blob: 4eea531719eab29b8c424aa129cc6f0af6373853 [file] [log] [blame] [edit]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Buffer data upload performance tests.
*//*--------------------------------------------------------------------*/
#include "es3pBufferDataUploadTests.hpp"
#include "glsCalibration.hpp"
#include "tcuTestLog.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuSurface.hpp"
#include "tcuCPUWarmup.hpp"
#include "tcuRenderTarget.hpp"
#include "gluRenderContext.hpp"
#include "gluShaderProgram.hpp"
#include "gluStrUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "gluObjectWrapper.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include "deClock.h"
#include "deMath.h"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "deMemory.h"
#include "deThread.h"
#include "deMeta.hpp"
#include <algorithm>
#include <iomanip>
#include <limits>
namespace deqp
{
namespace gles3
{
namespace Performance
{
namespace
{
using de::meta::EnableIf;
using de::meta::Not;
using gls::LineParametersWithConfidence;
using gls::theilSenSiegelLinearRegression;
static const char *const s_minimalVertexShader = "#version 300 es\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n";
static const char *const s_minimalFragnentShader = "#version 300 es\n"
"layout(location = 0) out mediump vec4 dEQP_FragColor;\n"
"void main (void)\n"
"{\n"
" dEQP_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
"}\n";
static const char *const s_colorVertexShader = "#version 300 es\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_color;\n"
"out highp vec4 v_color;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_color = a_color;\n"
"}\n";
static const char *const s_colorFragmentShader = "#version 300 es\n"
"layout(location = 0) out mediump vec4 dEQP_FragColor;\n"
"in mediump vec4 v_color;\n"
"void main (void)\n"
"{\n"
" dEQP_FragColor = v_color;\n"
"}\n";
struct SingleOperationDuration
{
uint64_t totalDuration;
uint64_t fitResponseDuration; // used for fitting
};
struct MapBufferRangeDuration
{
uint64_t mapDuration;
uint64_t unmapDuration;
uint64_t writeDuration;
uint64_t allocDuration;
uint64_t totalDuration;
uint64_t fitResponseDuration;
};
struct MapBufferRangeDurationNoAlloc
{
uint64_t mapDuration;
uint64_t unmapDuration;
uint64_t writeDuration;
uint64_t totalDuration;
uint64_t fitResponseDuration;
};
struct MapBufferRangeFlushDuration
{
uint64_t mapDuration;
uint64_t unmapDuration;
uint64_t writeDuration;
uint64_t flushDuration;
uint64_t allocDuration;
uint64_t totalDuration;
uint64_t fitResponseDuration;
};
struct MapBufferRangeFlushDurationNoAlloc
{
uint64_t mapDuration;
uint64_t unmapDuration;
uint64_t writeDuration;
uint64_t flushDuration;
uint64_t totalDuration;
uint64_t fitResponseDuration;
};
struct RenderReadDuration
{
uint64_t renderDuration;
uint64_t readDuration;
uint64_t renderReadDuration;
uint64_t totalDuration;
uint64_t fitResponseDuration;
};
struct UnrelatedUploadRenderReadDuration
{
uint64_t renderDuration;
uint64_t readDuration;
uint64_t renderReadDuration;
uint64_t totalDuration;
uint64_t fitResponseDuration;
};
struct UploadRenderReadDuration
{
uint64_t uploadDuration;
uint64_t renderDuration;
uint64_t readDuration;
uint64_t totalDuration;
uint64_t renderReadDuration;
uint64_t fitResponseDuration;
};
struct UploadRenderReadDurationWithUnrelatedUploadSize
{
uint64_t uploadDuration;
uint64_t renderDuration;
uint64_t readDuration;
uint64_t totalDuration;
uint64_t renderReadDuration;
uint64_t fitResponseDuration;
};
struct RenderUploadRenderReadDuration
{
uint64_t firstRenderDuration;
uint64_t uploadDuration;
uint64_t secondRenderDuration;
uint64_t readDuration;
uint64_t totalDuration;
uint64_t renderReadDuration;
uint64_t fitResponseDuration;
};
template <typename SampleT>
struct UploadSampleResult
{
typedef SampleT SampleType;
int bufferSize;
int allocatedSize;
int writtenSize;
SampleType duration;
};
template <typename SampleT>
struct RenderSampleResult
{
typedef SampleT SampleType;
int uploadedDataSize;
int renderDataSize;
int unrelatedDataSize;
int numVertices;
SampleT duration;
};
struct SingleOperationStatistics
{
float minTime;
float maxTime;
float medianTime;
float min2DecileTime; // !< minimum value in the 2nd decile
float max9DecileTime; // !< maximum value in the 9th decile
};
struct SingleCallStatistics
{
SingleOperationStatistics result;
float medianRate;
float maxDiffTime;
float maxDiff9DecileTime;
float medianDiffTime;
float maxRelDiffTime;
float max9DecileRelDiffTime;
float medianRelDiffTime;
};
struct MapCallStatistics
{
SingleOperationStatistics map;
SingleOperationStatistics unmap;
SingleOperationStatistics write;
SingleOperationStatistics alloc;
SingleOperationStatistics result;
float medianRate;
float maxDiffTime;
float maxDiff9DecileTime;
float medianDiffTime;
float maxRelDiffTime;
float max9DecileRelDiffTime;
float medianRelDiffTime;
};
struct MapFlushCallStatistics
{
SingleOperationStatistics map;
SingleOperationStatistics unmap;
SingleOperationStatistics write;
SingleOperationStatistics flush;
SingleOperationStatistics alloc;
SingleOperationStatistics result;
float medianRate;
float maxDiffTime;
float maxDiff9DecileTime;
float medianDiffTime;
float maxRelDiffTime;
float max9DecileRelDiffTime;
float medianRelDiffTime;
};
struct RenderReadStatistics
{
SingleOperationStatistics render;
SingleOperationStatistics read;
SingleOperationStatistics result;
SingleOperationStatistics total;
float medianRate;
float maxDiffTime;
float maxDiff9DecileTime;
float medianDiffTime;
float maxRelDiffTime;
float max9DecileRelDiffTime;
float medianRelDiffTime;
};
struct UploadRenderReadStatistics
{
SingleOperationStatistics upload;
SingleOperationStatistics render;
SingleOperationStatistics read;
SingleOperationStatistics result;
SingleOperationStatistics total;
float medianRate;
float maxDiffTime;
float maxDiff9DecileTime;
float medianDiffTime;
float maxRelDiffTime;
float max9DecileRelDiffTime;
float medianRelDiffTime;
};
struct RenderUploadRenderReadStatistics
{
SingleOperationStatistics firstRender;
SingleOperationStatistics upload;
SingleOperationStatistics secondRender;
SingleOperationStatistics read;
SingleOperationStatistics result;
SingleOperationStatistics total;
float medianRate;
float maxDiffTime;
float maxDiff9DecileTime;
float medianDiffTime;
float maxRelDiffTime;
float max9DecileRelDiffTime;
float medianRelDiffTime;
};
template <typename T>
struct SampleTypeTraits
{
};
template <>
struct SampleTypeTraits<SingleOperationDuration>
{
typedef SingleCallStatistics StatsType;
enum
{
HAS_MAP_STATS = 0
};
enum
{
HAS_UNMAP_STATS = 0
};
enum
{
HAS_WRITE_STATS = 0
};
enum
{
HAS_FLUSH_STATS = 0
};
enum
{
HAS_ALLOC_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 0
};
};
template <>
struct SampleTypeTraits<MapBufferRangeDuration>
{
typedef MapCallStatistics StatsType;
enum
{
HAS_MAP_STATS = 1
};
enum
{
HAS_UNMAP_STATS = 1
};
enum
{
HAS_WRITE_STATS = 1
};
enum
{
HAS_FLUSH_STATS = 0
};
enum
{
HAS_ALLOC_STATS = 1
};
enum
{
LOG_CONTRIBUTIONS = 1
};
};
template <>
struct SampleTypeTraits<MapBufferRangeDurationNoAlloc>
{
typedef MapCallStatistics StatsType;
enum
{
HAS_MAP_STATS = 1
};
enum
{
HAS_UNMAP_STATS = 1
};
enum
{
HAS_WRITE_STATS = 1
};
enum
{
HAS_FLUSH_STATS = 0
};
enum
{
HAS_ALLOC_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 1
};
};
template <>
struct SampleTypeTraits<MapBufferRangeFlushDuration>
{
typedef MapFlushCallStatistics StatsType;
enum
{
HAS_MAP_STATS = 1
};
enum
{
HAS_UNMAP_STATS = 1
};
enum
{
HAS_WRITE_STATS = 1
};
enum
{
HAS_FLUSH_STATS = 1
};
enum
{
HAS_ALLOC_STATS = 1
};
enum
{
LOG_CONTRIBUTIONS = 1
};
};
template <>
struct SampleTypeTraits<MapBufferRangeFlushDurationNoAlloc>
{
typedef MapFlushCallStatistics StatsType;
enum
{
HAS_MAP_STATS = 1
};
enum
{
HAS_UNMAP_STATS = 1
};
enum
{
HAS_WRITE_STATS = 1
};
enum
{
HAS_FLUSH_STATS = 1
};
enum
{
HAS_ALLOC_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 1
};
};
template <>
struct SampleTypeTraits<RenderReadDuration>
{
typedef RenderReadStatistics StatsType;
enum
{
HAS_RENDER_STATS = 1
};
enum
{
HAS_READ_STATS = 1
};
enum
{
HAS_UPLOAD_STATS = 0
};
enum
{
HAS_TOTAL_STATS = 1
};
enum
{
HAS_FIRST_RENDER_STATS = 0
};
enum
{
HAS_SECOND_RENDER_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 1
};
};
template <>
struct SampleTypeTraits<UnrelatedUploadRenderReadDuration>
{
typedef RenderReadStatistics StatsType;
enum
{
HAS_RENDER_STATS = 1
};
enum
{
HAS_READ_STATS = 1
};
enum
{
HAS_UPLOAD_STATS = 0
};
enum
{
HAS_TOTAL_STATS = 1
};
enum
{
HAS_FIRST_RENDER_STATS = 0
};
enum
{
HAS_SECOND_RENDER_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 1
};
};
template <>
struct SampleTypeTraits<UploadRenderReadDuration>
{
typedef UploadRenderReadStatistics StatsType;
enum
{
HAS_RENDER_STATS = 1
};
enum
{
HAS_READ_STATS = 1
};
enum
{
HAS_UPLOAD_STATS = 1
};
enum
{
HAS_TOTAL_STATS = 1
};
enum
{
HAS_FIRST_RENDER_STATS = 0
};
enum
{
HAS_SECOND_RENDER_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 1
};
enum
{
LOG_UNRELATED_UPLOAD_SIZE = 0
};
};
template <>
struct SampleTypeTraits<UploadRenderReadDurationWithUnrelatedUploadSize>
{
typedef UploadRenderReadStatistics StatsType;
enum
{
HAS_RENDER_STATS = 1
};
enum
{
HAS_READ_STATS = 1
};
enum
{
HAS_UPLOAD_STATS = 1
};
enum
{
HAS_TOTAL_STATS = 1
};
enum
{
HAS_FIRST_RENDER_STATS = 0
};
enum
{
HAS_SECOND_RENDER_STATS = 0
};
enum
{
LOG_CONTRIBUTIONS = 1
};
enum
{
LOG_UNRELATED_UPLOAD_SIZE = 1
};
};
template <>
struct SampleTypeTraits<RenderUploadRenderReadDuration>
{
typedef RenderUploadRenderReadStatistics StatsType;
enum
{
HAS_RENDER_STATS = 0
};
enum
{
HAS_READ_STATS = 1
};
enum
{
HAS_UPLOAD_STATS = 1
};
enum
{
HAS_TOTAL_STATS = 1
};
enum
{
HAS_FIRST_RENDER_STATS = 1
};
enum
{
HAS_SECOND_RENDER_STATS = 1
};
enum
{
LOG_CONTRIBUTIONS = 1
};
enum
{
LOG_UNRELATED_UPLOAD_SIZE = 1
};
};
struct UploadSampleAnalyzeResult
{
float transferRateMedian;
float transferRateAtRange;
float transferRateAtInfinity;
};
struct RenderSampleAnalyzeResult
{
float renderRateMedian;
float renderRateAtRange;
float renderRateAtInfinity;
};
class UnmapFailureError : public std::exception
{
public:
UnmapFailureError(void) : std::exception()
{
}
};
static std::string getHumanReadableByteSize(int numBytes)
{
std::ostringstream buf;
if (numBytes < 1024)
buf << numBytes << " byte(s)";
else if (numBytes < 1024 * 1024)
buf << de::floatToString((float)numBytes / 1024.0f, 1) << " KiB";
else
buf << de::floatToString((float)numBytes / 1024.0f / 1024.0f, 1) << " MiB";
return buf.str();
}
static uint64_t medianTimeMemcpy(void *dst, const void *src, int numBytes)
{
// Time used by memcpy is assumed to be asymptotically linear
// With large numBytes, the probability of context switch or other random
// event is high. Apply memcpy in parts and report how much time would
// memcpy have used with the median transfer rate.
// Less than 1MiB, no need to do anything special
if (numBytes < 1048576)
{
uint64_t startTime;
uint64_t endTime;
deYield();
startTime = deGetMicroseconds();
deMemcpy(dst, src, numBytes);
endTime = deGetMicroseconds();
return endTime - startTime;
}
else
{
// Do memcpy in multiple parts
const int numSections = 5;
const int sectionAlign = 16;
int sectionStarts[numSections + 1];
int sectionLens[numSections];
uint64_t sectionTimes[numSections];
uint64_t medianTime;
uint64_t bestTime = 0;
for (int sectionNdx = 0; sectionNdx < numSections; ++sectionNdx)
sectionStarts[sectionNdx] = deAlign32((numBytes * sectionNdx / numSections), sectionAlign);
sectionStarts[numSections] = numBytes;
for (int sectionNdx = 0; sectionNdx < numSections; ++sectionNdx)
sectionLens[sectionNdx] = sectionStarts[sectionNdx + 1] - sectionStarts[sectionNdx];
// Memcpy is usually called after mapbuffer range which may take
// a lot of time. To prevent power management from kicking in during
// copy, warm up more.
{
deYield();
tcu::warmupCPU();
deYield();
}
for (int sectionNdx = 0; sectionNdx < numSections; ++sectionNdx)
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
deMemcpy((uint8_t *)dst + sectionStarts[sectionNdx], (const uint8_t *)src + sectionStarts[sectionNdx],
sectionLens[sectionNdx]);
endTime = deGetMicroseconds();
sectionTimes[sectionNdx] = endTime - startTime;
if (!bestTime || sectionTimes[sectionNdx] < bestTime)
bestTime = sectionTimes[sectionNdx];
// Detect if write takes 50% longer than it should, and warm up if that happened
if (sectionNdx != numSections - 1 && (float)sectionTimes[sectionNdx] > 1.5f * (float)bestTime)
{
deYield();
tcu::warmupCPU();
deYield();
}
}
std::sort(sectionTimes, sectionTimes + numSections);
if ((numSections % 2) == 0)
medianTime = (sectionTimes[numSections / 2 - 1] + sectionTimes[numSections / 2]) / 2;
else
medianTime = sectionTimes[numSections / 2];
return medianTime * numSections;
}
}
static float busyworkCalculation(float initial, int workSize)
{
float a = initial;
int b = 123;
for (int ndx = 0; ndx < workSize; ++ndx)
{
a = deFloatCos(a + (float)b);
b = (b + 63) % 107 + de::abs((int)(a * 10.0f));
}
return a + (float)b;
}
static void busyWait(int microseconds)
{
const uint64_t maxSingleWaitTime = 1000; // 1ms
const uint64_t endTime = deGetMicroseconds() + microseconds;
float unused = *tcu::warmupCPUInternal::g_unused.m_v;
int workSize = 500;
// exponentially increase work, cap to 1ms
while (deGetMicroseconds() < endTime)
{
const uint64_t startTime = deGetMicroseconds();
uint64_t totalTime;
unused = busyworkCalculation(unused, workSize);
totalTime = deGetMicroseconds() - startTime;
if (totalTime >= maxSingleWaitTime)
break;
else
workSize *= 2;
}
// "wait"
while (deGetMicroseconds() < endTime)
unused = busyworkCalculation(unused, workSize);
*tcu::warmupCPUInternal::g_unused.m_v = unused;
}
// Sample from given values using linear interpolation at a given position as if values were laid to range [0, 1]
template <typename T>
static float linearSample(const std::vector<T> &values, float position)
{
DE_ASSERT(position >= 0.0f);
DE_ASSERT(position <= 1.0f);
const float floatNdx = (float)(values.size() - 1) * position;
const int lowerNdx = (int)deFloatFloor(floatNdx);
const int higherNdx = lowerNdx + 1;
const float interpolationFactor = floatNdx - (float)lowerNdx;
DE_ASSERT(lowerNdx >= 0 && lowerNdx < (int)values.size());
DE_ASSERT(higherNdx >= 0 && higherNdx < (int)values.size());
DE_ASSERT(interpolationFactor >= 0 && interpolationFactor < 1.0f);
return tcu::mix((float)values[lowerNdx], (float)values[higherNdx], interpolationFactor);
}
template <typename T>
SingleOperationStatistics calculateSingleOperationStatistics(const std::vector<T> &samples,
uint64_t T::SampleType::*target)
{
SingleOperationStatistics stats;
std::vector<uint64_t> values(samples.size());
for (int ndx = 0; ndx < (int)samples.size(); ++ndx)
values[ndx] = samples[ndx].duration.*target;
std::sort(values.begin(), values.end());
stats.minTime = (float)values.front();
stats.maxTime = (float)values.back();
stats.medianTime = linearSample(values, 0.5f);
stats.min2DecileTime = linearSample(values, 0.1f);
stats.max9DecileTime = linearSample(values, 0.9f);
return stats;
}
template <typename StatisticsType, typename SampleType>
void calculateBasicStatistics(StatisticsType &stats, const LineParametersWithConfidence &fit,
const std::vector<SampleType> &samples, int SampleType::*predictor)
{
std::vector<uint64_t> values(samples.size());
for (int ndx = 0; ndx < (int)samples.size(); ++ndx)
values[ndx] = samples[ndx].duration.fitResponseDuration;
// median rate
{
std::vector<float> processingRates(samples.size());
for (int ndx = 0; ndx < (int)samples.size(); ++ndx)
{
const float timeInSeconds = (float)values[ndx] / 1000.0f / 1000.0f;
processingRates[ndx] = (float)(samples[ndx].*predictor) / timeInSeconds;
}
std::sort(processingRates.begin(), processingRates.end());
stats.medianRate = linearSample(processingRates, 0.5f);
}
// results compared to the approximation
{
std::vector<float> timeDiffs(samples.size());
for (int ndx = 0; ndx < (int)samples.size(); ++ndx)
{
const float prediction = (float)(samples[ndx].*predictor) * fit.coefficient + fit.offset;
const float actual = (float)values[ndx];
timeDiffs[ndx] = actual - prediction;
}
std::sort(timeDiffs.begin(), timeDiffs.end());
stats.maxDiffTime = timeDiffs.back();
stats.maxDiff9DecileTime = linearSample(timeDiffs, 0.9f);
stats.medianDiffTime = linearSample(timeDiffs, 0.5f);
}
// relative comparison to the approximation
{
std::vector<float> relativeDiffs(samples.size());
for (int ndx = 0; ndx < (int)samples.size(); ++ndx)
{
const float prediction = (float)(samples[ndx].*predictor) * fit.coefficient + fit.offset;
const float actual = (float)values[ndx];
// Ignore cases where we predict negative times, or if
// ratio would be (nearly) infinite: ignore if predicted
// time is less than 1 microsecond
if (prediction < 1.0f)
relativeDiffs[ndx] = 0.0f;
else
relativeDiffs[ndx] = (actual - prediction) / prediction;
}
std::sort(relativeDiffs.begin(), relativeDiffs.end());
stats.maxRelDiffTime = relativeDiffs.back();
stats.max9DecileRelDiffTime = linearSample(relativeDiffs, 0.9f);
stats.medianRelDiffTime = linearSample(relativeDiffs, 0.5f);
}
// values calculated using sorted timings
std::sort(values.begin(), values.end());
stats.result.minTime = (float)values.front();
stats.result.maxTime = (float)values.back();
stats.result.medianTime = linearSample(values, 0.5f);
stats.result.min2DecileTime = linearSample(values, 0.1f);
stats.result.max9DecileTime = linearSample(values, 0.9f);
}
template <typename StatisticsType, typename SampleType>
void calculateBasicTransferStatistics(StatisticsType &stats, const LineParametersWithConfidence &fit,
const std::vector<SampleType> &samples)
{
calculateBasicStatistics(stats, fit, samples, &SampleType::writtenSize);
}
template <typename StatisticsType, typename SampleType>
void calculateBasicRenderStatistics(StatisticsType &stats, const LineParametersWithConfidence &fit,
const std::vector<SampleType> &samples)
{
calculateBasicStatistics(stats, fit, samples, &SampleType::renderDataSize);
}
static SingleCallStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit, const std::vector<UploadSampleResult<SingleOperationDuration>> &samples)
{
SingleCallStatistics stats;
calculateBasicTransferStatistics(stats, fit, samples);
return stats;
}
static MapCallStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit, const std::vector<UploadSampleResult<MapBufferRangeDuration>> &samples)
{
MapCallStatistics stats;
calculateBasicTransferStatistics(stats, fit, samples);
stats.map = calculateSingleOperationStatistics(samples, &MapBufferRangeDuration::mapDuration);
stats.unmap = calculateSingleOperationStatistics(samples, &MapBufferRangeDuration::unmapDuration);
stats.write = calculateSingleOperationStatistics(samples, &MapBufferRangeDuration::writeDuration);
stats.alloc = calculateSingleOperationStatistics(samples, &MapBufferRangeDuration::allocDuration);
return stats;
}
static MapFlushCallStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit,
const std::vector<UploadSampleResult<MapBufferRangeFlushDuration>> &samples)
{
MapFlushCallStatistics stats;
calculateBasicTransferStatistics(stats, fit, samples);
stats.map = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDuration::mapDuration);
stats.unmap = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDuration::unmapDuration);
stats.write = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDuration::writeDuration);
stats.flush = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDuration::flushDuration);
stats.alloc = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDuration::allocDuration);
return stats;
}
static MapCallStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit,
const std::vector<UploadSampleResult<MapBufferRangeDurationNoAlloc>> &samples)
{
MapCallStatistics stats;
calculateBasicTransferStatistics(stats, fit, samples);
stats.map = calculateSingleOperationStatistics(samples, &MapBufferRangeDurationNoAlloc::mapDuration);
stats.unmap = calculateSingleOperationStatistics(samples, &MapBufferRangeDurationNoAlloc::unmapDuration);
stats.write = calculateSingleOperationStatistics(samples, &MapBufferRangeDurationNoAlloc::writeDuration);
return stats;
}
static MapFlushCallStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit,
const std::vector<UploadSampleResult<MapBufferRangeFlushDurationNoAlloc>> &samples)
{
MapFlushCallStatistics stats;
calculateBasicTransferStatistics(stats, fit, samples);
stats.map = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDurationNoAlloc::mapDuration);
stats.unmap = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDurationNoAlloc::unmapDuration);
stats.write = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDurationNoAlloc::writeDuration);
stats.flush = calculateSingleOperationStatistics(samples, &MapBufferRangeFlushDurationNoAlloc::flushDuration);
return stats;
}
static RenderReadStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit, const std::vector<RenderSampleResult<RenderReadDuration>> &samples)
{
RenderReadStatistics stats;
calculateBasicRenderStatistics(stats, fit, samples);
stats.render = calculateSingleOperationStatistics(samples, &RenderReadDuration::renderDuration);
stats.read = calculateSingleOperationStatistics(samples, &RenderReadDuration::readDuration);
stats.total = calculateSingleOperationStatistics(samples, &RenderReadDuration::totalDuration);
return stats;
}
static RenderReadStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit,
