderOptimizationTests::~ShaderOptimizationTests(void)
{
}
void ShaderOptimizationTests::init(void)
{
TestCaseGroup *const unrollGroup = new TestCaseGroup(m_context, "loop_unrolling", "Loop Unrolling Cases");
TestCaseGroup *const loopInvariantCodeMotionGroup =
new TestCaseGroup(m_context, "loop_invariant_code_motion", "Loop-Invariant Code Motion Cases");
TestCaseGroup *const inlineGroup = new TestCaseGroup(m_context, "function_inlining", "Function Inlining Cases");
TestCaseGroup *const constantPropagationGroup =
new TestCaseGroup(m_context, "constant_propagation", "Constant Propagation Cases");
TestCaseGroup *const commonSubexpressionGroup =
new TestCaseGroup(m_context, "common_subexpression_elimination", "Common Subexpression Elimination Cases");
TestCaseGroup *const deadCodeEliminationGroup =
new TestCaseGroup(m_context, "dead_code_elimination", "Dead Code Elimination Cases");
addChild(unrollGroup);
addChild(loopInvariantCodeMotionGroup);
addChild(inlineGroup);
addChild(constantPropagationGroup);
addChild(commonSubexpressionGroup);
addChild(deadCodeEliminationGroup);
for (int caseShaderTypeI = 0; caseShaderTypeI < CASESHADERTYPE_LAST; caseShaderTypeI++)
{
const CaseShaderType caseShaderType = (CaseShaderType)caseShaderTypeI;
const char *const caseShaderTypeSuffix = caseShaderType == CASESHADERTYPE_VERTEX ? "_vertex" :
caseShaderType == CASESHADERTYPE_FRAGMENT ? "_fragment" :
nullptr;
// Loop unrolling cases.
{
static const int loopIterationCounts[] = {4, 8, 32};
for (int caseTypeI = 0; caseTypeI < LoopUnrollCase::CASETYPE_LAST; caseTypeI++)
{
const LoopUnrollCase::CaseType caseType = (LoopUnrollCase::CaseType)caseTypeI;
const string caseTypeName = caseType == LoopUnrollCase::CASETYPE_INDEPENDENT ?
"independent_iterations" :
caseType == LoopUnrollCase::CASETYPE_DEPENDENT ? "dependent_iterations" :
nullptr;
const string caseTypeDesc =
caseType == LoopUnrollCase::CASETYPE_INDEPENDENT ? "loop iterations don't depend on each other" :
caseType == LoopUnrollCase::CASETYPE_DEPENDENT ? "loop iterations depend on each other" :
nullptr;
for (int loopIterNdx = 0; loopIterNdx < DE_LENGTH_OF_ARRAY(loopIterationCounts); loopIterNdx++)
{
const int loopIterations = loopIterationCounts[loopIterNdx];
const string name = caseTypeName + "_" + toString(loopIterations) + caseShaderTypeSuffix;
const string description = toString(loopIterations) + " iterations; " + caseTypeDesc;
unrollGroup->addChild(new LoopUnrollCase(m_context, name.c_str(), description.c_str(),
caseShaderType, caseType, loopIterations));
}
}
}
// Loop-invariant code motion cases.
{
static const int loopIterationCounts[] = {4, 8, 32};
for (int loopIterNdx = 0; loopIterNdx < DE_LENGTH_OF_ARRAY(loopIterationCounts); loopIterNdx++)
{
const int loopIterations = loopIterationCounts[loopIterNdx];
const string name = toString(loopIterations) + "_iterations" + caseShaderTypeSuffix;
loopInvariantCodeMotionGroup->addChild(
new LoopInvariantCodeMotionCase(m_context, name.c_str(), "", caseShaderType, loopIterations));
}
}
// Function inlining cases.
{
static const int callNestingDepths[] = {4, 8, 32};
for (int nestDepthNdx = 0; nestDepthNdx < DE_LENGTH_OF_ARRAY(callNestingDepths); nestDepthNdx++)
{
const int nestingDepth = callNestingDepths[nestDepthNdx];
const string name = toString(nestingDepth) + "_nested" + caseShaderTypeSuffix;
inlineGroup->addChild(
new FunctionInliningCase(m_context, name.c_str(), "", caseShaderType, nestingDepth));
}
}
// Constant propagation cases.
for (int caseTypeI = 0; caseTypeI < ConstantPropagationCase::CASETYPE_LAST; caseTypeI++)
{
const ConstantPropagationCase::CaseType caseType = (ConstantPropagationCase::CaseType)caseTypeI;
const string caseTypeName = caseType == ConstantPropagationCase::CASETYPE_BUILT_IN_FUNCTIONS ?