const std::vector<RenderSampleResult<UnrelatedUploadRenderReadDuration>> &samples)
{
RenderReadStatistics stats;
calculateBasicRenderStatistics(stats, fit, samples);
stats.render = calculateSingleOperationStatistics(samples, &UnrelatedUploadRenderReadDuration::renderDuration);
stats.read = calculateSingleOperationStatistics(samples, &UnrelatedUploadRenderReadDuration::readDuration);
stats.total = calculateSingleOperationStatistics(samples, &UnrelatedUploadRenderReadDuration::totalDuration);
return stats;
}
static UploadRenderReadStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit, const std::vector<RenderSampleResult<UploadRenderReadDuration>> &samples)
{
UploadRenderReadStatistics stats;
calculateBasicRenderStatistics(stats, fit, samples);
stats.upload = calculateSingleOperationStatistics(samples, &UploadRenderReadDuration::uploadDuration);
stats.render = calculateSingleOperationStatistics(samples, &UploadRenderReadDuration::renderDuration);
stats.read = calculateSingleOperationStatistics(samples, &UploadRenderReadDuration::readDuration);
stats.total = calculateSingleOperationStatistics(samples, &UploadRenderReadDuration::totalDuration);
return stats;
}
static UploadRenderReadStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit,
const std::vector<RenderSampleResult<UploadRenderReadDurationWithUnrelatedUploadSize>> &samples)
{
UploadRenderReadStatistics stats;
calculateBasicRenderStatistics(stats, fit, samples);
stats.upload =
calculateSingleOperationStatistics(samples, &UploadRenderReadDurationWithUnrelatedUploadSize::uploadDuration);
stats.render =
calculateSingleOperationStatistics(samples, &UploadRenderReadDurationWithUnrelatedUploadSize::renderDuration);
stats.read =
calculateSingleOperationStatistics(samples, &UploadRenderReadDurationWithUnrelatedUploadSize::readDuration);
stats.total =
calculateSingleOperationStatistics(samples, &UploadRenderReadDurationWithUnrelatedUploadSize::totalDuration);
return stats;
}
static RenderUploadRenderReadStatistics calculateSampleStatistics(
const LineParametersWithConfidence &fit,
const std::vector<RenderSampleResult<RenderUploadRenderReadDuration>> &samples)
{
RenderUploadRenderReadStatistics stats;
calculateBasicRenderStatistics(stats, fit, samples);
stats.firstRender =
calculateSingleOperationStatistics(samples, &RenderUploadRenderReadDuration::firstRenderDuration);
stats.upload = calculateSingleOperationStatistics(samples, &RenderUploadRenderReadDuration::uploadDuration);
stats.secondRender =
calculateSingleOperationStatistics(samples, &RenderUploadRenderReadDuration::secondRenderDuration);
stats.read = calculateSingleOperationStatistics(samples, &RenderUploadRenderReadDuration::readDuration);
stats.total = calculateSingleOperationStatistics(samples, &RenderUploadRenderReadDuration::totalDuration);
return stats;
}
template <typename DurationType>
static LineParametersWithConfidence fitLineToSamples(
const std::vector<UploadSampleResult<DurationType>> &samples, int beginNdx, int endNdx, int step,
uint64_t DurationType::*target = &DurationType::fitResponseDuration)
{
std::vector<tcu::Vec2> samplePoints;
for (int sampleNdx = beginNdx; sampleNdx < endNdx; sampleNdx += step)
{
tcu::Vec2 point;
point.x() = (float)(samples[sampleNdx].writtenSize);
point.y() = (float)(samples[sampleNdx].duration.*target);
samplePoints.push_back(point);
}
return theilSenSiegelLinearRegression(samplePoints, 0.6f);
}
template <typename DurationType>
static LineParametersWithConfidence fitLineToSamples(
const std::vector<RenderSampleResult<DurationType>> &samples, int beginNdx, int endNdx, int step,
uint64_t DurationType::*target = &DurationType::fitResponseDuration)
{
std::vector<tcu::Vec2> samplePoints;
for (int sampleNdx = beginNdx; sampleNdx < endNdx; sampleNdx += step)
{
tcu::Vec2 point;
point.x() = (float)(samples[sampleNdx].renderDataSize);
point.y() = (float)(samples[sampleNdx].duration.*target);
samplePoints.push_back(point);
}
return theilSenSiegelLinearRegression(samplePoints, 0.6f);
}
template <typename T>
static LineParametersWithConfidence fitLineToSamples(
const std::vector<T> &samples, int beginNdx, int endNdx,
uint64_t T::SampleType::*target = &T::SampleType::fitResponseDuration)
{
return fitLineToSamples(samples, beginNdx, endNdx, 1, target);
}
template <typename T>
static LineParametersWithConfidence fitLineToSamples(
const std::vector<T> &samples, uint64_t T::SampleType::*target = &T::SampleType::fitResponseDuration)
{
return fitLineToSamples(samples, 0, (int)samples.size(), target);
}
static float getAreaBetweenLines(float xmin, float xmax, float lineAOffset, float lineACoefficient, float lineBOffset,
float lineBCoefficient)
{
const float lineAMin = lineAOffset + lineACoefficient * xmin;
const float lineAMax = lineAOffset + lineACoefficient * xmax;
const float lineBMin = lineBOffset + lineBCoefficient * xmin;
const float lineBMax = lineBOffset + lineBCoefficient * xmax;
const bool aOverBAtBegin = (lineAMin > lineBMin);
const bool aOverBAtEnd = (lineAMax > lineBMax);
if (aOverBAtBegin == aOverBAtEnd)
{
// lines do not intersect
const float midpoint = (xmin + xmax) / 2.0f;
const float width = (xmax - xmin);
const float lineAHeight = lineAOffset + lineACoefficient * midpoint;
const float lineBHeight = lineBOffset + lineBCoefficient * midpoint;
return width * de::abs(lineAHeight - lineBHeight);
}
else
{
// lines intersect
const float approachCoeffient = de::abs(lineACoefficient - lineBCoefficient);
const float epsilon = 0.0001f;
const float leftHeight = de::abs(lineAMin - lineBMin);
const float rightHeight = de::abs(lineAMax - lineBMax);
if (approachCoeffient < epsilon)
return 0.0f;
return (0.5f * leftHeight * (leftHeight / approachCoeffient)) +
(0.5f * rightHeight * (rightHeight / approachCoeffient));
}
}
template <typename T>
static float calculateSampleFitLinearity(const std::vector<T> &samples, int T::*predictor)
{
// Compare the fitted line of first half of the samples to the fitted line of
// the second half of the samples. Calculate a AABB that fully contains every
// sample's x component and both fit lines in this range. Calculate the ratio
// of the area between the lines and the AABB.
const float epsilon = 1.e-6f;
const int midPoint = (int)samples.size() / 2;
const LineParametersWithConfidence startApproximation =
fitLineToSamples(samples, 0, midPoint, &T::SampleType::fitResponseDuration);
const LineParametersWithConfidence endApproximation =
fitLineToSamples(samples, midPoint, (int)samples.size(), &T::SampleType::fitResponseDuration);
const float aabbMinX = (float)(samples.front().*predictor);
const float aabbMinY = de::min(startApproximation.offset + startApproximation.coefficient * aabbMinX,
endApproximation.offset + endApproximation.coefficient * aabbMinX);
const float aabbMaxX = (float)(samples.back().*predictor);
const float aabbMaxY = de::max(startApproximation.offset + startApproximation.coefficient * aabbMaxX,
endApproximation.offset + endApproximation.coefficient * aabbMaxX);
const float aabbArea = (aabbMaxX - aabbMinX) * (aabbMaxY - aabbMinY);
const float areaBetweenLines =
getAreaBetweenLines(aabbMinX, aabbMaxX, startApproximation.offset, startApproximation.coefficient,
endApproximation.offset, endApproximation.coefficient);
const float errorAreaRatio = (aabbArea < epsilon) ? (1.0f) : (areaBetweenLines / aabbArea);
return de::clamp(1.0f - errorAreaRatio, 0.0f, 1.0f);
}
template <typename DurationType>
static float calculateSampleFitLinearity(const std::vector<UploadSampleResult<DurationType>> &samples)
{
return calculateSampleFitLinearity(samples, &UploadSampleResult<DurationType>::writtenSize);
}
template <typename DurationType>
static float calculateSampleFitLinearity(const std::vector<RenderSampleResult<DurationType>> &samples)
{
return calculateSampleFitLinearity(samples, &RenderSampleResult<DurationType>::renderDataSize);
}
template <typename T>
static float calculateSampleTemporalStability(const std::vector<T> &samples, int T::*predictor)
{
// Samples are sampled in the following order: 1) even samples (in random order) 2) odd samples (in random order)
// Compare the fitted line of even samples to the fitted line of the odd samples. Calculate a AABB that fully
// contains every sample's x component and both fit lines in this range. Calculate the ratio of the area between
// the lines and the AABB.
const float epsilon = 1.e-6f;
const LineParametersWithConfidence evenApproximation =
fitLineToSamples(samples, 0, (int)samples.size(), 2, &T::SampleType::fitResponseDuration);
const LineParametersWithConfidence oddApproximation =
fitLineToSamples(samples, 1, (int)samples.size(), 2, &T::SampleType::fitResponseDuration);
const float aabbMinX = (float)(samples.front().*predictor);
const float aabbMinY = de::min(evenApproximation.offset + evenApproximation.coefficient * aabbMinX,
oddApproximation.offset + oddApproximation.coefficient * aabbMinX);
const float aabbMaxX = (float)(samples.back().*predictor);
const float aabbMaxY = de::max(evenApproximation.offset + evenApproximation.coefficient * aabbMaxX,
oddApproximation.offset + oddApproximation.coefficient * aabbMaxX);
const float aabbArea = (aabbMaxX - aabbMinX) * (aabbMaxY - aabbMinY);
const float areaBetweenLines =
getAreaBetweenLines(aabbMinX, aabbMaxX, evenApproximation.offset, evenApproximation.coefficient,
oddApproximation.offset, oddApproximation.coefficient);
const float errorAreaRatio = (aabbArea < epsilon) ? (1.0f) : (areaBetweenLines / aabbArea);
return de::clamp(1.0f - errorAreaRatio, 0.0f, 1.0f);
}
template <typename DurationType>
static float calculateSampleTemporalStability(const std::vector<UploadSampleResult<DurationType>> &samples)
{
return calculateSampleTemporalStability(samples, &UploadSampleResult<DurationType>::writtenSize);
}
template <typename DurationType>
static float calculateSampleTemporalStability(const std::vector<RenderSampleResult<DurationType>> &samples)
{
return calculateSampleTemporalStability(samples, &RenderSampleResult<DurationType>::renderDataSize);
}
template <typename DurationType>
static void bucketizeSamplesUniformly(const std::vector<UploadSampleResult<DurationType>> &samples,
std::vector<UploadSampleResult<DurationType>> *buckets, int numBuckets,
int &minBufferSize, int &maxBufferSize)
{
minBufferSize = 0;
maxBufferSize = 0;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
DE_ASSERT(samples[sampleNdx].allocatedSize != 0);
if (!minBufferSize || samples[sampleNdx].allocatedSize < minBufferSize)
minBufferSize = samples[sampleNdx].allocatedSize;
if (!maxBufferSize || samples[sampleNdx].allocatedSize > maxBufferSize)
maxBufferSize = samples[sampleNdx].allocatedSize;
}
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float bucketNdxFloat = (float)(samples[sampleNdx].allocatedSize - minBufferSize) /
(float)(maxBufferSize - minBufferSize) * (float)numBuckets;
const int bucketNdx = de::clamp((int)deFloatFloor(bucketNdxFloat), 0, numBuckets - 1);
buckets[bucketNdx].push_back(samples[sampleNdx]);
}
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_MAP_STATS>::Type logMapRangeStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
log << tcu::TestLog::Float("MapRangeMin", "MapRange: Min time", "us", QP_KEY_TAG_TIME, stats.map.minTime)
<< tcu::TestLog::Float("MapRangeMax", "MapRange: Max time", "us", QP_KEY_TAG_TIME, stats.map.maxTime)
<< tcu::TestLog::Float("MapRangeMin90", "MapRange: 90%-Min time", "us", QP_KEY_TAG_TIME,
stats.map.min2DecileTime)
<< tcu::TestLog::Float("MapRangeMax90", "MapRange: 90%-Max time", "us", QP_KEY_TAG_TIME,
stats.map.max9DecileTime)
<< tcu::TestLog::Float("MapRangeMedian", "MapRange: Median time", "us", QP_KEY_TAG_TIME, stats.map.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_UNMAP_STATS>::Type logUnmapStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
log << tcu::TestLog::Float("UnmapMin", "Unmap: Min time", "us", QP_KEY_TAG_TIME, stats.unmap.minTime)
<< tcu::TestLog::Float("UnmapMax", "Unmap: Max time", "us", QP_KEY_TAG_TIME, stats.unmap.maxTime)
<< tcu::TestLog::Float("UnmapMin90", "Unmap: 90%-Min time", "us", QP_KEY_TAG_TIME, stats.unmap.min2DecileTime)
<< tcu::TestLog::Float("UnmapMax90", "Unmap: 90%-Max time", "us", QP_KEY_TAG_TIME, stats.unmap.max9DecileTime)
<< tcu::TestLog::Float("UnmapMedian", "Unmap: Median time", "us", QP_KEY_TAG_TIME, stats.unmap.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_WRITE_STATS>::Type logWriteStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
log << tcu::TestLog::Float("WriteMin", "Write: Min time", "us", QP_KEY_TAG_TIME, stats.write.minTime)
<< tcu::TestLog::Float("WriteMax", "Write: Max time", "us", QP_KEY_TAG_TIME, stats.write.maxTime)
<< tcu::TestLog::Float("WriteMin90", "Write: 90%-Min time", "us", QP_KEY_TAG_TIME, stats.write.min2DecileTime)
<< tcu::TestLog::Float("WriteMax90", "Write: 90%-Max time", "us", QP_KEY_TAG_TIME, stats.write.max9DecileTime)
<< tcu::TestLog::Float("WriteMedian", "Write: Median time", "us", QP_KEY_TAG_TIME, stats.write.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_FLUSH_STATS>::Type logFlushStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
log << tcu::TestLog::Float("FlushMin", "Flush: Min time", "us", QP_KEY_TAG_TIME, stats.flush.minTime)
<< tcu::TestLog::Float("FlushMax", "Flush: Max time", "us", QP_KEY_TAG_TIME, stats.flush.maxTime)
<< tcu::TestLog::Float("FlushMin90", "Flush: 90%-Min time", "us", QP_KEY_TAG_TIME, stats.flush.min2DecileTime)
<< tcu::TestLog::Float("FlushMax90", "Flush: 90%-Max time", "us", QP_KEY_TAG_TIME, stats.flush.max9DecileTime)
<< tcu::TestLog::Float("FlushMedian", "Flush: Median time", "us", QP_KEY_TAG_TIME, stats.flush.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_ALLOC_STATS>::Type logAllocStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
log << tcu::TestLog::Float("AllocMin", "Alloc: Min time", "us", QP_KEY_TAG_TIME, stats.alloc.minTime)
<< tcu::TestLog::Float("AllocMax", "Alloc: Max time", "us", QP_KEY_TAG_TIME, stats.alloc.maxTime)
<< tcu::TestLog::Float("AllocMin90", "Alloc: 90%-Min time", "us", QP_KEY_TAG_TIME, stats.alloc.min2DecileTime)
<< tcu::TestLog::Float("AllocMax90", "Alloc: 90%-Max time", "us", QP_KEY_TAG_TIME, stats.alloc.max9DecileTime)
<< tcu::TestLog::Float("AllocMedian", "Alloc: Median time", "us", QP_KEY_TAG_TIME, stats.alloc.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_MAP_STATS>::Value>::Type logMapRangeStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_UNMAP_STATS>::Value>::Type logUnmapStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_WRITE_STATS>::Value>::Type logWriteStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_FLUSH_STATS>::Value>::Type logFlushStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_ALLOC_STATS>::Value>::Type logAllocStats(
tcu::TestLog &log, const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_MAP_STATS>::Type logMapContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::mapDuration);
log << tcu::TestLog::Float("MapConstantCost", "Map: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("MapLinearCost", "Map: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("MapMedianCost", "Map: Median cost", "us", QP_KEY_TAG_TIME, stats.map.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_UNMAP_STATS>::Type logUnmapContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::unmapDuration);
log << tcu::TestLog::Float("UnmapConstantCost", "Unmap: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("UnmapLinearCost", "Unmap: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("UnmapMedianCost", "Unmap: Median cost", "us", QP_KEY_TAG_TIME, stats.unmap.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_WRITE_STATS>::Type logWriteContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::writeDuration);
log << tcu::TestLog::Float("WriteConstantCost", "Write: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("WriteLinearCost", "Write: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("WriteMedianCost", "Write: Median cost", "us", QP_KEY_TAG_TIME, stats.write.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_FLUSH_STATS>::Type logFlushContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::flushDuration);
log << tcu::TestLog::Float("FlushConstantCost", "Flush: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("FlushLinearCost", "Flush: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("FlushMedianCost", "Flush: Median cost", "us", QP_KEY_TAG_TIME, stats.flush.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_ALLOC_STATS>::Type logAllocContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::allocDuration);
log << tcu::TestLog::Float("AllocConstantCost", "Alloc: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("AllocLinearCost", "Alloc: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("AllocMedianCost", "Alloc: Median cost", "us", QP_KEY_TAG_TIME, stats.alloc.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_RENDER_STATS>::Type logRenderContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::renderDuration);
log << tcu::TestLog::Float("DrawCallConstantCost", "DrawCall: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("DrawCallLinearCost", "DrawCall: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("DrawCallMedianCost", "DrawCall: Median cost", "us", QP_KEY_TAG_TIME,
stats.render.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_READ_STATS>::Type logReadContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::readDuration);
log << tcu::TestLog::Float("ReadConstantCost", "Read: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("ReadLinearCost", "Read: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ReadMedianCost", "Read: Median cost", "us", QP_KEY_TAG_TIME, stats.read.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_UPLOAD_STATS>::Type logUploadContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::uploadDuration);
log << tcu::TestLog::Float("UploadConstantCost", "Upload: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("UploadLinearCost", "Upload: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("UploadMedianCost", "Upload: Median cost", "us", QP_KEY_TAG_TIME,
stats.upload.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_TOTAL_STATS>::Type logTotalContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting = fitLineToSamples(samples, &SampleType::totalDuration);
log << tcu::TestLog::Float("TotalConstantCost", "Total: Approximated contant cost", "us", QP_KEY_TAG_TIME,
contributionFitting.offset)
<< tcu::TestLog::Float("TotalLinearCost", "Total: Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("TotalMedianCost", "Total: Median cost", "us", QP_KEY_TAG_TIME, stats.total.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_FIRST_RENDER_STATS>::Type logFirstRenderContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting =
fitLineToSamples(samples, &SampleType::firstRenderDuration);
log << tcu::TestLog::Float("FirstDrawCallConstantCost", "First DrawCall: Approximated contant cost", "us",
QP_KEY_TAG_TIME, contributionFitting.offset)
<< tcu::TestLog::Float("FirstDrawCallLinearCost", "First DrawCall: Approximated linear cost", "us / MB",
QP_KEY_TAG_TIME, contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("FirstDrawCallMedianCost", "First DrawCall: Median cost", "us", QP_KEY_TAG_TIME,
stats.firstRender.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, SampleTypeTraits<SampleType>::HAS_SECOND_RENDER_STATS>::Type logSecondRenderContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
const LineParametersWithConfidence contributionFitting =
fitLineToSamples(samples, &SampleType::secondRenderDuration);
log << tcu::TestLog::Float("SecondDrawCallConstantCost", "Second DrawCall: Approximated contant cost", "us",
QP_KEY_TAG_TIME, contributionFitting.offset)
<< tcu::TestLog::Float("SecondDrawCallLinearCost", "Second DrawCall: Approximated linear cost", "us / MB",
QP_KEY_TAG_TIME, contributionFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("SecondDrawCallMedianCost", "Second DrawCall: Median cost", "us", QP_KEY_TAG_TIME,
stats.secondRender.medianTime);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_MAP_STATS>::Value>::Type logMapContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_UNMAP_STATS>::Value>::Type logUnmapContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_WRITE_STATS>::Value>::Type logWriteContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_FLUSH_STATS>::Value>::Type logFlushContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_ALLOC_STATS>::Value>::Type logAllocContribution(
tcu::TestLog &log, const std::vector<UploadSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_RENDER_STATS>::Value>::Type logRenderContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_READ_STATS>::Value>::Type logReadContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_UPLOAD_STATS>::Value>::Type logUploadContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_TOTAL_STATS>::Value>::Type logTotalContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_FIRST_RENDER_STATS>::Value>::Type logFirstRenderContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
template <typename SampleType>
static typename EnableIf<void, Not<SampleTypeTraits<SampleType>::HAS_SECOND_RENDER_STATS>::Value>::Type logSecondRenderContribution(
tcu::TestLog &log, const std::vector<RenderSampleResult<SampleType>> &samples,
const typename SampleTypeTraits<SampleType>::StatsType &stats)
{
DE_UNREF(log);
DE_UNREF(samples);
DE_UNREF(stats);
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<UploadSampleResult<SingleOperationDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("WrittenSize", "Written size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("BufferSize", "Buffer size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("UploadTime", "Upload time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].writtenSize);
log << tcu::TestLog::Sample << samples[sampleNdx].writtenSize << samples[sampleNdx].bufferSize
<< (int)samples[sampleNdx].duration.totalDuration << fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<UploadSampleResult<MapBufferRangeDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("WrittenSize", "Written size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("BufferSize", "Buffer size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("AllocTime", "Alloc time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("MapTime", "Map time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("UnmapTime", "Unmap time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("WriteTime", "Write time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].writtenSize);
log << tcu::TestLog::Sample << samples[sampleNdx].writtenSize << samples[sampleNdx].bufferSize
<< (int)samples[sampleNdx].duration.totalDuration << (int)samples[sampleNdx].duration.allocDuration
<< (int)samples[sampleNdx].duration.mapDuration << (int)samples[sampleNdx].duration.unmapDuration
<< (int)samples[sampleNdx].duration.writeDuration << fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<UploadSampleResult<MapBufferRangeDurationNoAlloc>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("WrittenSize", "Written size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("BufferSize", "Buffer size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("MapTime", "Map time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("UnmapTime", "Unmap time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("WriteTime", "Write time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].writtenSize);
log << tcu::TestLog::Sample << samples[sampleNdx].writtenSize << samples[sampleNdx].bufferSize
<< (int)samples[sampleNdx].duration.totalDuration << (int)samples[sampleNdx].duration.mapDuration
<< (int)samples[sampleNdx].duration.unmapDuration << (int)samples[sampleNdx].duration.writeDuration
<< fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<UploadSampleResult<MapBufferRangeFlushDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("WrittenSize", "Written size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("BufferSize", "Buffer size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("AllocTime", "Alloc time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("MapTime", "Map time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("UnmapTime", "Unmap time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("WriteTime", "Write time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FlushTime", "Flush time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].writtenSize);
log << tcu::TestLog::Sample << samples[sampleNdx].writtenSize << samples[sampleNdx].bufferSize
<< (int)samples[sampleNdx].duration.totalDuration << (int)samples[sampleNdx].duration.allocDuration
<< (int)samples[sampleNdx].duration.mapDuration << (int)samples[sampleNdx].duration.unmapDuration
<< (int)samples[sampleNdx].duration.writeDuration << (int)samples[sampleNdx].duration.flushDuration
<< fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<UploadSampleResult<MapBufferRangeFlushDurationNoAlloc>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("WrittenSize", "Written size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("BufferSize", "Buffer size", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("MapTime", "Map time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("UnmapTime", "Unmap time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("WriteTime", "Write time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FlushTime", "Flush time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].writtenSize);
log << tcu::TestLog::Sample << samples[sampleNdx].writtenSize << samples[sampleNdx].bufferSize
<< (int)samples[sampleNdx].duration.totalDuration << (int)samples[sampleNdx].duration.mapDuration
<< (int)samples[sampleNdx].duration.unmapDuration << (int)samples[sampleNdx].duration.writeDuration
<< (int)samples[sampleNdx].duration.flushDuration << fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<RenderSampleResult<RenderReadDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("DataSize", "Data processed", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("VertexCount", "Number of vertices", "vertices", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("DrawCallTime", "Draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].renderDataSize);
log << tcu::TestLog::Sample << samples[sampleNdx].renderDataSize << samples[sampleNdx].numVertices
<< (int)samples[sampleNdx].duration.renderReadDuration << (int)samples[sampleNdx].duration.renderDuration
<< (int)samples[sampleNdx].duration.readDuration << fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<RenderSampleResult<UnrelatedUploadRenderReadDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("DataSize", "Data processed", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("VertexCount", "Number of vertices", "vertices", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("UnrelatedUploadSize", "Unrelated upload size", "bytes",
QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("DrawCallTime", "Draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].renderDataSize);
log << tcu::TestLog::Sample << samples[sampleNdx].renderDataSize << samples[sampleNdx].numVertices
<< samples[sampleNdx].unrelatedDataSize << (int)samples[sampleNdx].duration.renderReadDuration
<< (int)samples[sampleNdx].duration.renderDuration << (int)samples[sampleNdx].duration.readDuration
<< fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<RenderSampleResult<UploadRenderReadDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("DataSize", "Data processed", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("UploadSize", "Data uploaded", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("VertexCount", "Number of vertices", "vertices", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("DrawReadTime", "Draw call and ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("Upload time", "Upload time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("DrawCallTime", "Draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].renderDataSize);
log << tcu::TestLog::Sample << samples[sampleNdx].renderDataSize << samples[sampleNdx].uploadedDataSize
<< samples[sampleNdx].numVertices << (int)samples[sampleNdx].duration.renderReadDuration
<< (int)samples[sampleNdx].duration.totalDuration << (int)samples[sampleNdx].duration.uploadDuration
<< (int)samples[sampleNdx].duration.renderDuration << (int)samples[sampleNdx].duration.readDuration
<< fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<RenderSampleResult<UploadRenderReadDurationWithUnrelatedUploadSize>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("DataSize", "Data processed", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("UploadSize", "Data uploaded", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("VertexCount", "Number of vertices", "vertices", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("UnrelatedUploadSize", "Unrelated upload size", "bytes",
QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("DrawReadTime", "Draw call and ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("Upload time", "Upload time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("DrawCallTime", "Draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].renderDataSize);
log << tcu::TestLog::Sample << samples[sampleNdx].renderDataSize << samples[sampleNdx].uploadedDataSize
<< samples[sampleNdx].numVertices << samples[sampleNdx].unrelatedDataSize
<< (int)samples[sampleNdx].duration.renderReadDuration << (int)samples[sampleNdx].duration.totalDuration
<< (int)samples[sampleNdx].duration.uploadDuration << (int)samples[sampleNdx].duration.renderDuration
<< (int)samples[sampleNdx].duration.readDuration << fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
void logSampleList(tcu::TestLog &log, const LineParametersWithConfidence &theilSenFitting,
const std::vector<RenderSampleResult<RenderUploadRenderReadDuration>> &samples)
{
log << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("DataSize", "Data processed", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("UploadSize", "Data uploaded", "bytes", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("VertexCount", "Number of vertices", "vertices", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("DrawReadTime", "Second draw call and ReadPixels time", "us",
QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FirstDrawCallTime", "First draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("Upload time", "Upload time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("SecondDrawCallTime", "Second draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("FitResidual", "Fit residual", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)samples.size(); ++sampleNdx)
{
const float fitResidual =
(float)samples[sampleNdx].duration.fitResponseDuration -
(theilSenFitting.offset + theilSenFitting.coefficient * (float)samples[sampleNdx].renderDataSize);
log << tcu::TestLog::Sample << samples[sampleNdx].renderDataSize << samples[sampleNdx].uploadedDataSize
<< samples[sampleNdx].numVertices << (int)samples[sampleNdx].duration.renderReadDuration
<< (int)samples[sampleNdx].duration.totalDuration << (int)samples[sampleNdx].duration.firstRenderDuration
<< (int)samples[sampleNdx].duration.uploadDuration << (int)samples[sampleNdx].duration.secondRenderDuration
<< (int)samples[sampleNdx].duration.readDuration << fitResidual << tcu::TestLog::EndSample;
}
log << tcu::TestLog::EndSampleList;
}
template <typename SampleType>
static UploadSampleAnalyzeResult analyzeSampleResults(tcu::TestLog &log,
const std::vector<UploadSampleResult<SampleType>> &samples,
bool logBucketPerformance)
{
// Assume data is linear with some outliers, fit a line
const LineParametersWithConfidence theilSenFitting = fitLineToSamples(samples);
const typename SampleTypeTraits<SampleType>::StatsType resultStats =
calculateSampleStatistics(theilSenFitting, samples);
float approximatedTransferRate;
float approximatedTransferRateNoConstant;
// Output raw samples
{
const tcu::ScopedLogSection section(log, "Samples", "Samples");
logSampleList(log, theilSenFitting, samples);
}
// Calculate results for different ranges
if (logBucketPerformance)
{
const int numBuckets = 4;
int minBufferSize = 0;
int maxBufferSize = 0;
std::vector<UploadSampleResult<SampleType>> buckets[numBuckets];
bucketizeSamplesUniformly(samples, &buckets[0], numBuckets, minBufferSize, maxBufferSize);
for (int bucketNdx = 0; bucketNdx < numBuckets; ++bucketNdx)
{
if (buckets[bucketNdx].empty())
continue;
// Print a nice result summary
const int bucketRangeMin =
minBufferSize + (int)(((float)bucketNdx / (float)numBuckets) * (float)(maxBufferSize - minBufferSize));
const int bucketRangeMax = minBufferSize + (int)(((float)(bucketNdx + 1) / (float)numBuckets) *
(float)(maxBufferSize - minBufferSize));
const typename SampleTypeTraits<SampleType>::StatsType stats =
calculateSampleStatistics(theilSenFitting, buckets[bucketNdx]);
const tcu::ScopedLogSection section(
log, "BufferSizeRange",
std::string("Transfer performance with buffer size in range [")
.append(getHumanReadableByteSize(bucketRangeMin)
.append(", ")
.append(getHumanReadableByteSize(bucketRangeMax).append("]"))));
logMapRangeStats<SampleType>(log, stats);
logUnmapStats<SampleType>(log, stats);
logWriteStats<SampleType>(log, stats);
logFlushStats<SampleType>(log, stats);
logAllocStats<SampleType>(log, stats);
log << tcu::TestLog::Float("Min", "Total: Min time", "us", QP_KEY_TAG_TIME, stats.result.minTime)
<< tcu::TestLog::Float("Max", "Total: Max time", "us", QP_KEY_TAG_TIME, stats.result.maxTime)
<< tcu::TestLog::Float("Min90", "Total: 90%-Min time", "us", QP_KEY_TAG_TIME,
stats.result.min2DecileTime)
<< tcu::TestLog::Float("Max90", "Total: 90%-Max time", "us", QP_KEY_TAG_TIME,
stats.result.max9DecileTime)
<< tcu::TestLog::Float("Median", "Total: Median time", "us", QP_KEY_TAG_TIME, stats.result.medianTime)
<< tcu::TestLog::Float("MedianTransfer", "Median transfer rate", "MB / s", QP_KEY_TAG_PERFORMANCE,
stats.medianRate / 1024.0f / 1024.0f)
<< tcu::TestLog::Float("MaxDiff", "Max difference to approximated", "us", QP_KEY_TAG_TIME,
stats.maxDiffTime)
<< tcu::TestLog::Float("Max90Diff", "90%-Max difference to approximated", "us", QP_KEY_TAG_TIME,
stats.maxDiff9DecileTime)
<< tcu::TestLog::Float("MedianDiff", "Median difference to approximated", "us", QP_KEY_TAG_TIME,
stats.medianDiffTime)
<< tcu::TestLog::Float("MaxRelDiff", "Max relative difference to approximated", "%", QP_KEY_TAG_NONE,
stats.maxRelDiffTime * 100.0f)
<< tcu::TestLog::Float("Max90RelDiff", "90%-Max relative difference to approximated", "%",
QP_KEY_TAG_NONE, stats.max9DecileRelDiffTime * 100.0f)
<< tcu::TestLog::Float("MedianRelDiff", "Median relative difference to approximated", "%",
QP_KEY_TAG_NONE, stats.medianRelDiffTime * 100.0f);
}
}
// Contributions
if (SampleTypeTraits<SampleType>::LOG_CONTRIBUTIONS)
{
const tcu::ScopedLogSection section(log, "Contribution", "Contributions");
logMapContribution(log, samples, resultStats);
logUnmapContribution(log, samples, resultStats);
logWriteContribution(log, samples, resultStats);
logFlushContribution(log, samples, resultStats);
logAllocContribution(log, samples, resultStats);
}
// Print results
{
const tcu::ScopedLogSection section(log, "Results", "Results");
const int medianBufferSize = (samples.front().bufferSize + samples.back().bufferSize) / 2;
const float approximatedTransferTime =
(theilSenFitting.offset + theilSenFitting.coefficient * (float)medianBufferSize) / 1000.0f / 1000.0f;
const float approximatedTransferTimeNoConstant =
(theilSenFitting.coefficient * (float)medianBufferSize) / 1000.0f / 1000.0f;
const float sampleLinearity = calculateSampleFitLinearity(samples);
const float sampleTemporalStability = calculateSampleTemporalStability(samples);
approximatedTransferRateNoConstant = (float)medianBufferSize / approximatedTransferTimeNoConstant;
approximatedTransferRate = (float)medianBufferSize / approximatedTransferTime;
log << tcu::TestLog::Float("ResultLinearity", "Sample linearity", "%", QP_KEY_TAG_QUALITY,
sampleLinearity * 100.0f)
<< tcu::TestLog::Float("SampleTemporalStability", "Sample temporal stability", "%", QP_KEY_TAG_QUALITY,
sampleTemporalStability * 100.0f)
<< tcu::TestLog::Float("ApproximatedConstantCost", "Approximated contant cost", "us", QP_KEY_TAG_TIME,
theilSenFitting.offset)
<< tcu::TestLog::Float("ApproximatedConstantCostConfidence60Lower",
"Approximated contant cost 60% confidence lower limit", "us", QP_KEY_TAG_TIME,
theilSenFitting.offsetConfidenceLower)
<< tcu::TestLog::Float("ApproximatedConstantCostConfidence60Upper",
"Approximated contant cost 60% confidence upper limit", "us", QP_KEY_TAG_TIME,
theilSenFitting.offsetConfidenceUpper)
<< tcu::TestLog::Float("ApproximatedLinearCost", "Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
theilSenFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ApproximatedLinearCostConfidence60Lower",
"Approximated linear cost 60% confidence lower limit", "us / MB", QP_KEY_TAG_TIME,
theilSenFitting.coefficientConfidenceLower * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ApproximatedLinearCostConfidence60Upper",
"Approximated linear cost 60% confidence upper limit", "us / MB", QP_KEY_TAG_TIME,
theilSenFitting.coefficientConfidenceUpper * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ApproximatedTransferRate", "Approximated transfer rate", "MB / s",
QP_KEY_TAG_PERFORMANCE, approximatedTransferRate / 1024.0f / 1024.0f)
<< tcu::TestLog::Float("ApproximatedTransferRateNoConstant",
"Approximated transfer rate without constant cost", "MB / s", QP_KEY_TAG_PERFORMANCE,
approximatedTransferRateNoConstant / 1024.0f / 1024.0f)
<< tcu::TestLog::Float("SampleMedianTime", "Median sample time", "us", QP_KEY_TAG_TIME,
resultStats.result.medianTime)
<< tcu::TestLog::Float("SampleMedianTransfer", "Median transfer rate", "MB / s", QP_KEY_TAG_PERFORMANCE,
resultStats.medianRate / 1024.0f / 1024.0f);
}
// return approximated transfer rate
{
UploadSampleAnalyzeResult result;
result.transferRateMedian = resultStats.medianRate;
result.transferRateAtRange = approximatedTransferRate;
result.transferRateAtInfinity = approximatedTransferRateNoConstant;
return result;
}
}
template <typename SampleType>
static RenderSampleAnalyzeResult analyzeSampleResults(tcu::TestLog &log,
const std::vector<RenderSampleResult<SampleType>> &samples)
{
// Assume data is linear with some outliers, fit a line
const LineParametersWithConfidence theilSenFitting = fitLineToSamples(samples);
const typename SampleTypeTraits<SampleType>::StatsType resultStats =
calculateSampleStatistics(theilSenFitting, samples);
float approximatedProcessingRate;
float approximatedProcessingRateNoConstant;
// output raw samples
{
const tcu::ScopedLogSection section(log, "Samples", "Samples");
logSampleList(log, theilSenFitting, samples);
}
// Contributions
if (SampleTypeTraits<SampleType>::LOG_CONTRIBUTIONS)
{
const tcu::ScopedLogSection section(log, "Contribution", "Contributions");
logFirstRenderContribution(log, samples, resultStats);
logUploadContribution(log, samples, resultStats);
logRenderContribution(log, samples, resultStats);
logSecondRenderContribution(log, samples, resultStats);
logReadContribution(log, samples, resultStats);
logTotalContribution(log, samples, resultStats);
}
// print results
{
const tcu::ScopedLogSection section(log, "Results", "Results");
const int medianDataSize = (samples.front().renderDataSize + samples.back().renderDataSize) / 2;
const float approximatedRenderTime =
(theilSenFitting.offset + theilSenFitting.coefficient * (float)medianDataSize) / 1000.0f / 1000.0f;
const float approximatedRenderTimeNoConstant =
(theilSenFitting.coefficient * (float)medianDataSize) / 1000.0f / 1000.0f;
const float sampleLinearity = calculateSampleFitLinearity(samples);
const float sampleTemporalStability = calculateSampleTemporalStability(samples);
approximatedProcessingRateNoConstant = (float)medianDataSize / approximatedRenderTimeNoConstant;
approximatedProcessingRate = (float)medianDataSize / approximatedRenderTime;
log << tcu::TestLog::Float("ResultLinearity", "Sample linearity", "%", QP_KEY_TAG_QUALITY,
sampleLinearity * 100.0f)
<< tcu::TestLog::Float("SampleTemporalStability", "Sample temporal stability", "%", QP_KEY_TAG_QUALITY,
sampleTemporalStability * 100.0f)
<< tcu::TestLog::Float("ApproximatedConstantCost", "Approximated contant cost", "us", QP_KEY_TAG_TIME,
theilSenFitting.offset)
<< tcu::TestLog::Float("ApproximatedConstantCostConfidence60Lower",
"Approximated contant cost 60% confidence lower limit", "us", QP_KEY_TAG_TIME,
theilSenFitting.offsetConfidenceLower)
<< tcu::TestLog::Float("ApproximatedConstantCostConfidence60Upper",
"Approximated contant cost 60% confidence upper limit", "us", QP_KEY_TAG_TIME,
theilSenFitting.offsetConfidenceUpper)
<< tcu::TestLog::Float("ApproximatedLinearCost", "Approximated linear cost", "us / MB", QP_KEY_TAG_TIME,
theilSenFitting.coefficient * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ApproximatedLinearCostConfidence60Lower",
"Approximated linear cost 60% confidence lower limit", "us / MB", QP_KEY_TAG_TIME,
theilSenFitting.coefficientConfidenceLower * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ApproximatedLinearCostConfidence60Upper",
"Approximated linear cost 60% confidence upper limit", "us / MB", QP_KEY_TAG_TIME,
theilSenFitting.coefficientConfidenceUpper * 1024.0f * 1024.0f)
<< tcu::TestLog::Float("ApproximatedProcessRate", "Approximated processing rate", "MB / s",
QP_KEY_TAG_PERFORMANCE, approximatedProcessingRate / 1024.0f / 1024.0f)
<< tcu::TestLog::Float("ApproximatedProcessRateNoConstant",
"Approximated processing rate without constant cost", "MB / s",
QP_KEY_TAG_PERFORMANCE, approximatedProcessingRateNoConstant / 1024.0f / 1024.0f)
<< tcu::TestLog::Float("SampleMedianTime", "Median sample time", "us", QP_KEY_TAG_TIME,
resultStats.result.medianTime)
<< tcu::TestLog::Float("SampleMedianProcess", "Median processing rate", "MB / s", QP_KEY_TAG_PERFORMANCE,
resultStats.medianRate / 1024.0f / 1024.0f);
}
// return approximated render rate
{
RenderSampleAnalyzeResult result;
result.renderRateMedian = resultStats.medianRate;
result.renderRateAtRange = approximatedProcessingRate;
result.renderRateAtInfinity = approximatedProcessingRateNoConstant;
return result;
}
return RenderSampleAnalyzeResult();
}
static void generateTwoPassRandomIterationOrder(std::vector<int> &iterationOrder, int numSamples)
{
de::Random rnd(0xabc);
const int midPoint = (numSamples + 1) / 2; // !< ceil(m_numSamples / 2)
DE_ASSERT((int)iterationOrder.size() == numSamples);
// Two "passes" over range, randomize order in both passes
// This allows to us detect if iterations are not independent
// (first run and later run samples differ significantly?)