"built_in_functions" :
caseType == ConstantPropagationCase::CASETYPE_ARRAY ? "array" :
caseType == ConstantPropagationCase::CASETYPE_STRUCT ? "struct" :
nullptr;
for (int constantExpressionsOnlyI = 0; constantExpressionsOnlyI <= 1; constantExpressionsOnlyI++)
{
const bool constantExpressionsOnly = constantExpressionsOnlyI != 0;
const string name = caseTypeName + (constantExpressionsOnly ? "" : "_no_const") + caseShaderTypeSuffix;
constantPropagationGroup->addChild(new ConstantPropagationCase(
m_context, name.c_str(), "", caseShaderType, caseType, constantExpressionsOnly));
}
}
// Common subexpression cases.
for (int caseTypeI = 0; caseTypeI < CommonSubexpressionCase::CASETYPE_LAST; caseTypeI++)
{
const CommonSubexpressionCase::CaseType caseType = (CommonSubexpressionCase::CaseType)caseTypeI;
const string caseTypeName =
caseType == CommonSubexpressionCase::CASETYPE_SINGLE_STATEMENT ? "single_statement" :
caseType == CommonSubexpressionCase::CASETYPE_MULTIPLE_STATEMENTS ? "multiple_statements" :
caseType == CommonSubexpressionCase::CASETYPE_STATIC_BRANCH ? "static_branch" :
caseType == CommonSubexpressionCase::CASETYPE_LOOP ? "loop" :
nullptr;
const string description = caseType == CommonSubexpressionCase::CASETYPE_SINGLE_STATEMENT ?
"A single statement containing multiple uses of same subexpression" :
caseType == CommonSubexpressionCase::CASETYPE_MULTIPLE_STATEMENTS ?
"Multiple statements performing same computations" :
caseType == CommonSubexpressionCase::CASETYPE_STATIC_BRANCH ?
"Multiple statements including a static conditional" :
caseType == CommonSubexpressionCase::CASETYPE_LOOP ?
"Multiple loops performing the same computations" :
nullptr;
commonSubexpressionGroup->addChild(
new CommonSubexpressionCase(m_context, (caseTypeName + caseShaderTypeSuffix).c_str(),
description.c_str(), caseShaderType, caseType));
}
// Dead code elimination cases.
for (int caseTypeI = 0; caseTypeI < DeadCodeEliminationCase::CASETYPE_LAST; caseTypeI++)
{
const DeadCodeEliminationCase::CaseType caseType = (DeadCodeEliminationCase::CaseType)caseTypeI;
const char *const caseTypeName =
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_SIMPLE ? "dead_branch_simple" :
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_COMPLEX ? "dead_branch_complex" :
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_COMPLEX_NO_CONST ?
"dead_branch_complex_no_const" :
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_FUNC_CALL ? "dead_branch_func_call" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_BASIC ? "unused_value_basic" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_LOOP ? "unused_value_loop" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_DEAD_BRANCH ? "unused_value_dead_branch" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_AFTER_RETURN ? "unused_value_after_return" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_MUL_ZERO ? "unused_value_mul_zero" :
nullptr;
const char *const caseTypeDescription =
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_SIMPLE ?
"Do computation inside a branch that is never taken (condition is simple false constant "
"expression)" :
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_COMPLEX ?
"Do computation inside a branch that is never taken (condition is complex false constant "
"expression)" :
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_COMPLEX_NO_CONST ?
"Do computation inside a branch that is never taken (condition is complex false expression, not "
"constant expression but still compile-time computable)" :
caseType == DeadCodeEliminationCase::CASETYPE_DEAD_BRANCH_FUNC_CALL ?
"Do computation inside a branch that is never taken (condition is compile-time computable false "
"expression containing function call to a simple inlineable function)" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_BASIC ?
"Compute a value that is never used even statically" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_LOOP ?
"Compute a value, using a loop, that is never used even statically" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_DEAD_BRANCH ?
"Compute a value that is used only inside a statically dead branch" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_AFTER_RETURN ?
"Compute a value that is used only after a return statement" :
caseType == DeadCodeEliminationCase::CASETYPE_UNUSED_VALUE_MUL_ZERO ?
"Compute a value that is used but multiplied by a zero constant expression" :
nullptr;
deadCodeEliminationGroup->addChild(
new DeadCodeEliminationCase(m_context, (string() + caseTypeName + caseShaderTypeSuffix).c_str(),
caseTypeDescription, caseShaderType, caseType));
}
}
}
} // namespace Performance
} // namespace gles3
} // namespace deqp