for (int sampleNdx = 0; sampleNdx < midPoint; ++sampleNdx)
iterationOrder[sampleNdx] = sampleNdx * 2;
for (int sampleNdx = midPoint; sampleNdx < numSamples; ++sampleNdx)
iterationOrder[sampleNdx] = (sampleNdx - midPoint) * 2 + 1;
for (int ndx = 0; ndx < midPoint; ++ndx)
std::swap(iterationOrder[ndx], iterationOrder[rnd.getInt(0, midPoint - 1)]);
for (int ndx = midPoint; ndx < (int)iterationOrder.size(); ++ndx)
std::swap(iterationOrder[ndx], iterationOrder[rnd.getInt(midPoint, (int)iterationOrder.size() - 1)]);
}
template <typename SampleType>
class BasicBufferCase : public TestCase
{
public:
enum Flags
{
FLAG_ALLOCATE_LARGER_BUFFER = 0x01,
};
BasicBufferCase(Context &context, const char *name, const char *desc, int bufferSizeMin, int bufferSizeMax,
int numSamples, int flags);
~BasicBufferCase(void);
virtual void init(void);
virtual void deinit(void);
protected:
IterateResult iterate(void);
virtual bool runSample(int iteration, UploadSampleResult<SampleType> &sample) = 0;
virtual void logAndSetTestResult(const std::vector<UploadSampleResult<SampleType>> &results) = 0;
void disableGLWarmup(void);
void waitGLResults(void);
enum
{
UNUSED_RENDER_AREA_SIZE = 32
};
glu::ShaderProgram *m_minimalProgram;
int32_t m_minimalProgramPosLoc;
uint32_t m_bufferID;
const int m_numSamples;
const int m_bufferSizeMin;
const int m_bufferSizeMax;
const bool m_allocateLargerBuffer;
private:
int m_iteration;
std::vector<int> m_iterationOrder;
std::vector<UploadSampleResult<SampleType>> m_results;
bool m_useGL;
int m_bufferRandomizerTimer;
};
template <typename SampleType>
BasicBufferCase<SampleType>::BasicBufferCase(Context &context, const char *name, const char *desc, int bufferSizeMin,
int bufferSizeMax, int numSamples, int flags)
: TestCase(context, tcu::NODETYPE_PERFORMANCE, name, desc)
, m_minimalProgram(nullptr)
, m_minimalProgramPosLoc(-1)
, m_bufferID(0)
, m_numSamples(numSamples)
, m_bufferSizeMin(bufferSizeMin)
, m_bufferSizeMax(bufferSizeMax)
, m_allocateLargerBuffer((flags & FLAG_ALLOCATE_LARGER_BUFFER) != 0)
, m_iteration(0)
, m_iterationOrder(numSamples)
, m_results(numSamples)
, m_useGL(true)
, m_bufferRandomizerTimer(0)
{
// "randomize" iteration order. Deterministic, patternless
generateTwoPassRandomIterationOrder(m_iterationOrder, m_numSamples);
// choose buffer sizes
for (int sampleNdx = 0; sampleNdx < m_numSamples; ++sampleNdx)
{
const int rawBufferSize =
(int)deFloatFloor((float)bufferSizeMin +
(float)(bufferSizeMax - bufferSizeMin) * ((float)(sampleNdx + 1) / (float)m_numSamples));
const int bufferSize = deAlign32(rawBufferSize, 16);
const int allocatedBufferSize =
deAlign32((m_allocateLargerBuffer) ? ((int)((float)bufferSize * 1.5f)) : (bufferSize), 16);
m_results[sampleNdx].bufferSize = bufferSize;
m_results[sampleNdx].allocatedSize = allocatedBufferSize;
m_results[sampleNdx].writtenSize = -1;
}
}
template <typename SampleType>
BasicBufferCase<SampleType>::~BasicBufferCase(void)
{
deinit();
}
template <typename SampleType>
void BasicBufferCase<SampleType>::init(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
if (!m_useGL)
return;
// \note Viewport size is not checked, it won't matter if the render target actually is smaller than UNUSED_RENDER_AREA_SIZE
// minimal shader
m_minimalProgram = new glu::ShaderProgram(m_context.getRenderContext(),
glu::ProgramSources() << glu::VertexSource(s_minimalVertexShader)
<< glu::FragmentSource(s_minimalFragnentShader));
if (!m_minimalProgram->isOk())
{
m_testCtx.getLog() << *m_minimalProgram;
throw tcu::TestError("failed to build shader program");
}
m_minimalProgramPosLoc = gl.getAttribLocation(m_minimalProgram->getProgram(), "a_position");
if (m_minimalProgramPosLoc == -1)
throw tcu::TestError("a_position location was -1");
}
template <typename SampleType>
void BasicBufferCase<SampleType>::deinit(void)
{
if (m_bufferID)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_bufferID);
m_bufferID = 0;
}
delete m_minimalProgram;
m_minimalProgram = nullptr;
}
template <typename SampleType>
TestCase::IterateResult BasicBufferCase<SampleType>::iterate(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
static bool buffersWarmedUp = false;
static const uint32_t usages[] = {
GL_STREAM_DRAW, GL_STREAM_READ, GL_STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ,
GL_STATIC_COPY, GL_DYNAMIC_DRAW, GL_DYNAMIC_READ, GL_DYNAMIC_COPY,
};
// Allocate some random sized buffers and remove them to
// make sure the first samples too have some buffers removed
// just before their allocation. This is only needed by the
// the first test.
if (m_useGL && !buffersWarmedUp)
{
const int numRandomBuffers = 6;
const int numRepeats = 10;
const int maxBufferSize = 16777216;
const std::vector<uint8_t> zeroData(maxBufferSize, 0x00);
de::Random rnd(0x1234);
uint32_t bufferIDs[numRandomBuffers] = {0};
gl.useProgram(m_minimalProgram->getProgram());
gl.viewport(0, 0, UNUSED_RENDER_AREA_SIZE, UNUSED_RENDER_AREA_SIZE);
gl.enableVertexAttribArray(m_minimalProgramPosLoc);
for (int ndx = 0; ndx < numRepeats; ++ndx)
{
// Create buffer and maybe draw from it
for (int randomBufferNdx = 0; randomBufferNdx < numRandomBuffers; ++randomBufferNdx)
{
const int randomSize = deAlign32(rnd.getInt(1, maxBufferSize), 4 * 4);
const uint32_t usage = usages[rnd.getUint32() % (uint32_t)DE_LENGTH_OF_ARRAY(usages)];
gl.genBuffers(1, &bufferIDs[randomBufferNdx]);
gl.bindBuffer(GL_ARRAY_BUFFER, bufferIDs[randomBufferNdx]);
gl.bufferData(GL_ARRAY_BUFFER, randomSize, &zeroData[0], usage);
if (rnd.getBool())
{
gl.vertexAttribPointer(m_minimalProgramPosLoc, 4, GL_FLOAT, GL_FALSE, 0, nullptr);
gl.drawArrays(GL_POINTS, 0, 1);
gl.drawArrays(GL_POINTS, randomSize / (int)sizeof(float[4]) - 1, 1);
}
}
for (int randomBufferNdx = 0; randomBufferNdx < numRandomBuffers; ++randomBufferNdx)
gl.deleteBuffers(1, &bufferIDs[randomBufferNdx]);
waitGLResults();
GLU_EXPECT_NO_ERROR(gl.getError(), "Buffer gen");
m_testCtx.touchWatchdog();
}
buffersWarmedUp = true;
return CONTINUE;
}
else if (m_useGL && m_bufferRandomizerTimer++ % 8 == 0)
{
// Do some random buffer operations to every now and then
// to make sure the previous test iterations won't affect
// following test runs.
const int numRandomBuffers = 3;
const int maxBufferSize = 16777216;
const std::vector<uint8_t> zeroData(maxBufferSize, 0x00);
de::Random rnd(0x1234 + 0xabc * m_bufferRandomizerTimer);
// BufferData
{
uint32_t bufferIDs[numRandomBuffers] = {0};
for (int randomBufferNdx = 0; randomBufferNdx < numRandomBuffers; ++randomBufferNdx)
{
const int randomSize = deAlign32(rnd.getInt(1, maxBufferSize), 4 * 4);
const uint32_t usage = usages[rnd.getUint32() % (uint32_t)DE_LENGTH_OF_ARRAY(usages)];
gl.genBuffers(1, &bufferIDs[randomBufferNdx]);
gl.bindBuffer(GL_ARRAY_BUFFER, bufferIDs[randomBufferNdx]);
gl.bufferData(GL_ARRAY_BUFFER, randomSize, &zeroData[0], usage);
}
for (int randomBufferNdx = 0; randomBufferNdx < numRandomBuffers; ++randomBufferNdx)
gl.deleteBuffers(1, &bufferIDs[randomBufferNdx]);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "buffer ops");
// Do some memory mappings
{
uint32_t bufferIDs[numRandomBuffers] = {0};
for (int randomBufferNdx = 0; randomBufferNdx < numRandomBuffers; ++randomBufferNdx)
{
const int randomSize = deAlign32(rnd.getInt(1, maxBufferSize), 4 * 4);
const uint32_t usage = usages[rnd.getUint32() % (uint32_t)DE_LENGTH_OF_ARRAY(usages)];
void *ptr;
gl.genBuffers(1, &bufferIDs[randomBufferNdx]);
gl.bindBuffer(GL_ARRAY_BUFFER, bufferIDs[randomBufferNdx]);
gl.bufferData(GL_ARRAY_BUFFER, randomSize, &zeroData[0], usage);
gl.vertexAttribPointer(m_minimalProgramPosLoc, 4, GL_FLOAT, GL_FALSE, 0, nullptr);
gl.drawArrays(GL_POINTS, 0, 1);
gl.drawArrays(GL_POINTS, randomSize / (int)sizeof(float[4]) - 1, 1);
if (rnd.getBool())
waitGLResults();
ptr = gl.mapBufferRange(GL_ARRAY_BUFFER, 0, randomSize, GL_MAP_WRITE_BIT);
if (ptr)
{
medianTimeMemcpy(ptr, &zeroData[0], randomSize);
gl.unmapBuffer(GL_ARRAY_BUFFER);
}
}
for (int randomBufferNdx = 0; randomBufferNdx < numRandomBuffers; ++randomBufferNdx)
gl.deleteBuffers(1, &bufferIDs[randomBufferNdx]);
waitGLResults();
}
GLU_EXPECT_NO_ERROR(gl.getError(), "buffer maps");
return CONTINUE;
}
else
{
const int currentIteration = m_iteration;
const int sampleNdx = m_iterationOrder[currentIteration];
const bool sampleRunSuccessful = runSample(currentIteration, m_results[sampleNdx]);
GLU_EXPECT_NO_ERROR(gl.getError(), "post runSample()");
// Retry failed samples
if (!sampleRunSuccessful)
return CONTINUE;
if (++m_iteration >= m_numSamples)
{
logAndSetTestResult(m_results);
return STOP;
}
else
return CONTINUE;
}
}
template <typename SampleType>
void BasicBufferCase<SampleType>::disableGLWarmup(void)
{
m_useGL = false;
}
template <typename SampleType>
void BasicBufferCase<SampleType>::waitGLResults(void)
{
tcu::Surface unusedSurface(UNUSED_RENDER_AREA_SIZE, UNUSED_RENDER_AREA_SIZE);
glu::readPixels(m_context.getRenderContext(), 0, 0, unusedSurface.getAccess());
}
template <typename SampleType>
class BasicUploadCase : public BasicBufferCase<SampleType>
{
public:
enum CaseType
{
CASE_NO_BUFFERS = 0,
CASE_NEW_BUFFER,
CASE_UNSPECIFIED_BUFFER,
CASE_SPECIFIED_BUFFER,
CASE_USED_BUFFER,
CASE_USED_LARGER_BUFFER,
CASE_LAST
};
enum CaseFlags
{
FLAG_DONT_LOG_BUFFER_INFO = 0x01,
FLAG_RESULT_BUFFER_UNSPECIFIED_CONTENT = 0x02,
};
enum ResultType
{
RESULT_MEDIAN_TRANSFER_RATE = 0,
RESULT_ASYMPTOTIC_TRANSFER_RATE,
};
BasicUploadCase(Context &context, const char *name, const char *desc, int bufferSizeMin, int bufferSizeMax,
int numSamples, uint32_t bufferUsage, CaseType caseType, ResultType resultType, int flags = 0);
~BasicUploadCase(void);
virtual void init(void);
virtual void deinit(void);
private:
bool runSample(int iteration, UploadSampleResult<SampleType> &sample);
void createBuffer(int bufferSize, int iteration);
void deleteBuffer(int bufferSize);
void useBuffer(int bufferSize);
virtual void testBufferUpload(UploadSampleResult<SampleType> &result, int writeSize) = 0;
void logAndSetTestResult(const std::vector<UploadSampleResult<SampleType>> &results);
uint32_t m_unusedBufferID;
protected:
const CaseType m_caseType;
const ResultType m_resultType;
const uint32_t m_bufferUsage;
const bool m_logBufferInfo;
const bool m_bufferUnspecifiedContent;
std::vector<uint8_t> m_zeroData;
using BasicBufferCase<SampleType>::m_testCtx;
using BasicBufferCase<SampleType>::m_context;
using BasicBufferCase<SampleType>::UNUSED_RENDER_AREA_SIZE;
using BasicBufferCase<SampleType>::m_minimalProgram;
using BasicBufferCase<SampleType>::m_minimalProgramPosLoc;
using BasicBufferCase<SampleType>::m_bufferID;
using BasicBufferCase<SampleType>::m_numSamples;
using BasicBufferCase<SampleType>::m_bufferSizeMin;
using BasicBufferCase<SampleType>::m_bufferSizeMax;
using BasicBufferCase<SampleType>::m_allocateLargerBuffer;
};
template <typename SampleType>
BasicUploadCase<SampleType>::BasicUploadCase(Context &context, const char *name, const char *desc, int bufferSizeMin,
int bufferSizeMax, int numSamples, uint32_t bufferUsage, CaseType caseType,
ResultType resultType, int flags)
: BasicBufferCase<SampleType>(
context, name, desc, bufferSizeMin, bufferSizeMax, numSamples,
(caseType == CASE_USED_LARGER_BUFFER) ? (BasicBufferCase<SampleType>::FLAG_ALLOCATE_LARGER_BUFFER) : (0))
, m_unusedBufferID(0)
, m_caseType(caseType)
, m_resultType(resultType)
, m_bufferUsage(bufferUsage)
, m_logBufferInfo((flags & FLAG_DONT_LOG_BUFFER_INFO) == 0)
, m_bufferUnspecifiedContent((flags & FLAG_RESULT_BUFFER_UNSPECIFIED_CONTENT) != 0)
, m_zeroData()
{
DE_ASSERT(m_caseType < CASE_LAST);
}
template <typename SampleType>
BasicUploadCase<SampleType>::~BasicUploadCase(void)
{
deinit();
}
template <typename SampleType>
void BasicUploadCase<SampleType>::init(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
BasicBufferCase<SampleType>::init();
// zero buffer as upload source
m_zeroData.resize(m_bufferSizeMax, 0x00);
// unused buffer
gl.genBuffers(1, &m_unusedBufferID);
GLU_EXPECT_NO_ERROR(gl.getError(), "Gen buf");
// log basic info
m_testCtx.getLog() << tcu::TestLog::Message << "Testing performance with " << m_numSamples
<< " test samples. Sample order is randomized. All samples at even positions (first = 0) are "
"tested before samples at odd positions.\n"
<< "Buffer sizes are in range [" << getHumanReadableByteSize(m_bufferSizeMin) << ", "
<< getHumanReadableByteSize(m_bufferSizeMax) << "]." << tcu::TestLog::EndMessage;
if (m_logBufferInfo)
{
switch (m_caseType)
{
case CASE_NO_BUFFERS:
break;
case CASE_NEW_BUFFER:
m_testCtx.getLog() << tcu::TestLog::Message
<< "Target buffer is generated but not specified (i.e glBufferData() not called)."
<< tcu::TestLog::EndMessage;
break;
case CASE_UNSPECIFIED_BUFFER:
m_testCtx.getLog() << tcu::TestLog::Message << "Target buffer is allocated with glBufferData(NULL)."
<< tcu::TestLog::EndMessage;
break;
case CASE_SPECIFIED_BUFFER:
m_testCtx.getLog() << tcu::TestLog::Message
<< "Target buffer contents are specified prior testing with glBufferData(data)."
<< tcu::TestLog::EndMessage;
break;
case CASE_USED_BUFFER:
m_testCtx.getLog() << tcu::TestLog::Message << "Target buffer has been used in drawing before testing."
<< tcu::TestLog::EndMessage;
break;
case CASE_USED_LARGER_BUFFER:
m_testCtx.getLog() << tcu::TestLog::Message
<< "Target buffer is larger and has been used in drawing before testing."
<< tcu::TestLog::EndMessage;
break;
default:
DE_ASSERT(false);
break;
}
}
if (m_resultType == RESULT_MEDIAN_TRANSFER_RATE)
m_testCtx.getLog() << tcu::TestLog::Message << "Test result is the median transfer rate of the test samples."
<< tcu::TestLog::EndMessage;
else if (m_resultType == RESULT_ASYMPTOTIC_TRANSFER_RATE)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Test result is the asymptotic transfer rate as the buffer size approaches infinity."
<< tcu::TestLog::EndMessage;
else
DE_ASSERT(false);
}
template <typename SampleType>
void BasicUploadCase<SampleType>::deinit(void)
{
if (m_unusedBufferID)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_unusedBufferID);
m_unusedBufferID = 0;
}
m_zeroData = std::vector<uint8_t>();
BasicBufferCase<SampleType>::deinit();
}
template <typename SampleType>
bool BasicUploadCase<SampleType>::runSample(int iteration, UploadSampleResult<SampleType> &sample)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int allocatedBufferSize = sample.allocatedSize;
const int bufferSize = sample.bufferSize;
if (m_caseType != CASE_NO_BUFFERS)
createBuffer(iteration, allocatedBufferSize);
// warmup CPU before the test to make sure the power management governor
// keeps us in the "high performance" mode
{
deYield();
tcu::warmupCPU();
deYield();
}
testBufferUpload(sample, bufferSize);
GLU_EXPECT_NO_ERROR(gl.getError(), "Buffer upload sample");
if (m_caseType != CASE_NO_BUFFERS)
deleteBuffer(bufferSize);
return true;
}
template <typename SampleType>
void BasicUploadCase<SampleType>::createBuffer(int iteration, int bufferSize)
{
DE_ASSERT(!m_bufferID);
DE_ASSERT(m_caseType != CASE_NO_BUFFERS);
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
// create buffer
if (m_caseType == CASE_NO_BUFFERS)
return;
// create empty buffer
gl.genBuffers(1, &m_bufferID);
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
GLU_EXPECT_NO_ERROR(gl.getError(), "Buffer gen");
if (m_caseType == CASE_NEW_BUFFER)
{
// upload something else first, this should reduce noise in samples
de::Random rng(0xbadc * iteration);
const int sizeDelta = rng.getInt(0, 2097140);
const int unusedUploadSize =
deAlign32(1048576 + sizeDelta, 4 * 4); // Vary buffer size to make sure it is always reallocated
const std::vector<uint8_t> unusedData(unusedUploadSize, 0x20);
gl.bindBuffer(GL_ARRAY_BUFFER, m_unusedBufferID);
gl.bufferData(GL_ARRAY_BUFFER, unusedUploadSize, &unusedData[0], m_bufferUsage);
// make sure upload won't interfere with the test
useBuffer(unusedUploadSize);
// don't kill the buffer so that the following upload cannot potentially reuse the buffer
return;
}
// specify it
if (m_caseType == CASE_UNSPECIFIED_BUFFER)
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, nullptr, m_bufferUsage);
else
{
const std::vector<uint8_t> unusedData(bufferSize, 0x20);
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &unusedData[0], m_bufferUsage);
}
if (m_caseType == CASE_UNSPECIFIED_BUFFER || m_caseType == CASE_SPECIFIED_BUFFER)
return;
// use it and make sure it is uploaded
useBuffer(bufferSize);
DE_ASSERT(m_caseType == CASE_USED_BUFFER || m_caseType == CASE_USED_LARGER_BUFFER);
}
template <typename SampleType>
void BasicUploadCase<SampleType>::deleteBuffer(int bufferSize)
{
DE_ASSERT(m_bufferID);
DE_ASSERT(m_caseType != CASE_NO_BUFFERS);
// render from the buffer to make sure it actually made it to the gpu. This is to
// make sure that if the upload actually happens later or is happening right now in
// the background, it will not interfere with further test runs
// if buffer contains unspecified content, sourcing data from it results in undefined
// results, possibly including program termination. Specify all data to prevent such
// case from happening
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
if (m_bufferUnspecifiedContent)
{
const std::vector<uint8_t> unusedData(bufferSize, 0x20);
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &unusedData[0], m_bufferUsage);
GLU_EXPECT_NO_ERROR(gl.getError(), "re-specify buffer");
}
useBuffer(bufferSize);
gl.deleteBuffers(1, &m_bufferID);
m_bufferID = 0;
}
template <typename SampleType>
void BasicUploadCase<SampleType>::useBuffer(int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
gl.useProgram(m_minimalProgram->getProgram());
gl.viewport(0, 0, UNUSED_RENDER_AREA_SIZE, UNUSED_RENDER_AREA_SIZE);
gl.vertexAttribPointer(m_minimalProgramPosLoc, 4, GL_FLOAT, GL_FALSE, 0, nullptr);
gl.enableVertexAttribArray(m_minimalProgramPosLoc);
// use whole buffer to make sure buffer is uploaded by drawing first and last
DE_ASSERT(bufferSize % (int)sizeof(float[4]) == 0);
gl.drawArrays(GL_POINTS, 0, 1);
gl.drawArrays(GL_POINTS, bufferSize / (int)sizeof(float[4]) - 1, 1);
BasicBufferCase<SampleType>::waitGLResults();
}
template <typename SampleType>
void BasicUploadCase<SampleType>::logAndSetTestResult(const std::vector<UploadSampleResult<SampleType>> &results)
{
const UploadSampleAnalyzeResult analysis = analyzeSampleResults(m_testCtx.getLog(), results, true);
// with small buffers, report the median transfer rate of the samples
// with large buffers, report the expected preformance of infinitely large buffers
const float rate = (m_resultType == RESULT_ASYMPTOTIC_TRANSFER_RATE) ? (analysis.transferRateAtInfinity) :
(analysis.transferRateMedian);
if (rate == std::numeric_limits<float>::infinity())
{
// sample times are 1) invalid or 2) timer resolution too low
// report speed 0 bytes / s since real value cannot be determined
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(0.0f, 2).c_str());
}
else
{
// report transfer rate in MB / s
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(rate / 1024.0f / 1024.0f, 2).c_str());
}
}
class ReferenceMemcpyCase : public BasicUploadCase<SingleOperationDuration>
{
public:
ReferenceMemcpyCase(Context &ctx, const char *name, const char *desc, int minBufferSize, int maxBufferSize,
int numSamples, bool largeBuffersCase);
~ReferenceMemcpyCase(void);
void init(void);
void deinit(void);
private:
void testBufferUpload(UploadSampleResult<SingleOperationDuration> &result, int bufferSize);
std::vector<uint8_t> m_dstBuf;
};
ReferenceMemcpyCase::ReferenceMemcpyCase(Context &ctx, const char *name, const char *desc, int minBufferSize,
int maxBufferSize, int numSamples, bool largeBuffersCase)
: BasicUploadCase<SingleOperationDuration>(
ctx, name, desc, minBufferSize, maxBufferSize, numSamples, 0, CASE_NO_BUFFERS,
(largeBuffersCase) ? (RESULT_ASYMPTOTIC_TRANSFER_RATE) : (RESULT_MEDIAN_TRANSFER_RATE))
, m_dstBuf()
{
disableGLWarmup();
}
ReferenceMemcpyCase::~ReferenceMemcpyCase(void)
{
}
void ReferenceMemcpyCase::init(void)
{
// Describe what the test tries to do
m_testCtx.getLog() << tcu::TestLog::Message << "Testing performance of memcpy()." << tcu::TestLog::EndMessage;
m_dstBuf.resize(m_bufferSizeMax, 0x00);
BasicUploadCase<SingleOperationDuration>::init();
}
void ReferenceMemcpyCase::deinit(void)
{
m_dstBuf = std::vector<uint8_t>();
BasicUploadCase<SingleOperationDuration>::deinit();
}
void ReferenceMemcpyCase::testBufferUpload(UploadSampleResult<SingleOperationDuration> &result, int bufferSize)
{
// write
result.duration.totalDuration = medianTimeMemcpy(&m_dstBuf[0], &m_zeroData[0], bufferSize);
result.duration.fitResponseDuration = result.duration.totalDuration;
result.writtenSize = bufferSize;
}
class BufferDataUploadCase : public BasicUploadCase<SingleOperationDuration>
{
public:
BufferDataUploadCase(Context &ctx, const char *name, const char *desc, int minBufferSize, int maxBufferSize,
int numSamples, uint32_t bufferUsage, CaseType caseType);
~BufferDataUploadCase(void);
void init(void);
private:
void testBufferUpload(UploadSampleResult<SingleOperationDuration> &result, int bufferSize);
};
BufferDataUploadCase::BufferDataUploadCase(Context &ctx, const char *name, const char *desc, int minBufferSize,
int maxBufferSize, int numSamples, uint32_t bufferUsage, CaseType caseType)
: BasicUploadCase<SingleOperationDuration>(ctx, name, desc, minBufferSize, maxBufferSize, numSamples, bufferUsage,
caseType, RESULT_MEDIAN_TRANSFER_RATE)
{
}
BufferDataUploadCase::~BufferDataUploadCase(void)
{
}
void BufferDataUploadCase::init(void)
{
// Describe what the test tries to do
m_testCtx.getLog() << tcu::TestLog::Message << "Testing glBufferData() function." << tcu::TestLog::EndMessage;
BasicUploadCase<SingleOperationDuration>::init();
}
void BufferDataUploadCase::testBufferUpload(UploadSampleResult<SingleOperationDuration> &result, int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
// upload
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &m_zeroData[0], m_bufferUsage);
endTime = deGetMicroseconds();
result.duration.totalDuration = endTime - startTime;
result.duration.fitResponseDuration = result.duration.totalDuration;
result.writtenSize = bufferSize;
}
}
class BufferSubDataUploadCase : public BasicUploadCase<SingleOperationDuration>
{
public:
enum Flags
{
FLAG_FULL_UPLOAD = 0x01,
FLAG_PARTIAL_UPLOAD = 0x02,
FLAG_INVALIDATE_BEFORE_USE = 0x04,
};
BufferSubDataUploadCase(Context &ctx, const char *name, const char *desc, int minBufferSize, int maxBufferSize,
int numSamples, uint32_t bufferUsage, CaseType parentCase, int flags);
~BufferSubDataUploadCase(void);
void init(void);
private:
void testBufferUpload(UploadSampleResult<SingleOperationDuration> &result, int bufferSize);
const bool m_fullUpload;
const bool m_invalidateBeforeUse;
};
BufferSubDataUploadCase::BufferSubDataUploadCase(Context &ctx, const char *name, const char *desc, int minBufferSize,
int maxBufferSize, int numSamples, uint32_t bufferUsage,
CaseType parentCase, int flags)
: BasicUploadCase<SingleOperationDuration>(ctx, name, desc, minBufferSize, maxBufferSize, numSamples, bufferUsage,
parentCase, RESULT_MEDIAN_TRANSFER_RATE)
, m_fullUpload((flags & FLAG_FULL_UPLOAD) != 0)
, m_invalidateBeforeUse((flags & FLAG_INVALIDATE_BEFORE_USE) != 0)
{
DE_ASSERT((flags & (FLAG_FULL_UPLOAD | FLAG_PARTIAL_UPLOAD)) != 0);
DE_ASSERT((flags & (FLAG_FULL_UPLOAD | FLAG_PARTIAL_UPLOAD)) != (FLAG_FULL_UPLOAD | FLAG_PARTIAL_UPLOAD));
}
BufferSubDataUploadCase::~BufferSubDataUploadCase(void)
{
}
void BufferSubDataUploadCase::init(void)
{
// Describe what the test tries to do
m_testCtx.getLog() << tcu::TestLog::Message << "Testing glBufferSubData() function call performance. "
<< ((m_fullUpload) ? ("The whole buffer is updated with glBufferSubData. ") :
("Half of the buffer data is updated with glBufferSubData. "))
<< ((m_invalidateBeforeUse) ?
("The buffer is cleared with glBufferData(..., NULL) before glBufferSubData upload.") :
(""))
<< "\n"
<< tcu::TestLog::EndMessage;
BasicUploadCase<SingleOperationDuration>::init();
}
void BufferSubDataUploadCase::testBufferUpload(UploadSampleResult<SingleOperationDuration> &result, int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
// "invalidate", upload null
if (m_invalidateBeforeUse)
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, nullptr, m_bufferUsage);
// upload
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
if (m_fullUpload)
gl.bufferSubData(GL_ARRAY_BUFFER, 0, bufferSize, &m_zeroData[0]);
else
{
// upload to buffer center
gl.bufferSubData(GL_ARRAY_BUFFER, bufferSize / 4, bufferSize / 2, &m_zeroData[0]);
}
endTime = deGetMicroseconds();
result.duration.totalDuration = endTime - startTime;
result.duration.fitResponseDuration = result.duration.totalDuration;
if (m_fullUpload)
result.writtenSize = bufferSize;
else
result.writtenSize = bufferSize / 2;
}
}
class MapBufferRangeCase : public BasicUploadCase<MapBufferRangeDuration>
{
public:
enum Flags
{
FLAG_PARTIAL = 0x01,
FLAG_MANUAL_INVALIDATION = 0x02,
FLAG_USE_UNUSED_UNSPECIFIED_BUFFER = 0x04,
FLAG_USE_UNUSED_SPECIFIED_BUFFER = 0x08,
};
MapBufferRangeCase(Context &ctx, const char *name, const char *desc, int minBufferSize, int maxBufferSize,
int numSamples, uint32_t bufferUsage, uint32_t mapFlags, int caseFlags);
~MapBufferRangeCase(void);
void init(void);
private:
static CaseType getBaseCaseType(int caseFlags);
static int getBaseFlags(uint32_t mapFlags, int caseFlags);
void testBufferUpload(UploadSampleResult<MapBufferRangeDuration> &result, int bufferSize);
void attemptBufferMap(UploadSampleResult<MapBufferRangeDuration> &result, int bufferSize);
const bool m_manualInvalidation;
const bool m_fullUpload;
const bool m_useUnusedUnspecifiedBuffer;
const bool m_useUnusedSpecifiedBuffer;
const uint32_t m_mapFlags;
int m_unmapFailures;
};
MapBufferRangeCase::MapBufferRangeCase(Context &ctx, const char *name, const char *desc, int minBufferSize,
int maxBufferSize, int numSamples, uint32_t bufferUsage, uint32_t mapFlags,
int caseFlags)
: BasicUploadCase<MapBufferRangeDuration>(ctx, name, desc, minBufferSize, maxBufferSize, numSamples, bufferUsage,
getBaseCaseType(caseFlags), RESULT_MEDIAN_TRANSFER_RATE,
getBaseFlags(mapFlags, caseFlags))
, m_manualInvalidation((caseFlags & FLAG_MANUAL_INVALIDATION) != 0)
, m_fullUpload((caseFlags & FLAG_PARTIAL) == 0)
, m_useUnusedUnspecifiedBuffer((caseFlags & FLAG_USE_UNUSED_UNSPECIFIED_BUFFER) != 0)
, m_useUnusedSpecifiedBuffer((caseFlags & FLAG_USE_UNUSED_SPECIFIED_BUFFER) != 0)
, m_mapFlags(mapFlags)
, m_unmapFailures(0)
{
DE_ASSERT(!(m_useUnusedUnspecifiedBuffer && m_useUnusedSpecifiedBuffer));
DE_ASSERT(!((m_useUnusedUnspecifiedBuffer || m_useUnusedSpecifiedBuffer) && m_manualInvalidation));
}
MapBufferRangeCase::~MapBufferRangeCase(void)
{
}
void MapBufferRangeCase::init(void)
{
// Describe what the test tries to do
m_testCtx.getLog()
<< tcu::TestLog::Message << "Testing glMapBufferRange() and glUnmapBuffer() function call performance.\n"
<< ((m_fullUpload) ? ("The whole buffer is mapped.") : ("Half of the buffer is mapped.")) << "\n"
<< ((m_useUnusedUnspecifiedBuffer) ?
("The buffer has not been used before mapping and is allocated with unspecified contents.\n") :
(""))
<< ((m_useUnusedSpecifiedBuffer) ?
("The buffer has not been used before mapping and is allocated with specified contents.\n") :
(""))
<< ((!m_useUnusedSpecifiedBuffer && !m_useUnusedUnspecifiedBuffer) ?
("The buffer has previously been used in a drawing operation.\n") :
(""))
<< ((m_manualInvalidation) ? ("The buffer is cleared with glBufferData(..., NULL) before mapping.\n") : (""))
<< "Map bits:\n"
<< ((m_mapFlags & GL_MAP_WRITE_BIT) ? ("\tGL_MAP_WRITE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_READ_BIT) ? ("\tGL_MAP_READ_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_RANGE_BIT) ? ("\tGL_MAP_INVALIDATE_RANGE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) ? ("\tGL_MAP_INVALIDATE_BUFFER_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_UNSYNCHRONIZED_BIT) ? ("\tGL_MAP_UNSYNCHRONIZED_BIT\n") : (""))
<< tcu::TestLog::EndMessage;
BasicUploadCase<MapBufferRangeDuration>::init();
}
MapBufferRangeCase::CaseType MapBufferRangeCase::getBaseCaseType(int caseFlags)
{
if ((caseFlags & FLAG_USE_UNUSED_UNSPECIFIED_BUFFER) == 0 && (caseFlags & FLAG_USE_UNUSED_SPECIFIED_BUFFER) == 0)
return CASE_USED_BUFFER;
else
return CASE_NEW_BUFFER;
}
int MapBufferRangeCase::getBaseFlags(uint32_t mapFlags, int caseFlags)
{
int flags = FLAG_DONT_LOG_BUFFER_INFO;
// If buffer contains unspecified data when it is sourced (i.e drawn)
// results are undefined, and system errors may occur. Signal parent
// class to take this into account
if (caseFlags & FLAG_PARTIAL)
{
if ((mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) != 0 || (caseFlags & FLAG_MANUAL_INVALIDATION) != 0 ||
(caseFlags & FLAG_USE_UNUSED_UNSPECIFIED_BUFFER) != 0)
{
flags |= FLAG_RESULT_BUFFER_UNSPECIFIED_CONTENT;
}
}
return flags;
}
void MapBufferRangeCase::testBufferUpload(UploadSampleResult<MapBufferRangeDuration> &result, int bufferSize)
{
const int unmapFailureThreshold = 4;
for (; m_unmapFailures < unmapFailureThreshold; ++m_unmapFailures)
{
try
{
attemptBufferMap(result, bufferSize);
return;
}
catch (UnmapFailureError &)
{
}
}
throw tcu::TestError("Unmapping failures exceeded limit");
}
void MapBufferRangeCase::attemptBufferMap(UploadSampleResult<MapBufferRangeDuration> &result, int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
if (m_fullUpload)
result.writtenSize = bufferSize;
else
result.writtenSize = bufferSize / 2;
// Create unused buffer
if (m_manualInvalidation || m_useUnusedUnspecifiedBuffer)
{
uint64_t startTime;
uint64_t endTime;
// "invalidate" or allocate, upload null
startTime = deGetMicroseconds();
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, nullptr, m_bufferUsage);
endTime = deGetMicroseconds();
result.duration.allocDuration = endTime - startTime;
}
else if (m_useUnusedSpecifiedBuffer)
{
uint64_t startTime;
uint64_t endTime;
// Specify buffer contents
startTime = deGetMicroseconds();
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &m_zeroData[0], m_bufferUsage);
endTime = deGetMicroseconds();
result.duration.allocDuration = endTime - startTime;
}
else
{
// No alloc, no time
result.duration.allocDuration = 0;
}
// upload
{
void *mapPtr;
// Map
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
if (m_fullUpload)
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, 0, result.writtenSize, m_mapFlags);
else
{
// upload to buffer center
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, bufferSize / 4, result.writtenSize, m_mapFlags);
}
endTime = deGetMicroseconds();
if (!mapPtr)
throw tcu::Exception("MapBufferRange returned NULL");
result.duration.mapDuration = endTime - startTime;
}
// Write
{
result.duration.writeDuration = medianTimeMemcpy(mapPtr, &m_zeroData[0], result.writtenSize);
}
// Unmap
{
uint64_t startTime;
uint64_t endTime;
glw::GLboolean unmapSuccessful;
startTime = deGetMicroseconds();
unmapSuccessful = gl.unmapBuffer(GL_ARRAY_BUFFER);
endTime = deGetMicroseconds();
// if unmapping fails, just try again later
if (!unmapSuccessful)
throw UnmapFailureError();
result.duration.unmapDuration = endTime - startTime;
}
result.duration.totalDuration = result.duration.mapDuration + result.duration.writeDuration +
result.duration.unmapDuration + result.duration.allocDuration;
result.duration.fitResponseDuration = result.duration.totalDuration;
}
}
class MapBufferRangeFlushCase : public BasicUploadCase<MapBufferRangeFlushDuration>
{
public:
enum Flags
{
FLAG_PARTIAL = 0x01,
FLAG_FLUSH_IN_PARTS = 0x02,
FLAG_USE_UNUSED_UNSPECIFIED_BUFFER = 0x04,
FLAG_USE_UNUSED_SPECIFIED_BUFFER = 0x08,
FLAG_FLUSH_PARTIAL = 0x10,
};
MapBufferRangeFlushCase(Context &ctx, const char *name, const char *desc, int minBufferSize, int maxBufferSize,
int numSamples, uint32_t bufferUsage, uint32_t mapFlags, int caseFlags);
~MapBufferRangeFlushCase(void);
void init(void);
private:
static CaseType getBaseCaseType(int caseFlags);
static int getBaseFlags(uint32_t mapFlags, int caseFlags);
void testBufferUpload(UploadSampleResult<MapBufferRangeFlushDuration> &result, int bufferSize);
void attemptBufferMap(UploadSampleResult<MapBufferRangeFlushDuration> &result, int bufferSize);
const bool m_fullUpload;
const bool m_flushInParts;
const bool m_flushPartial;
const bool m_useUnusedUnspecifiedBuffer;
const bool m_useUnusedSpecifiedBuffer;
const uint32_t m_mapFlags;
int m_unmapFailures;
};
MapBufferRangeFlushCase::MapBufferRangeFlushCase(Context &ctx, const char *name, const char *desc, int minBufferSize,
int maxBufferSize, int numSamples, uint32_t bufferUsage,
uint32_t mapFlags, int caseFlags)
: BasicUploadCase<MapBufferRangeFlushDuration>(ctx, name, desc, minBufferSize, maxBufferSize, numSamples,
bufferUsage, getBaseCaseType(caseFlags), RESULT_MEDIAN_TRANSFER_RATE,
getBaseFlags(mapFlags, caseFlags))
, m_fullUpload((caseFlags & FLAG_PARTIAL) == 0)
, m_flushInParts((caseFlags & FLAG_FLUSH_IN_PARTS) != 0)
, m_flushPartial((caseFlags & FLAG_FLUSH_PARTIAL) != 0)
, m_useUnusedUnspecifiedBuffer((caseFlags & FLAG_USE_UNUSED_UNSPECIFIED_BUFFER) != 0)
, m_useUnusedSpecifiedBuffer((caseFlags & FLAG_USE_UNUSED_SPECIFIED_BUFFER) != 0)
, m_mapFlags(mapFlags)
, m_unmapFailures(0)
{
DE_ASSERT(!(m_flushPartial && m_flushInParts));
DE_ASSERT(!(m_flushPartial && !m_fullUpload));
}
MapBufferRangeFlushCase::~MapBufferRangeFlushCase(void)
{
}
void MapBufferRangeFlushCase::init(void)
{
// Describe what the test tries to do
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Testing glMapBufferRange(), glFlushMappedBufferRange() and glUnmapBuffer() function call performance.\n"
<< ((m_fullUpload) ? ("The whole buffer is mapped.") : ("Half of the buffer is mapped.")) << "\n"
<< ((m_flushInParts) ?
("The mapped range is partitioned to 4 subranges and each partition is flushed separately.") :
(m_flushPartial) ? ("Half of the buffer range is flushed.") :
("The whole mapped range is flushed in one flush call."))
<< "\n"
<< ((m_useUnusedUnspecifiedBuffer) ?
("The buffer has not been used before mapping and is allocated with unspecified contents.\n") :
(""))
<< ((m_useUnusedSpecifiedBuffer) ?
("The buffer has not been used before mapping and is allocated with specified contents.\n") :
(""))
<< ((!m_useUnusedSpecifiedBuffer && !m_useUnusedUnspecifiedBuffer) ?
("The buffer has previously been used in a drawing operation.\n") :
(""))
<< "Map bits:\n"
<< ((m_mapFlags & GL_MAP_WRITE_BIT) ? ("\tGL_MAP_WRITE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_READ_BIT) ? ("\tGL_MAP_READ_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_RANGE_BIT) ? ("\tGL_MAP_INVALIDATE_RANGE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) ? ("\tGL_MAP_INVALIDATE_BUFFER_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_UNSYNCHRONIZED_BIT) ? ("\tGL_MAP_UNSYNCHRONIZED_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_FLUSH_EXPLICIT_BIT) ? ("\tGL_MAP_FLUSH_EXPLICIT_BIT\n") : (""))
<< tcu::TestLog::EndMessage;
BasicUploadCase<MapBufferRangeFlushDuration>::init();
}
MapBufferRangeFlushCase::CaseType MapBufferRangeFlushCase::getBaseCaseType(int caseFlags)
{
if ((caseFlags & FLAG_USE_UNUSED_UNSPECIFIED_BUFFER) == 0 && (caseFlags & FLAG_USE_UNUSED_SPECIFIED_BUFFER) == 0)
return CASE_USED_BUFFER;
else
return CASE_NEW_BUFFER;
}
int MapBufferRangeFlushCase::getBaseFlags(uint32_t mapFlags, int caseFlags)
{
int flags = FLAG_DONT_LOG_BUFFER_INFO;
// If buffer contains unspecified data when it is sourced (i.e drawn)
// results are undefined, and system errors may occur. Signal parent
// class to take this into account
if (caseFlags & FLAG_PARTIAL)
{
if ((mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) != 0 || (caseFlags & FLAG_USE_UNUSED_UNSPECIFIED_BUFFER) != 0 ||
(caseFlags & FLAG_FLUSH_PARTIAL) != 0)
{
flags |= FLAG_RESULT_BUFFER_UNSPECIFIED_CONTENT;
}
}
return flags;
}
void MapBufferRangeFlushCase::testBufferUpload(UploadSampleResult<MapBufferRangeFlushDuration> &result, int bufferSize)
{
const int unmapFailureThreshold = 4;
for (; m_unmapFailures < unmapFailureThreshold; ++m_unmapFailures)
{
try
{
attemptBufferMap(result, bufferSize);
return;
}
catch (UnmapFailureError &)
{
}
}
throw tcu::TestError("Unmapping failures exceeded limit");
}
void MapBufferRangeFlushCase::attemptBufferMap(UploadSampleResult<MapBufferRangeFlushDuration> &result, int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int mappedSize = (m_fullUpload) ? (bufferSize) : (bufferSize / 2);
if (m_fullUpload && !m_flushPartial)
result.writtenSize = bufferSize;
else
result.writtenSize = bufferSize / 2;
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
// Create unused buffer
if (m_useUnusedUnspecifiedBuffer)
{
uint64_t startTime;
uint64_t endTime;
// Don't specify contents
startTime = deGetMicroseconds();
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, nullptr, m_bufferUsage);
endTime = deGetMicroseconds();
result.duration.allocDuration = endTime - startTime;
}
else if (m_useUnusedSpecifiedBuffer)
{
uint64_t startTime;
uint64_t endTime;
// Specify buffer contents
startTime = deGetMicroseconds();
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &m_zeroData[0], m_bufferUsage);
endTime = deGetMicroseconds();
result.duration.allocDuration = endTime - startTime;
}
else
{
// No alloc, no time
result.duration.allocDuration = 0;
}
// upload
{
void *mapPtr;
// Map
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
if (m_fullUpload)
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, 0, mappedSize, m_mapFlags);
else
{
// upload to buffer center
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, bufferSize / 4, mappedSize, m_mapFlags);
}
endTime = deGetMicroseconds();
if (!mapPtr)
throw tcu::Exception("MapBufferRange returned NULL");
result.duration.mapDuration = endTime - startTime;
}
// Write
{
if (!m_flushPartial)
result.duration.writeDuration = medianTimeMemcpy(mapPtr, &m_zeroData[0], result.writtenSize);
else
result.duration.writeDuration =
medianTimeMemcpy((uint8_t *)mapPtr + bufferSize / 4, &m_zeroData[0], result.writtenSize);
}
// Flush
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
if (m_flushPartial)
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, mappedSize / 4, mappedSize / 2);
else if (!m_flushInParts)
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, 0, mappedSize);
else
{
const int p1 = 0;
const int p2 = mappedSize / 3;
const int p3 = mappedSize / 2;
const int p4 = mappedSize * 2 / 4;
const int p5 = mappedSize;
// flush in mixed order
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, p2, p3 - p2);
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, p1, p2 - p1);
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, p4, p5 - p4);
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, p3, p4 - p3);
}
endTime = deGetMicroseconds();
result.duration.flushDuration = endTime - startTime;
}
// Unmap
{
uint64_t startTime;
uint64_t endTime;
glw::GLboolean unmapSuccessful;
startTime = deGetMicroseconds();
unmapSuccessful = gl.unmapBuffer(GL_ARRAY_BUFFER);
endTime = deGetMicroseconds();
// if unmapping fails, just try again later
if (!unmapSuccessful)
throw UnmapFailureError();
result.duration.unmapDuration = endTime - startTime;
}
result.duration.totalDuration = result.duration.mapDuration + result.duration.writeDuration +
result.duration.flushDuration + result.duration.unmapDuration +
result.duration.allocDuration;
result.duration.fitResponseDuration = result.duration.totalDuration;
}
}
template <typename SampleType>
class ModifyAfterBasicCase : public BasicBufferCase<SampleType>
{
public:
ModifyAfterBasicCase(Context &context, const char *name, const char *description, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, bool bufferUnspecifiedAfterTest);
~ModifyAfterBasicCase(void);
void init(void);
void deinit(void);
protected:
void drawBufferRange(int begin, int end);
private:
enum
{
NUM_SAMPLES = 20,
};
bool runSample(int iteration, UploadSampleResult<SampleType> &sample);
bool prepareAndRunTest(int iteration, UploadSampleResult<SampleType> &result, int bufferSize);
void logAndSetTestResult(const std::vector<UploadSampleResult<SampleType>> &results);
virtual void testWithBufferSize(UploadSampleResult<SampleType> &result, int bufferSize) = 0;
int m_unmappingErrors;
protected:
const bool m_bufferUnspecifiedAfterTest;
const uint32_t m_bufferUsage;
std::vector<uint8_t> m_zeroData;
using BasicBufferCase<SampleType>::m_testCtx;
using BasicBufferCase<SampleType>::m_context;
using BasicBufferCase<SampleType>::UNUSED_RENDER_AREA_SIZE;
using BasicBufferCase<SampleType>::m_minimalProgram;
using BasicBufferCase<SampleType>::m_minimalProgramPosLoc;
using BasicBufferCase<SampleType>::m_bufferID;
using BasicBufferCase<SampleType>::m_numSamples;
using BasicBufferCase<SampleType>::m_bufferSizeMin;
using BasicBufferCase<SampleType>::m_bufferSizeMax;
using BasicBufferCase<SampleType>::m_allocateLargerBuffer;
};
template <typename SampleType>
ModifyAfterBasicCase<SampleType>::ModifyAfterBasicCase(Context &context, const char *name, const char *description,
int bufferSizeMin, int bufferSizeMax, uint32_t usage,
bool bufferUnspecifiedAfterTest)
: BasicBufferCase<SampleType>(context, name, description, bufferSizeMin, bufferSizeMax, NUM_SAMPLES, 0)
, m_unmappingErrors(0)
, m_bufferUnspecifiedAfterTest(bufferUnspecifiedAfterTest)
, m_bufferUsage(usage)
, m_zeroData()
{
}
template <typename SampleType>
ModifyAfterBasicCase<SampleType>::~ModifyAfterBasicCase(void)
{
BasicBufferCase<SampleType>::deinit();
}
template <typename SampleType>
void ModifyAfterBasicCase<SampleType>::init(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
// init parent
BasicBufferCase<SampleType>::init();
// upload source
m_zeroData.resize(m_bufferSizeMax, 0x00);
// log basic info
m_testCtx.getLog() << tcu::TestLog::Message << "Testing performance with " << (int)NUM_SAMPLES
<< " test samples. Sample order is randomized. All samples at even positions (first = 0) are "
"tested before samples at odd positions.\n"
<< "Buffer sizes are in range [" << getHumanReadableByteSize(m_bufferSizeMin) << ", "
<< getHumanReadableByteSize(m_bufferSizeMax) << "]." << tcu::TestLog::EndMessage;
// log which transfer rate is the test result and buffer info
m_testCtx.getLog() << tcu::TestLog::Message << "Test result is the median transfer rate of the test samples.\n"
<< "Buffer usage = " << glu::getUsageName(m_bufferUsage) << tcu::TestLog::EndMessage;
// Set state for drawing so that we don't have to change these during the iteration
{
gl.useProgram(m_minimalProgram->getProgram());
gl.viewport(0, 0, UNUSED_RENDER_AREA_SIZE, UNUSED_RENDER_AREA_SIZE);
gl.enableVertexAttribArray(m_minimalProgramPosLoc);
}
}
template <typename SampleType>
void ModifyAfterBasicCase<SampleType>::deinit(void)
{
m_zeroData = std::vector<uint8_t>();
BasicBufferCase<SampleType>::deinit();
}
template <typename SampleType>
void ModifyAfterBasicCase<SampleType>::drawBufferRange(int begin, int end)
{
DE_ASSERT(begin % (int)sizeof(float[4]) == 0);
DE_ASSERT(end % (int)sizeof(float[4]) == 0);
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
// use given range
gl.drawArrays(GL_POINTS, begin / (int)sizeof(float[4]), 1);
gl.drawArrays(GL_POINTS, end / (int)sizeof(float[4]) - 1, 1);
}
template <typename SampleType>
bool ModifyAfterBasicCase<SampleType>::runSample(int iteration, UploadSampleResult<SampleType> &sample)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int bufferSize = sample.bufferSize;
bool testOk;
testOk = prepareAndRunTest(iteration, sample, bufferSize);
GLU_EXPECT_NO_ERROR(gl.getError(), "Buffer upload sample");
if (!testOk)
{
const int unmapFailureThreshold = 4;
// only unmapping error can cause iteration failure
if (++m_unmappingErrors >= unmapFailureThreshold)
throw tcu::TestError("Too many unmapping errors, cannot continue.");
// just try again
return false;
}
return true;
}
template <typename SampleType>
bool ModifyAfterBasicCase<SampleType>::prepareAndRunTest(int iteration, UploadSampleResult<SampleType> &result,
int bufferSize)
{
DE_UNREF(iteration);
DE_ASSERT(!m_bufferID);
DE_ASSERT(deIsAligned32(bufferSize, 4 * 4)); // aligned to vec4
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
bool testRunOk = true;
bool unmappingFailed = false;
// Upload initial buffer to the GPU...
gl.genBuffers(1, &m_bufferID);
gl.bindBuffer(GL_ARRAY_BUFFER, m_bufferID);
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &m_zeroData[0], m_bufferUsage);
// ...use it...
gl.vertexAttribPointer(m_minimalProgramPosLoc, 4, GL_FLOAT, GL_FALSE, 0, nullptr);
drawBufferRange(0, bufferSize);
// ..and make sure it is uploaded
BasicBufferCase<SampleType>::waitGLResults();
// warmup CPU before the test to make sure the power management governor
// keeps us in the "high performance" mode
{
deYield();
tcu::warmupCPU();
deYield();
}
// test
try
{
// buffer is uploaded to the GPU. Draw from it.
drawBufferRange(0, bufferSize);
// and test upload
testWithBufferSize(result, bufferSize);
}
catch (UnmapFailureError &)
{
testRunOk = false;
unmappingFailed = true;
}
// clean up: make sure buffer is not in upload queue and delete it
// sourcing unspecified data causes undefined results, possibly program termination
if (m_bufferUnspecifiedAfterTest || unmappingFailed)
gl.bufferData(GL_ARRAY_BUFFER, bufferSize, &m_zeroData[0], m_bufferUsage);
drawBufferRange(0, bufferSize);
BasicBufferCase<SampleType>::waitGLResults();
gl.deleteBuffers(1, &m_bufferID);
m_bufferID = 0;
return testRunOk;
}
template <typename SampleType>
void ModifyAfterBasicCase<SampleType>::logAndSetTestResult(const std::vector<UploadSampleResult<SampleType>> &results)
{
const UploadSampleAnalyzeResult analysis = analyzeSampleResults(m_testCtx.getLog(), results, false);
// Return median transfer rate of the samples
if (analysis.transferRateMedian == std::numeric_limits<float>::infinity())
{
// sample times are 1) invalid or 2) timer resolution too low
// report speed 0 bytes / s since real value cannot be determined
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(0.0f, 2).c_str());
}
else
{
// report transfer rate in MB / s
m_testCtx.setTestResult(QP_TEST_RESULT_PASS,
de::floatToString(analysis.transferRateMedian / 1024.0f / 1024.0f, 2).c_str());
}
}
class ModifyAfterWithBufferDataCase : public ModifyAfterBasicCase<SingleOperationDuration>
{
public:
enum CaseFlags
{
FLAG_RESPECIFY_SIZE = 0x1,
FLAG_UPLOAD_REPEATED = 0x2,
};
ModifyAfterWithBufferDataCase(Context &context, const char *name, const char *desc, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, int flags);
~ModifyAfterWithBufferDataCase(void);
void init(void);
void deinit(void);
private:
void testWithBufferSize(UploadSampleResult<SingleOperationDuration> &result, int bufferSize);
enum
{
NUM_REPEATS = 2
};
const bool m_respecifySize;
const bool m_repeatedUpload;
const float m_sizeDifferenceFactor;
};
ModifyAfterWithBufferDataCase::ModifyAfterWithBufferDataCase(Context &context, const char *name, const char *desc,
int bufferSizeMin, int bufferSizeMax, uint32_t usage,
int flags)
: ModifyAfterBasicCase<SingleOperationDuration>(context, name, desc, bufferSizeMin, bufferSizeMax, usage, false)
, m_respecifySize((flags & FLAG_RESPECIFY_SIZE) != 0)
, m_repeatedUpload((flags & FLAG_UPLOAD_REPEATED) != 0)
, m_sizeDifferenceFactor(1.3f)
{
DE_ASSERT(!(m_repeatedUpload && m_respecifySize));
}
ModifyAfterWithBufferDataCase::~ModifyAfterWithBufferDataCase(void)
{
deinit();
}
void ModifyAfterWithBufferDataCase::init(void)
{
// Log the purpose of the test
if (m_repeatedUpload)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Testing performance of BufferData() command after \"specify buffer contents - draw "
"buffer\" command pair is repeated "
<< (int)NUM_REPEATS << " times." << tcu::TestLog::EndMessage;
else
m_testCtx.getLog() << tcu::TestLog::Message
<< "Testing performance of BufferData() command after a draw command that sources data from "
"the target buffer."
<< tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message
<< ((m_respecifySize) ?
("Buffer size is increased and contents are modified with BufferData().\n") :
("Buffer contents are modified with BufferData().\n"))
<< tcu::TestLog::EndMessage;
// init parent
ModifyAfterBasicCase<SingleOperationDuration>::init();
// make sure our zeroBuffer is large enough
if (m_respecifySize)
{
const int largerBufferSize = deAlign32((int)((float)m_bufferSizeMax * m_sizeDifferenceFactor), 4 * 4);
m_zeroData.resize(largerBufferSize, 0x00);
}
}
void ModifyAfterWithBufferDataCase::deinit(void)
{
ModifyAfterBasicCase<SingleOperationDuration>::deinit();
}
void ModifyAfterWithBufferDataCase::testWithBufferSize(UploadSampleResult<SingleOperationDuration> &result,
int bufferSize)
{
// always draw the same amount to make compares between cases sensible
const int drawStart = deAlign32(bufferSize / 4, 4 * 4);
const int drawEnd = deAlign32(bufferSize * 3 / 4, 4 * 4);
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int largerBufferSize = deAlign32((int)((float)bufferSize * m_sizeDifferenceFactor), 4 * 4);
const int newBufferSize = (m_respecifySize) ? (largerBufferSize) : (bufferSize);
uint64_t startTime;
uint64_t endTime;
// repeat upload-draw
if (m_repeatedUpload)
{
for (int repeatNdx = 0; repeatNdx < NUM_REPEATS; ++repeatNdx)
{
gl.bufferData(GL_ARRAY_BUFFER, newBufferSize, &m_zeroData[0], m_bufferUsage);
drawBufferRange(drawStart, drawEnd);
}
}
// test upload
startTime = deGetMicroseconds();
gl.bufferData(GL_ARRAY_BUFFER, newBufferSize, &m_zeroData[0], m_bufferUsage);
endTime = deGetMicroseconds();
result.duration.totalDuration = endTime - startTime;
result.duration.fitResponseDuration = result.duration.totalDuration;
result.writtenSize = newBufferSize;
}
class ModifyAfterWithBufferSubDataCase : public ModifyAfterBasicCase<SingleOperationDuration>
{
public:
enum CaseFlags
{
FLAG_PARTIAL = 0x1,
FLAG_UPLOAD_REPEATED = 0x2,
};
ModifyAfterWithBufferSubDataCase(Context &context, const char *name, const char *desc, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, int flags);
~ModifyAfterWithBufferSubDataCase(void);
void init(void);
void deinit(void);
private:
void testWithBufferSize(UploadSampleResult<SingleOperationDuration> &result, int bufferSize);
enum
{
NUM_REPEATS = 2
};
const bool m_partialUpload;
const bool m_repeatedUpload;
};
ModifyAfterWithBufferSubDataCase::ModifyAfterWithBufferSubDataCase(Context &context, const char *name, const char *desc,
int bufferSizeMin, int bufferSizeMax, uint32_t usage,
int flags)
: ModifyAfterBasicCase<SingleOperationDuration>(context, name, desc, bufferSizeMin, bufferSizeMax, usage, false)
, m_partialUpload((flags & FLAG_PARTIAL) != 0)
, m_repeatedUpload((flags & FLAG_UPLOAD_REPEATED) != 0)
{
}
ModifyAfterWithBufferSubDataCase::~ModifyAfterWithBufferSubDataCase(void)
{
deinit();
}
void ModifyAfterWithBufferSubDataCase::init(void)
{
// Log the purpose of the test
if (m_repeatedUpload)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Testing performance of BufferSubData() command after \"specify buffer contents - draw "
"buffer\" command pair is repeated "
<< (int)NUM_REPEATS << " times." << tcu::TestLog::EndMessage;
else
m_testCtx.getLog() << tcu::TestLog::Message
<< "Testing performance of BufferSubData() command after a draw command that sources data "
"from the target buffer."
<< tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message
<< ((m_partialUpload) ? ("Half of the buffer contents are modified.\n") :
("Buffer contents are fully respecified.\n"))
<< tcu::TestLog::EndMessage;
ModifyAfterBasicCase<SingleOperationDuration>::init();
}
void ModifyAfterWithBufferSubDataCase::deinit(void)
{
ModifyAfterBasicCase<SingleOperationDuration>::deinit();
}
void ModifyAfterWithBufferSubDataCase::testWithBufferSize(UploadSampleResult<SingleOperationDuration> &result,
int bufferSize)
{
// always draw the same amount to make compares between cases sensible
const int drawStart = deAlign32(bufferSize / 4, 4 * 4);
const int drawEnd = deAlign32(bufferSize * 3 / 4, 4 * 4);
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int subdataOffset = deAlign32((m_partialUpload) ? (bufferSize / 4) : (0), 4 * 4);
const int subdataSize = deAlign32((m_partialUpload) ? (bufferSize / 2) : (bufferSize), 4 * 4);
uint64_t startTime;
uint64_t endTime;
// make upload-draw stream
if (m_repeatedUpload)
{
for (int repeatNdx = 0; repeatNdx < NUM_REPEATS; ++repeatNdx)
{
gl.bufferSubData(GL_ARRAY_BUFFER, subdataOffset, subdataSize, &m_zeroData[0]);
drawBufferRange(drawStart, drawEnd);
}
}
// test upload
startTime = deGetMicroseconds();
gl.bufferSubData(GL_ARRAY_BUFFER, subdataOffset, subdataSize, &m_zeroData[0]);
endTime = deGetMicroseconds();
result.duration.totalDuration = endTime - startTime;
result.duration.fitResponseDuration = result.duration.totalDuration;
result.writtenSize = subdataSize;
}
class ModifyAfterWithMapBufferRangeCase : public ModifyAfterBasicCase<MapBufferRangeDurationNoAlloc>
{
public:
enum CaseFlags
{
FLAG_PARTIAL = 0x1,
};
ModifyAfterWithMapBufferRangeCase(Context &context, const char *name, const char *desc, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, int flags, uint32_t glMapFlags);
~ModifyAfterWithMapBufferRangeCase(void);
void init(void);
void deinit(void);
private:
static bool isBufferUnspecifiedAfterUpload(int flags, uint32_t mapFlags);
void testWithBufferSize(UploadSampleResult<MapBufferRangeDurationNoAlloc> &result, int bufferSize);
const bool m_partialUpload;
const uint32_t m_mapFlags;
};
ModifyAfterWithMapBufferRangeCase::ModifyAfterWithMapBufferRangeCase(Context &context, const char *name,
const char *desc, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, int flags,
uint32_t glMapFlags)
: ModifyAfterBasicCase<MapBufferRangeDurationNoAlloc>(context, name, desc, bufferSizeMin, bufferSizeMax, usage,
isBufferUnspecifiedAfterUpload(flags, glMapFlags))
, m_partialUpload((flags & FLAG_PARTIAL) != 0)
, m_mapFlags(glMapFlags)
{
}
ModifyAfterWithMapBufferRangeCase::~ModifyAfterWithMapBufferRangeCase(void)
{
deinit();
}
void ModifyAfterWithMapBufferRangeCase::init(void)
{
// Log the purpose of the test
m_testCtx.getLog() << tcu::TestLog::Message
<< "Testing performance of MapBufferRange() command after a draw command that sources data from "
"the target buffer.\n"
<< ((m_partialUpload) ? ("Half of the buffer is mapped.\n") : ("Whole buffer is mapped.\n"))
<< "Map bits:\n"
<< ((m_mapFlags & GL_MAP_WRITE_BIT) ? ("\tGL_MAP_WRITE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_READ_BIT) ? ("\tGL_MAP_READ_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_RANGE_BIT) ? ("\tGL_MAP_INVALIDATE_RANGE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) ? ("\tGL_MAP_INVALIDATE_BUFFER_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_UNSYNCHRONIZED_BIT) ? ("\tGL_MAP_UNSYNCHRONIZED_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_FLUSH_EXPLICIT_BIT) ? ("\tGL_MAP_FLUSH_EXPLICIT_BIT\n") : (""))
<< tcu::TestLog::EndMessage;
ModifyAfterBasicCase<MapBufferRangeDurationNoAlloc>::init();
}
void ModifyAfterWithMapBufferRangeCase::deinit(void)
{
ModifyAfterBasicCase<MapBufferRangeDurationNoAlloc>::deinit();
}
bool ModifyAfterWithMapBufferRangeCase::isBufferUnspecifiedAfterUpload(int flags, uint32_t mapFlags)
{
if ((flags & FLAG_PARTIAL) != 0 && ((mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) != 0))
return true;
return false;
}
void ModifyAfterWithMapBufferRangeCase::testWithBufferSize(UploadSampleResult<MapBufferRangeDurationNoAlloc> &result,
int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int subdataOffset = deAlign32((m_partialUpload) ? (bufferSize / 4) : (0), 4 * 4);
const int subdataSize = deAlign32((m_partialUpload) ? (bufferSize / 2) : (bufferSize), 4 * 4);
void *mapPtr;
// map
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, subdataOffset, subdataSize, m_mapFlags);
endTime = deGetMicroseconds();
if (!mapPtr)
throw tcu::TestError("mapBufferRange returned null");
result.duration.mapDuration = endTime - startTime;
}
// write
{
result.duration.writeDuration = medianTimeMemcpy(mapPtr, &m_zeroData[0], subdataSize);
}
// unmap
{
uint64_t startTime;
uint64_t endTime;
glw::GLboolean unmapSucceeded;
startTime = deGetMicroseconds();
unmapSucceeded = gl.unmapBuffer(GL_ARRAY_BUFFER);
endTime = deGetMicroseconds();
if (unmapSucceeded != GL_TRUE)
throw UnmapFailureError();
result.duration.unmapDuration = endTime - startTime;
}
result.duration.totalDuration =
result.duration.mapDuration + result.duration.writeDuration + result.duration.unmapDuration;
result.duration.fitResponseDuration = result.duration.totalDuration;
result.writtenSize = subdataSize;
}
class ModifyAfterWithMapBufferFlushCase : public ModifyAfterBasicCase<MapBufferRangeFlushDurationNoAlloc>
{
public:
enum CaseFlags
{
FLAG_PARTIAL = 0x1,
};
ModifyAfterWithMapBufferFlushCase(Context &context, const char *name, const char *desc, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, int flags, uint32_t glMapFlags);
~ModifyAfterWithMapBufferFlushCase(void);
void init(void);
void deinit(void);
private:
static bool isBufferUnspecifiedAfterUpload(int flags, uint32_t mapFlags);
void testWithBufferSize(UploadSampleResult<MapBufferRangeFlushDurationNoAlloc> &result, int bufferSize);
const bool m_partialUpload;
const uint32_t m_mapFlags;
};
ModifyAfterWithMapBufferFlushCase::ModifyAfterWithMapBufferFlushCase(Context &context, const char *name,
const char *desc, int bufferSizeMin,
int bufferSizeMax, uint32_t usage, int flags,
uint32_t glMapFlags)
: ModifyAfterBasicCase<MapBufferRangeFlushDurationNoAlloc>(context, name, desc, bufferSizeMin, bufferSizeMax, usage,
isBufferUnspecifiedAfterUpload(flags, glMapFlags))
, m_partialUpload((flags & FLAG_PARTIAL) != 0)
, m_mapFlags(glMapFlags)
{
}
ModifyAfterWithMapBufferFlushCase::~ModifyAfterWithMapBufferFlushCase(void)
{
deinit();
}
void ModifyAfterWithMapBufferFlushCase::init(void)
{
// Log the purpose of the test
m_testCtx.getLog() << tcu::TestLog::Message
<< "Testing performance of MapBufferRange() command after a draw command that sources data from "
"the target buffer.\n"
<< ((m_partialUpload) ? ("Half of the buffer is mapped.\n") : ("Whole buffer is mapped.\n"))
<< "Map bits:\n"
<< ((m_mapFlags & GL_MAP_WRITE_BIT) ? ("\tGL_MAP_WRITE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_READ_BIT) ? ("\tGL_MAP_READ_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_RANGE_BIT) ? ("\tGL_MAP_INVALIDATE_RANGE_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) ? ("\tGL_MAP_INVALIDATE_BUFFER_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_UNSYNCHRONIZED_BIT) ? ("\tGL_MAP_UNSYNCHRONIZED_BIT\n") : (""))
<< ((m_mapFlags & GL_MAP_FLUSH_EXPLICIT_BIT) ? ("\tGL_MAP_FLUSH_EXPLICIT_BIT\n") : (""))
<< tcu::TestLog::EndMessage;
ModifyAfterBasicCase<MapBufferRangeFlushDurationNoAlloc>::init();
}
void ModifyAfterWithMapBufferFlushCase::deinit(void)
{
ModifyAfterBasicCase<MapBufferRangeFlushDurationNoAlloc>::deinit();
}
bool ModifyAfterWithMapBufferFlushCase::isBufferUnspecifiedAfterUpload(int flags, uint32_t mapFlags)
{
if ((flags & FLAG_PARTIAL) != 0 && ((mapFlags & GL_MAP_INVALIDATE_BUFFER_BIT) != 0))
return true;
return false;
}
void ModifyAfterWithMapBufferFlushCase::testWithBufferSize(
UploadSampleResult<MapBufferRangeFlushDurationNoAlloc> &result, int bufferSize)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int subdataOffset = deAlign32((m_partialUpload) ? (bufferSize / 4) : (0), 4 * 4);
const int subdataSize = deAlign32((m_partialUpload) ? (bufferSize / 2) : (bufferSize), 4 * 4);
void *mapPtr;
// map
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, subdataOffset, subdataSize, m_mapFlags);
endTime = deGetMicroseconds();
if (!mapPtr)
throw tcu::TestError("mapBufferRange returned null");
result.duration.mapDuration = endTime - startTime;
}
// write
{
result.duration.writeDuration = medianTimeMemcpy(mapPtr, &m_zeroData[0], subdataSize);
}
// flush
{
uint64_t startTime;
uint64_t endTime;
startTime = deGetMicroseconds();
gl.flushMappedBufferRange(GL_ARRAY_BUFFER, 0, subdataSize);
endTime = deGetMicroseconds();
result.duration.flushDuration = endTime - startTime;
}
// unmap
{
uint64_t startTime;
uint64_t endTime;
glw::GLboolean unmapSucceeded;
startTime = deGetMicroseconds();
unmapSucceeded = gl.unmapBuffer(GL_ARRAY_BUFFER);
endTime = deGetMicroseconds();
if (unmapSucceeded != GL_TRUE)
throw UnmapFailureError();
result.duration.unmapDuration = endTime - startTime;
}
result.duration.totalDuration = result.duration.mapDuration + result.duration.writeDuration +
result.duration.unmapDuration + result.duration.flushDuration;
result.duration.fitResponseDuration = result.duration.totalDuration;
result.writtenSize = subdataSize;
}
enum DrawMethod
{
DRAWMETHOD_DRAW_ARRAYS = 0,
DRAWMETHOD_DRAW_ELEMENTS,
DRAWMETHOD_LAST
};
enum TargetBuffer
{
TARGETBUFFER_VERTEX = 0,
TARGETBUFFER_INDEX,
TARGETBUFFER_LAST
};
enum BufferState
{
BUFFERSTATE_NEW = 0,
BUFFERSTATE_EXISTING,
BUFFERSTATE_LAST
};
enum UploadMethod
{
UPLOADMETHOD_BUFFER_DATA = 0,
UPLOADMETHOD_BUFFER_SUB_DATA,
UPLOADMETHOD_MAP_BUFFER_RANGE,
UPLOADMETHOD_LAST
};
enum UnrelatedBufferType
{
UNRELATEDBUFFERTYPE_NONE = 0,
UNRELATEDBUFFERTYPE_VERTEX,
UNRELATEDBUFFERTYPE_LAST
};
enum UploadRange
{
UPLOADRANGE_FULL = 0,
UPLOADRANGE_PARTIAL,
UPLOADRANGE_LAST
};
struct LayeredGridSpec
{
int gridWidth;
int gridHeight;
int gridLayers;
};
static int getLayeredGridNumVertices(const LayeredGridSpec &scene)
{
return scene.gridWidth * scene.gridHeight * scene.gridLayers * 6;
}
static void generateLayeredGridVertexAttribData4C4V(std::vector<tcu::Vec4> &vertexData, const LayeredGridSpec &scene)
{
// interleave color & vertex data
const tcu::Vec4 green(0.0f, 1.0f, 0.0f, 0.7f);
const tcu::Vec4 yellow(1.0f, 1.0f, 0.0f, 0.8f);
vertexData.resize(getLayeredGridNumVertices(scene) * 2);
for (int cellY = 0; cellY < scene.gridHeight; ++cellY)
for (int cellX = 0; cellX < scene.gridWidth; ++cellX)
for (int cellZ = 0; cellZ < scene.gridLayers; ++cellZ)
{
const tcu::Vec4 color = (((cellX + cellY + cellZ) % 2) == 0) ? (green) : (yellow);
const float cellLeft = (float(cellX) / (float)scene.gridWidth - 0.5f) * 2.0f;
const float cellRight = (float(cellX + 1) / (float)scene.gridWidth - 0.5f) * 2.0f;
const float cellTop = (float(cellY + 1) / (float)scene.gridHeight - 0.5f) * 2.0f;
const float cellBottom = (float(cellY) / (float)scene.gridHeight - 0.5f) * 2.0f;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 0] =
color;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 1] =
tcu::Vec4(cellLeft, cellTop, 0.0f, 1.0f);
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 2] =
color;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 3] =
tcu::Vec4(cellLeft, cellBottom, 0.0f, 1.0f);
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 4] =
color;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 5] =
tcu::Vec4(cellRight, cellBottom, 0.0f, 1.0f);
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 6] =
color;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 7] =
tcu::Vec4(cellLeft, cellTop, 0.0f, 1.0f);
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 8] =
color;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 9] =
tcu::Vec4(cellRight, cellBottom, 0.0f, 1.0f);
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 10] =
color;
vertexData[(cellY * scene.gridWidth * scene.gridLayers + cellX * scene.gridLayers + cellZ) * 12 + 11] =
tcu::Vec4(cellRight, cellTop, 0.0f, 1.0f);
}
}
static void generateLayeredGridIndexData(std::vector<uint32_t> &indexData, const LayeredGridSpec &scene)
{
indexData.resize(getLayeredGridNumVertices(scene) * 2);
for (int ndx = 0; ndx < scene.gridLayers * scene.gridHeight * scene.gridWidth * 6; ++ndx)
indexData[ndx] = ndx;
}
class RenderPerformanceTestBase : public TestCase
{
public:
RenderPerformanceTestBase(Context &context, const char *name, const char *description);
~RenderPerformanceTestBase(void);
protected:
void init(void);
void deinit(void);
void waitGLResults(void) const;
void setupVertexAttribs(void) const;
enum
{
RENDER_AREA_SIZE = 128
};
private:
glu::ShaderProgram *m_renderProgram;
int m_colorLoc;
int m_positionLoc;
};
RenderPerformanceTestBase::RenderPerformanceTestBase(Context &context, const char *name, const char *description)
: TestCase(context, tcu::NODETYPE_PERFORMANCE, name, description)
, m_renderProgram(nullptr)
, m_colorLoc(0)
, m_positionLoc(0)
{
}
RenderPerformanceTestBase::~RenderPerformanceTestBase(void)
{
deinit();
}
void RenderPerformanceTestBase::init(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
m_renderProgram = new glu::ShaderProgram(m_context.getRenderContext(),
glu::ProgramSources() << glu::VertexSource(s_colorVertexShader)
<< glu::FragmentSource(s_colorFragmentShader));
if (!m_renderProgram->isOk())
{
m_testCtx.getLog() << *m_renderProgram;
throw tcu::TestError("could not build program");
}
m_colorLoc = gl.getAttribLocation(m_renderProgram->getProgram(), "a_color");
m_positionLoc = gl.getAttribLocation(m_renderProgram->getProgram(), "a_position");
if (m_colorLoc == -1)
throw tcu::TestError("Location of attribute a_color was -1");
if (m_positionLoc == -1)
throw tcu::TestError("Location of attribute a_position was -1");
}
void RenderPerformanceTestBase::deinit(void)
{
delete m_renderProgram;
m_renderProgram = nullptr;
}
void RenderPerformanceTestBase::setupVertexAttribs(void) const
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
// buffers are bound
gl.enableVertexAttribArray(m_colorLoc);
gl.enableVertexAttribArray(m_positionLoc);
gl.vertexAttribPointer(m_colorLoc, 4, GL_FLOAT, GL_FALSE, (glw::GLsizei)(8 * sizeof(float)),
glu::BufferOffsetAsPointer(0 * sizeof(tcu::Vec4)));
gl.vertexAttribPointer(m_positionLoc, 4, GL_FLOAT, GL_FALSE, (glw::GLsizei)(8 * sizeof(float)),
glu::BufferOffsetAsPointer(1 * sizeof(tcu::Vec4)));
gl.useProgram(m_renderProgram->getProgram());
GLU_EXPECT_NO_ERROR(gl.getError(), "set up rendering");
}
void RenderPerformanceTestBase::waitGLResults(void) const
{
tcu::Surface unusedSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
glu::readPixels(m_context.getRenderContext(), 0, 0, unusedSurface.getAccess());
}
template <typename SampleType>
class RenderCase : public RenderPerformanceTestBase
{
public:
RenderCase(Context &context, const char *name, const char *description, DrawMethod drawMethod);
~RenderCase(void);
protected:
void init(void);
void deinit(void);
private:
IterateResult iterate(void);
protected:
struct SampleResult
{
LayeredGridSpec scene;
RenderSampleResult<SampleType> result;
};
int getMinWorkloadSize(void) const;
int getMaxWorkloadSize(void) const;
int getMinWorkloadDataSize(void) const;
int getMaxWorkloadDataSize(void) const;
int getVertexDataSize(void) const;
int getNumSamples(void) const;
void uploadScene(const LayeredGridSpec &scene);
virtual void runSample(SampleResult &sample) = 0;
virtual void logAndSetTestResult(const std::vector<SampleResult> &results);
void mapResultsToRenderRateFormat(std::vector<RenderSampleResult<SampleType>> &dst,
const std::vector<SampleResult> &src) const;
const DrawMethod m_drawMethod;
private:
glw::GLuint m_attributeBufferID;
glw::GLuint m_indexBufferID;
int m_iterationNdx;
std::vector<int> m_iterationOrder;
std::vector<SampleResult> m_results;
int m_numUnmapFailures;
};
template <typename SampleType>
RenderCase<SampleType>::RenderCase(Context &context, const char *name, const char *description, DrawMethod drawMethod)
: RenderPerformanceTestBase(context, name, description)
, m_drawMethod(drawMethod)
, m_attributeBufferID(0)
, m_indexBufferID(0)
, m_iterationNdx(0)
, m_numUnmapFailures(0)
{
DE_ASSERT(drawMethod < DRAWMETHOD_LAST);
}
template <typename SampleType>
RenderCase<SampleType>::~RenderCase(void)
{
deinit();
}
template <typename SampleType>
void RenderCase<SampleType>::init(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
RenderPerformanceTestBase::init();
// requirements
if (m_context.getRenderTarget().getWidth() < RENDER_AREA_SIZE ||
m_context.getRenderTarget().getHeight() < RENDER_AREA_SIZE)
throw tcu::NotSupportedError("Test case requires " + de::toString<int>(RENDER_AREA_SIZE) + "x" +
de::toString<int>(RENDER_AREA_SIZE) + " render target");
// gl state
gl.viewport(0, 0, RENDER_AREA_SIZE, RENDER_AREA_SIZE);
// enable bleding to prevent grid layers from being discarded
gl.blendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
gl.blendEquation(GL_FUNC_ADD);
gl.enable(GL_BLEND);
// generate iterations
{
const int gridSizes[] = {20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128};
for (int gridNdx = 0; gridNdx < DE_LENGTH_OF_ARRAY(gridSizes); ++gridNdx)
{
m_results.push_back(SampleResult());
m_results.back().scene.gridHeight = gridSizes[gridNdx];
m_results.back().scene.gridWidth = gridSizes[gridNdx];
m_results.back().scene.gridLayers = 5;
m_results.back().result.numVertices = getLayeredGridNumVertices(m_results.back().scene);
// test cases set these, initialize to unused values
m_results.back().result.renderDataSize = -1;
m_results.back().result.uploadedDataSize = -1;
m_results.back().result.unrelatedDataSize = -1;
}
}
// randomize iteration order
{
m_iterationOrder.resize(m_results.size());
generateTwoPassRandomIterationOrder(m_iterationOrder, (int)m_iterationOrder.size());
}
}
template <typename SampleType>
void RenderCase<SampleType>::deinit(void)
{
RenderPerformanceTestBase::deinit();
if (m_attributeBufferID)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_attributeBufferID);
m_attributeBufferID = 0;
}
if (m_indexBufferID)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_indexBufferID);
m_indexBufferID = 0;
}
}
template <typename SampleType>
typename RenderCase<SampleType>::IterateResult RenderCase<SampleType>::iterate(void)
{
const int unmapFailureThreshold = 3;
const int currentIteration = m_iterationNdx;
const int currentConfigNdx = m_iterationOrder[currentIteration];
SampleResult &currentSample = m_results[currentConfigNdx];
try
{
runSample(currentSample);
++m_iterationNdx;
}
catch (const UnmapFailureError &ex)
{
DE_UNREF(ex);
++m_numUnmapFailures;
}
if (m_numUnmapFailures > unmapFailureThreshold)
throw tcu::TestError("Got too many unmap errors");
if (m_iterationNdx < (int)m_iterationOrder.size())
return CONTINUE;
logAndSetTestResult(m_results);
return STOP;
}
template <typename SampleType>
int RenderCase<SampleType>::getMinWorkloadSize(void) const
{
int result = getLayeredGridNumVertices(m_results[0].scene);
for (int ndx = 1; ndx < (int)m_results.size(); ++ndx)
{
const int workloadSize = getLayeredGridNumVertices(m_results[ndx].scene);
result = de::min(result, workloadSize);
}
return result;
}
template <typename SampleType>
int RenderCase<SampleType>::getMaxWorkloadSize(void) const
{
int result = getLayeredGridNumVertices(m_results[0].scene);
for (int ndx = 1; ndx < (int)m_results.size(); ++ndx)
{
const int workloadSize = getLayeredGridNumVertices(m_results[ndx].scene);
result = de::max(result, workloadSize);
}
return result;
}
template <typename SampleType>
int RenderCase<SampleType>::getMinWorkloadDataSize(void) const
{
return getMinWorkloadSize() * getVertexDataSize();
}
template <typename SampleType>
int RenderCase<SampleType>::getMaxWorkloadDataSize(void) const
{
return getMaxWorkloadSize() * getVertexDataSize();
}
template <typename SampleType>
int RenderCase<SampleType>::getVertexDataSize(void) const
{
const int numVectors = 2;
const int vec4Size = 4 * sizeof(float);
return numVectors * vec4Size;
}
template <typename SampleType>
int RenderCase<SampleType>::getNumSamples(void) const
{
return (int)m_results.size();
}
template <typename SampleType>
void RenderCase<SampleType>::uploadScene(const LayeredGridSpec &scene)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
// vertex buffer
{
std::vector<tcu::Vec4> vertexData;
generateLayeredGridVertexAttribData4C4V(vertexData, scene);
if (m_attributeBufferID == 0)
gl.genBuffers(1, &m_attributeBufferID);
gl.bindBuffer(GL_ARRAY_BUFFER, m_attributeBufferID);
gl.bufferData(GL_ARRAY_BUFFER, (int)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0], GL_STATIC_DRAW);
}
// index buffer
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
{
std::vector<uint32_t> indexData;
generateLayeredGridIndexData(indexData, scene);
if (m_indexBufferID == 0)
gl.genBuffers(1, &m_indexBufferID);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBufferID);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (int)(indexData.size() * sizeof(uint32_t)), &indexData[0],
GL_STATIC_DRAW);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "create buffers");
}
template <typename SampleType>
void RenderCase<SampleType>::logAndSetTestResult(const std::vector<SampleResult> &results)
{
std::vector<RenderSampleResult<SampleType>> mappedResults;
mapResultsToRenderRateFormat(mappedResults, results);
{
const RenderSampleAnalyzeResult analysis = analyzeSampleResults(m_testCtx.getLog(), mappedResults);
const float rate = analysis.renderRateAtRange;
if (rate == std::numeric_limits<float>::infinity())
{
// sample times are 1) invalid or 2) timer resolution too low
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(0.0f, 2).c_str());
}
else
{
// report transfer rate in millions of MiB/s
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(rate / 1024.0f / 1024.0f, 2).c_str());
}
}
}
template <typename SampleType>
void RenderCase<SampleType>::mapResultsToRenderRateFormat(std::vector<RenderSampleResult<SampleType>> &dst,
const std::vector<SampleResult> &src) const
{
dst.resize(src.size());
for (int ndx = 0; ndx < (int)src.size(); ++ndx)
dst[ndx] = src[ndx].result;
}
class ReferenceRenderTimeCase : public RenderCase<RenderReadDuration>
{
public:
ReferenceRenderTimeCase(Context &context, const char *name, const char *description, DrawMethod drawMethod);
private:
void init(void);
void runSample(SampleResult &sample);
};
ReferenceRenderTimeCase::ReferenceRenderTimeCase(Context &context, const char *name, const char *description,
DrawMethod drawMethod)
: RenderCase<RenderReadDuration>(context, name, description, drawMethod)
{
}
void ReferenceRenderTimeCase::init(void)
{
const char *const targetFunctionName = (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS) ? ("drawArrays") : ("drawElements");
// init parent
RenderCase<RenderReadDuration>::init();
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Measuring the time used in " << targetFunctionName
<< " and readPixels call with different rendering workloads.\n"
<< getNumSamples() << " test samples. Sample order is randomized.\n"
<< "All samples at even positions (first = 0) are tested before samples at odd positions.\n"
<< "Generated workload is multiple viewport-covering grids with varying number of cells, each "
"cell is two separate triangles.\n"
<< "Workload sizes are in the range [" << getMinWorkloadSize() << ", " << getMaxWorkloadSize()
<< "] vertices ([" << getHumanReadableByteSize(getMinWorkloadDataSize()) << ","
<< getHumanReadableByteSize(getMaxWorkloadDataSize()) << "] to be processed).\n"
<< "Test result is the approximated total processing rate in MiB / s.\n"
<< ((m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS) ?
("Note that index array size is not included in the processed size.\n") :
(""))
<< "Note! Test result should only be used as a baseline reference result for "
"buffer.data_upload.* test group results."
<< tcu::TestLog::EndMessage;
}
void ReferenceRenderTimeCase::runSample(SampleResult &sample)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
tcu::Surface resultSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
const int numVertices = getLayeredGridNumVertices(sample.scene);
const glu::Buffer arrayBuffer(m_context.getRenderContext());
const glu::Buffer indexBuffer(m_context.getRenderContext());
std::vector<tcu::Vec4> vertexData;
std::vector<uint32_t> indexData;
uint64_t startTime;
uint64_t endTime;
// generate and upload buffers
generateLayeredGridVertexAttribData4C4V(vertexData, sample.scene);
gl.bindBuffer(GL_ARRAY_BUFFER, *arrayBuffer);
gl.bufferData(GL_ARRAY_BUFFER, (int)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0], GL_STATIC_DRAW);
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
{
generateLayeredGridIndexData(indexData, sample.scene);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexBuffer);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (int)(indexData.size() * sizeof(uint32_t)), &indexData[0],
GL_STATIC_DRAW);
}
setupVertexAttribs();
// make sure data is uploaded
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
waitGLResults();
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
waitGLResults();
tcu::warmupCPU();
// Measure both draw and associated readpixels
{
startTime = deGetMicroseconds();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.duration.renderDuration = endTime - startTime;
}
{
startTime = deGetMicroseconds();
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
endTime = deGetMicroseconds();
sample.result.duration.readDuration = endTime - startTime;
}
sample.result.renderDataSize = getVertexDataSize() * sample.result.numVertices;
sample.result.uploadedDataSize = 0;
sample.result.unrelatedDataSize = 0;
sample.result.duration.renderReadDuration =
sample.result.duration.renderDuration + sample.result.duration.readDuration;
sample.result.duration.totalDuration = sample.result.duration.renderDuration + sample.result.duration.readDuration;
sample.result.duration.fitResponseDuration = sample.result.duration.renderReadDuration;
}
class UnrelatedUploadRenderTimeCase : public RenderCase<UnrelatedUploadRenderReadDuration>
{
public:
UnrelatedUploadRenderTimeCase(Context &context, const char *name, const char *description, DrawMethod drawMethod,
UploadMethod unrelatedUploadMethod);
private:
void init(void);
void runSample(SampleResult &sample);
const UploadMethod m_unrelatedUploadMethod;
};
UnrelatedUploadRenderTimeCase::UnrelatedUploadRenderTimeCase(Context &context, const char *name,
const char *description, DrawMethod drawMethod,
UploadMethod unrelatedUploadMethod)
: RenderCase<UnrelatedUploadRenderReadDuration>(context, name, description, drawMethod)
, m_unrelatedUploadMethod(unrelatedUploadMethod)
{
DE_ASSERT(m_unrelatedUploadMethod < UPLOADMETHOD_LAST);
}
void UnrelatedUploadRenderTimeCase::init(void)
{
const char *const targetFunctionName = (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS) ? ("drawArrays") : ("drawElements");
tcu::MessageBuilder message(&m_testCtx.getLog());
// init parent
RenderCase<UnrelatedUploadRenderReadDuration>::init();
// log
message << "Measuring the time used in " << targetFunctionName
<< " and readPixels call with different rendering workloads.\n"
<< "Uploading an unrelated buffer just before issuing the rendering command with "
<< ((m_unrelatedUploadMethod != UPLOADMETHOD_BUFFER_DATA) ? ("bufferData") :
(m_unrelatedUploadMethod != UPLOADMETHOD_BUFFER_SUB_DATA) ? ("bufferSubData") :
(m_unrelatedUploadMethod != UPLOADMETHOD_MAP_BUFFER_RANGE) ? ("mapBufferRange") :
(nullptr))
<< ".\n"
<< getNumSamples() << " test samples. Sample order is randomized.\n"
<< "All samples at even positions (first = 0) are tested before samples at odd positions.\n"
<< "Generated workload is multiple viewport-covering grids with varying number of cells, each cell is two "
"separate triangles.\n"
<< "Workload sizes are in the range [" << getMinWorkloadSize() << ", " << getMaxWorkloadSize()
<< "] vertices ([" << getHumanReadableByteSize(getMinWorkloadDataSize()) << ","
<< getHumanReadableByteSize(getMaxWorkloadDataSize()) << "] to be processed).\n"
<< "Unrelated upload sizes are in the range [" << getHumanReadableByteSize(getMinWorkloadDataSize()) << ", "
<< getHumanReadableByteSize(getMaxWorkloadDataSize()) << "]\n"
<< "Test result is the approximated total processing rate in MiB / s.\n"
<< ((m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS) ?
("Note that index array size is not included in the processed size.\n") :
(""))
<< "Note that the data size and the time used in the unrelated upload is not included in the results.\n"
<< "Note! Test result may not be useful as is but instead should be compared against the reference.* group "
"and upload_and_draw.*_and_unrelated_upload group results.\n"
<< tcu::TestLog::EndMessage;
}
void UnrelatedUploadRenderTimeCase::runSample(SampleResult &sample)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
tcu::Surface resultSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
const int numVertices = getLayeredGridNumVertices(sample.scene);
const glu::Buffer arrayBuffer(m_context.getRenderContext());
const glu::Buffer indexBuffer(m_context.getRenderContext());
const glu::Buffer unrelatedBuffer(m_context.getRenderContext());
int unrelatedUploadSize = -1;
int renderUploadSize;
std::vector<tcu::Vec4> vertexData;
std::vector<uint32_t> indexData;
uint64_t startTime;
uint64_t endTime;
// generate and upload buffers
generateLayeredGridVertexAttribData4C4V(vertexData, sample.scene);
renderUploadSize = (int)(vertexData.size() * sizeof(tcu::Vec4));
gl.bindBuffer(GL_ARRAY_BUFFER, *arrayBuffer);
gl.bufferData(GL_ARRAY_BUFFER, renderUploadSize, &vertexData[0], GL_STATIC_DRAW);
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
{
generateLayeredGridIndexData(indexData, sample.scene);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexBuffer);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (int)(indexData.size() * sizeof(uint32_t)), &indexData[0],
GL_STATIC_DRAW);
}
setupVertexAttribs();
// make sure data is uploaded
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
waitGLResults();
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
waitGLResults();
tcu::warmupCPU();
// Unrelated upload
if (m_unrelatedUploadMethod == UPLOADMETHOD_BUFFER_DATA)
{
unrelatedUploadSize = (int)(vertexData.size() * sizeof(tcu::Vec4));
gl.bindBuffer(GL_ARRAY_BUFFER, *unrelatedBuffer);
gl.bufferData(GL_ARRAY_BUFFER, unrelatedUploadSize, &vertexData[0], GL_STATIC_DRAW);
}
else if (m_unrelatedUploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA)
{
unrelatedUploadSize = (int)(vertexData.size() * sizeof(tcu::Vec4));
gl.bindBuffer(GL_ARRAY_BUFFER, *unrelatedBuffer);
gl.bufferData(GL_ARRAY_BUFFER, unrelatedUploadSize, nullptr, GL_STATIC_DRAW);
gl.bufferSubData(GL_ARRAY_BUFFER, 0, unrelatedUploadSize, &vertexData[0]);
}
else if (m_unrelatedUploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE)
{
void *mapPtr;
glw::GLboolean unmapSuccessful;
unrelatedUploadSize = (int)(vertexData.size() * sizeof(tcu::Vec4));
gl.bindBuffer(GL_ARRAY_BUFFER, *unrelatedBuffer);
gl.bufferData(GL_ARRAY_BUFFER, unrelatedUploadSize, nullptr, GL_STATIC_DRAW);
mapPtr = gl.mapBufferRange(GL_ARRAY_BUFFER, 0, unrelatedUploadSize,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT |
GL_MAP_UNSYNCHRONIZED_BIT);
if (!mapPtr)
throw tcu::Exception("MapBufferRange returned NULL");
deMemcpy(mapPtr, &vertexData[0], unrelatedUploadSize);
// if unmapping fails, just try again later
unmapSuccessful = gl.unmapBuffer(GL_ARRAY_BUFFER);
if (!unmapSuccessful)
throw UnmapFailureError();
}
else
DE_ASSERT(false);
DE_ASSERT(unrelatedUploadSize != -1);
// Measure both draw and associated readpixels
{
startTime = deGetMicroseconds();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.duration.renderDuration = endTime - startTime;
}
{
startTime = deGetMicroseconds();
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
endTime = deGetMicroseconds();
sample.result.duration.readDuration = endTime - startTime;
}
sample.result.renderDataSize = getVertexDataSize() * sample.result.numVertices;
sample.result.uploadedDataSize = renderUploadSize;
sample.result.unrelatedDataSize = unrelatedUploadSize;
sample.result.duration.renderReadDuration =
sample.result.duration.renderDuration + sample.result.duration.readDuration;
sample.result.duration.totalDuration = sample.result.duration.renderDuration + sample.result.duration.readDuration;
sample.result.duration.fitResponseDuration = sample.result.duration.renderReadDuration;
}
class ReferenceReadPixelsTimeCase : public TestCase
{
public:
ReferenceReadPixelsTimeCase(Context &context, const char *name, const char *description);
private:
void init(void);
IterateResult iterate(void);
void logAndSetTestResult(void);
enum
{
RENDER_AREA_SIZE = 128
};
const int m_numSamples;
int m_sampleNdx;
std::vector<int> m_samples;
};
ReferenceReadPixelsTimeCase::ReferenceReadPixelsTimeCase(Context &context, const char *name, const char *description)
: TestCase(context, tcu::NODETYPE_PERFORMANCE, name, description)
, m_numSamples(20)
, m_sampleNdx(0)
, m_samples(m_numSamples)
{
}
void ReferenceReadPixelsTimeCase::init(void)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Measuring the time used in a single readPixels call with "
<< m_numSamples << " test samples.\n"
<< "Test result is the median of the samples in microseconds.\n"
<< "Note! Test result should only be used as a baseline reference result for "
"buffer.data_upload.* test group results."
<< tcu::TestLog::EndMessage;
}
ReferenceReadPixelsTimeCase::IterateResult ReferenceReadPixelsTimeCase::iterate(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
tcu::Surface resultSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
uint64_t startTime;
uint64_t endTime;
deYield();
tcu::warmupCPU();
deYield();
// "Render" something and wait for it
gl.clearColor(0.0f, 1.0f, float(m_sampleNdx) / float(m_numSamples), 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
// wait for results
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
// measure time used in readPixels
startTime = deGetMicroseconds();
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
endTime = deGetMicroseconds();
m_samples[m_sampleNdx] = (int)(endTime - startTime);
if (++m_sampleNdx < m_numSamples)
return CONTINUE;
logAndSetTestResult();
return STOP;
}
void ReferenceReadPixelsTimeCase::logAndSetTestResult(void)
{
// Log sample list
{
m_testCtx.getLog() << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)m_samples.size(); ++sampleNdx)
m_testCtx.getLog() << tcu::TestLog::Sample << m_samples[sampleNdx] << tcu::TestLog::EndSample;
m_testCtx.getLog() << tcu::TestLog::EndSampleList;
}
// Log median
{
float median;
float limit60Low;
float limit60Up;
std::sort(m_samples.begin(), m_samples.end());
median = linearSample(m_samples, 0.5f);
limit60Low = linearSample(m_samples, 0.2f);
limit60Up = linearSample(m_samples, 0.8f);
m_testCtx.getLog() << tcu::TestLog::Float("Median", "Median", "us", QP_KEY_TAG_TIME, median)
<< tcu::TestLog::Message << "60 % of samples within range:\n"
<< tcu::TestLog::EndMessage
<< tcu::TestLog::Float("Low60Range", "Lower", "us", QP_KEY_TAG_TIME, limit60Low)
<< tcu::TestLog::Float("High60Range", "Upper", "us", QP_KEY_TAG_TIME, limit60Up);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(median, 2).c_str());
}
}
template <typename SampleType>
class GenericUploadRenderTimeCase : public RenderCase<SampleType>
{
public:
typedef typename RenderCase<SampleType>::SampleResult SampleResult;
GenericUploadRenderTimeCase(Context &context, const char *name, const char *description, DrawMethod method,
TargetBuffer targetBuffer, UploadMethod uploadMethod, BufferState bufferState,
UploadRange uploadRange, UnrelatedBufferType unrelatedBufferType);
private:
void init(void);
void runSample(SampleResult &sample);
using RenderCase<SampleType>::RENDER_AREA_SIZE;
const TargetBuffer m_targetBuffer;
const BufferState m_bufferState;
const UploadMethod m_uploadMethod;
const UnrelatedBufferType m_unrelatedBufferType;
const UploadRange m_uploadRange;
using RenderCase<SampleType>::m_context;
using RenderCase<SampleType>::m_testCtx;
using RenderCase<SampleType>::m_drawMethod;
};
template <typename SampleType>
GenericUploadRenderTimeCase<SampleType>::GenericUploadRenderTimeCase(Context &context, const char *name,
const char *description, DrawMethod method,
TargetBuffer targetBuffer,
UploadMethod uploadMethod, BufferState bufferState,
UploadRange uploadRange,
UnrelatedBufferType unrelatedBufferType)
: RenderCase<SampleType>(context, name, description, method)
, m_targetBuffer(targetBuffer)
, m_bufferState(bufferState)
, m_uploadMethod(uploadMethod)
, m_unrelatedBufferType(unrelatedBufferType)
, m_uploadRange(uploadRange)
{
DE_ASSERT(m_targetBuffer < TARGETBUFFER_LAST);
DE_ASSERT(m_bufferState < BUFFERSTATE_LAST);
DE_ASSERT(m_uploadMethod < UPLOADMETHOD_LAST);
DE_ASSERT(m_unrelatedBufferType < UNRELATEDBUFFERTYPE_LAST);
DE_ASSERT(m_uploadRange < UPLOADRANGE_LAST);
}
template <typename SampleType>
void GenericUploadRenderTimeCase<SampleType>::init(void)
{
// init parent
RenderCase<SampleType>::init();
// log
{
const char *const targetFunctionName =
(m_drawMethod == DRAWMETHOD_DRAW_ARRAYS) ? ("drawArrays") : ("drawElements");
const int perVertexSize =
(m_targetBuffer == TARGETBUFFER_INDEX) ? ((int)sizeof(uint32_t)) : ((int)sizeof(tcu::Vec4[2]));
const int fullMinUploadSize = RenderCase<SampleType>::getMinWorkloadSize() * perVertexSize;
const int fullMaxUploadSize = RenderCase<SampleType>::getMaxWorkloadSize() * perVertexSize;
const int minUploadSize =
(m_uploadRange == UPLOADRANGE_FULL) ? (fullMinUploadSize) : (deAlign32(fullMinUploadSize / 2, 4));
const int maxUploadSize =
(m_uploadRange == UPLOADRANGE_FULL) ? (fullMaxUploadSize) : (deAlign32(fullMaxUploadSize / 2, 4));
const int minUnrelatedUploadSize = RenderCase<SampleType>::getMinWorkloadSize() * (int)sizeof(tcu::Vec4[2]);
const int maxUnrelatedUploadSize = RenderCase<SampleType>::getMaxWorkloadSize() * (int)sizeof(tcu::Vec4[2]);
m_testCtx.getLog()
<< tcu::TestLog::Message << "Measuring the time used in " << targetFunctionName
<< " and readPixels call with different rendering workloads.\n"
<< "The " << ((m_targetBuffer == TARGETBUFFER_INDEX) ? ("index") : ("vertex attrib")) << " buffer "
<< ((m_bufferState == BUFFERSTATE_NEW) ? ("") : ("contents ")) << "sourced by the rendering command "
<< ((m_bufferState == BUFFERSTATE_NEW) ? ("is uploaded ") :
(m_uploadRange == UPLOADRANGE_FULL) ? ("are specified ") :
(m_uploadRange == UPLOADRANGE_PARTIAL) ? ("are updated (partial upload) ") :
(nullptr))
<< "just before issuing the rendering command.\n"
<< ((m_bufferState == BUFFERSTATE_EXISTING) ? ("The buffer has been used in rendering.\n") :
("The buffer is generated just before uploading.\n"))
<< "Buffer "
<< ((m_bufferState == BUFFERSTATE_NEW) ? ("is uploaded") :
(m_uploadRange == UPLOADRANGE_FULL) ? ("contents are specified") :
(m_uploadRange == UPLOADRANGE_PARTIAL) ? ("contents are partially updated") :
(nullptr))
<< " with "
<< ((m_uploadMethod == UPLOADMETHOD_BUFFER_DATA) ? ("bufferData") :
(m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA) ? ("bufferSubData") :
("mapBufferRange"))
<< " command. Usage of the target buffer is DYNAMIC_DRAW.\n"
<< ((m_uploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE) ?
("Mapping buffer with bits MAP_WRITE_BIT | MAP_INVALIDATE_RANGE_BIT | MAP_INVALIDATE_BUFFER_BIT | "
"MAP_UNSYNCHRONIZED_BIT\n") :
(""))
<< ((m_unrelatedBufferType == UNRELATEDBUFFERTYPE_VERTEX) ?
("Uploading an unrelated buffer just before issuing the rendering command with bufferData.\n") :
(""))
<< RenderCase<SampleType>::getNumSamples() << " test samples. Sample order is randomized.\n"
<< "All samples at even positions (first = 0) are tested before samples at odd positions.\n"
<< "Generated workload is multiple viewport-covering grids with varying number of cells, each cell is two "
"separate triangles.\n"
<< "Workload sizes are in the range [" << RenderCase<SampleType>::getMinWorkloadSize() << ", "
<< RenderCase<SampleType>::getMaxWorkloadSize() << "] vertices "
<< "([" << getHumanReadableByteSize(RenderCase<SampleType>::getMinWorkloadDataSize()) << ","
<< getHumanReadableByteSize(RenderCase<SampleType>::getMaxWorkloadDataSize()) << "] to be processed).\n"
<< "Upload sizes are in the range [" << getHumanReadableByteSize(minUploadSize) << ","
<< getHumanReadableByteSize(maxUploadSize) << "].\n"
<< ((m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS) ?
("Unrelated upload sizes are in the range [" + getHumanReadableByteSize(minUnrelatedUploadSize) +
", " + getHumanReadableByteSize(maxUnrelatedUploadSize) + "]\n") :
(""))
<< "Test result is the approximated processing rate in MiB / s.\n"
<< "Note that while upload time is measured, the time used is not included in the results.\n"
<< ((m_unrelatedBufferType == UNRELATEDBUFFERTYPE_VERTEX) ?
("Note that the data size and the time used in the unrelated upload is not included in the "
"results.\n") :
(""))
<< ((m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS) ?
("Note that index array size is not included in the processed size.\n") :
(""))
<< "Note! Test result may not be useful as is but instead should be compared against the reference.* group "
"and other upload_and_draw.* group results.\n"
<< tcu::TestLog::EndMessage;
}
}
template <typename SampleType>
void GenericUploadRenderTimeCase<SampleType>::runSample(SampleResult &sample)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const glu::Buffer arrayBuffer(m_context.getRenderContext());
const glu::Buffer indexBuffer(m_context.getRenderContext());
const glu::Buffer unrelatedBuffer(m_context.getRenderContext());
const int numVertices = getLayeredGridNumVertices(sample.scene);
tcu::Surface resultSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
uint64_t startTime;
uint64_t endTime;
std::vector<tcu::Vec4> vertexData;
std::vector<uint32_t> indexData;
// create data
generateLayeredGridVertexAttribData4C4V(vertexData, sample.scene);
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
generateLayeredGridIndexData(indexData, sample.scene);
gl.bindBuffer(GL_ARRAY_BUFFER, *arrayBuffer);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexBuffer);
RenderCase<SampleType>::setupVertexAttribs();
// target should be an exisiting buffer? Draw from it once to make sure it exists on the gpu
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS && m_bufferState == BUFFERSTATE_EXISTING)
{
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
GL_DYNAMIC_DRAW);
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
}
else if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS && m_bufferState == BUFFERSTATE_NEW)
{
// do not touch the vertex buffer
}
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS && m_bufferState == BUFFERSTATE_EXISTING)
{
// hint that the target buffer will be modified soon
const glw::GLenum vertexDataUsage =
(m_targetBuffer == TARGETBUFFER_VERTEX) ? (GL_DYNAMIC_DRAW) : (GL_STATIC_DRAW);
const glw::GLenum indexDataUsage =
(m_targetBuffer == TARGETBUFFER_INDEX) ? (GL_DYNAMIC_DRAW) : (GL_STATIC_DRAW);
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
vertexDataUsage);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (glw::GLsizeiptr)(indexData.size() * sizeof(uint32_t)), &indexData[0],
indexDataUsage);
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
}
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS && m_bufferState == BUFFERSTATE_NEW)
{
if (m_targetBuffer == TARGETBUFFER_VERTEX)
{
// make the index buffer present on the gpu
// use another vertex buffer to keep original buffer in unused state
const glu::Buffer vertexCopyBuffer(m_context.getRenderContext());
gl.bindBuffer(GL_ARRAY_BUFFER, *vertexCopyBuffer);
RenderCase<SampleType>::setupVertexAttribs();
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
GL_STATIC_DRAW);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (glw::GLsizeiptr)(indexData.size() * sizeof(uint32_t)),
&indexData[0], GL_STATIC_DRAW);
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
// restore original state
gl.bindBuffer(GL_ARRAY_BUFFER, *arrayBuffer);
RenderCase<SampleType>::setupVertexAttribs();
}
else if (m_targetBuffer == TARGETBUFFER_INDEX)
{
// make the vertex buffer present on the gpu
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
GL_STATIC_DRAW);
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
}
else
DE_ASSERT(false);
}
else
DE_ASSERT(false);
RenderCase<SampleType>::waitGLResults();
GLU_EXPECT_NO_ERROR(gl.getError(), "post buffer prepare");
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
RenderCase<SampleType>::waitGLResults();
tcu::warmupCPU();
// upload
{
glw::GLenum target;
glw::GLsizeiptr size;
glw::GLintptr offset = 0;
const void *source;
if (m_targetBuffer == TARGETBUFFER_VERTEX && m_uploadRange == UPLOADRANGE_FULL)
{
target = GL_ARRAY_BUFFER;
size = (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4));
source = &vertexData[0];
}
else if (m_targetBuffer == TARGETBUFFER_INDEX && m_uploadRange == UPLOADRANGE_FULL)
{
target = GL_ELEMENT_ARRAY_BUFFER;
size = (glw::GLsizeiptr)(indexData.size() * sizeof(uint32_t));
source = &indexData[0];
}
else if (m_targetBuffer == TARGETBUFFER_VERTEX && m_uploadRange == UPLOADRANGE_PARTIAL)
{
DE_ASSERT(m_bufferState == BUFFERSTATE_EXISTING);
target = GL_ARRAY_BUFFER;
size = (glw::GLsizeiptr)deAlign32((int)(vertexData.size() * sizeof(tcu::Vec4)) / 2, 4);
offset = (glw::GLintptr)deAlign32((int)size / 2, 4);
source = (const uint8_t *)&vertexData[0] + offset;
}
else if (m_targetBuffer == TARGETBUFFER_INDEX && m_uploadRange == UPLOADRANGE_PARTIAL)
{
DE_ASSERT(m_bufferState == BUFFERSTATE_EXISTING);
// upload to 25% - 75% range
target = GL_ELEMENT_ARRAY_BUFFER;
size = (glw::GLsizeiptr)deAlign32((int32_t)(indexData.size() * sizeof(uint32_t)) / 2, 4);
offset = (glw::GLintptr)deAlign32((int)size / 2, 4);
source = (const uint8_t *)&indexData[0] + offset;
}
else
{
DE_ASSERT(false);
return;
}
startTime = deGetMicroseconds();
if (m_uploadMethod == UPLOADMETHOD_BUFFER_DATA)
gl.bufferData(target, size, source, GL_DYNAMIC_DRAW);
else if (m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA)
{
// create buffer storage
if (m_bufferState == BUFFERSTATE_NEW)
gl.bufferData(target, size, nullptr, GL_DYNAMIC_DRAW);
gl.bufferSubData(target, offset, size, source);
}
else if (m_uploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE)
{
void *mapPtr;
glw::GLboolean unmapSuccessful;
// create buffer storage
if (m_bufferState == BUFFERSTATE_NEW)
gl.bufferData(target, size, nullptr, GL_DYNAMIC_DRAW);
mapPtr = gl.mapBufferRange(target, offset, size,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT |
GL_MAP_UNSYNCHRONIZED_BIT);
if (!mapPtr)
throw tcu::Exception("MapBufferRange returned NULL");
deMemcpy(mapPtr, source, (int)size);
// if unmapping fails, just try again later
unmapSuccessful = gl.unmapBuffer(target);
if (!unmapSuccessful)
throw UnmapFailureError();
}
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.uploadedDataSize = (int)size;
sample.result.duration.uploadDuration = endTime - startTime;
}
// unrelated
if (m_unrelatedBufferType == UNRELATEDBUFFERTYPE_VERTEX)
{
const int unrelatedUploadSize = (int)(vertexData.size() * sizeof(tcu::Vec4));
gl.bindBuffer(GL_ARRAY_BUFFER, *unrelatedBuffer);
gl.bufferData(GL_ARRAY_BUFFER, unrelatedUploadSize, &vertexData[0], GL_STATIC_DRAW);
// Attibute pointers are not modified, no need restore state
sample.result.unrelatedDataSize = unrelatedUploadSize;
}
// draw
{
startTime = deGetMicroseconds();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.duration.renderDuration = endTime - startTime;
}
// read
{
startTime = deGetMicroseconds();
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
endTime = deGetMicroseconds();
sample.result.duration.readDuration = endTime - startTime;
}
// set results
sample.result.renderDataSize = RenderCase<SampleType>::getVertexDataSize() * sample.result.numVertices;
sample.result.duration.renderReadDuration =
sample.result.duration.renderDuration + sample.result.duration.readDuration;
sample.result.duration.totalDuration = sample.result.duration.uploadDuration +
sample.result.duration.renderDuration + sample.result.duration.readDuration;
sample.result.duration.fitResponseDuration = sample.result.duration.renderReadDuration;
}
class BufferInUseRenderTimeCase : public RenderCase<RenderUploadRenderReadDuration>
{
public:
enum MapFlags
{
MAPFLAG_NONE = 0,
MAPFLAG_INVALIDATE_BUFFER,
MAPFLAG_INVALIDATE_RANGE,
MAPFLAG_LAST
};
enum UploadBufferTarget
{
UPLOADBUFFERTARGET_DIFFERENT_BUFFER = 0,
UPLOADBUFFERTARGET_SAME_BUFFER,
UPLOADBUFFERTARGET_LAST
};
BufferInUseRenderTimeCase(Context &context, const char *name, const char *description, DrawMethod method,
MapFlags mapFlags, TargetBuffer targetBuffer, UploadMethod uploadMethod,
UploadRange uploadRange, UploadBufferTarget uploadTarget);
private:
void init(void);
void runSample(SampleResult &sample);
const TargetBuffer m_targetBuffer;
const UploadMethod m_uploadMethod;
const UploadRange m_uploadRange;
const MapFlags m_mapFlags;
const UploadBufferTarget m_uploadBufferTarget;
};
BufferInUseRenderTimeCase::BufferInUseRenderTimeCase(Context &context, const char *name, const char *description,
DrawMethod method, MapFlags mapFlags, TargetBuffer targetBuffer,
UploadMethod uploadMethod, UploadRange uploadRange,
UploadBufferTarget uploadTarget)
: RenderCase<RenderUploadRenderReadDuration>(context, name, description, method)
, m_targetBuffer(targetBuffer)
, m_uploadMethod(uploadMethod)
, m_uploadRange(uploadRange)
, m_mapFlags(mapFlags)
, m_uploadBufferTarget(uploadTarget)
{
DE_ASSERT(m_targetBuffer < TARGETBUFFER_LAST);
DE_ASSERT(m_uploadMethod < UPLOADMETHOD_LAST);
DE_ASSERT(m_uploadRange < UPLOADRANGE_LAST);
DE_ASSERT(m_mapFlags < MAPFLAG_LAST);
DE_ASSERT(m_uploadBufferTarget < UPLOADBUFFERTARGET_LAST);
}
void BufferInUseRenderTimeCase::init(void)
{
RenderCase<RenderUploadRenderReadDuration>::init();
// log
{
const char *const targetFunctionName =
(m_drawMethod == DRAWMETHOD_DRAW_ARRAYS) ? ("drawArrays") : ("drawElements");
const char *const uploadFunctionName = (m_uploadMethod == UPLOADMETHOD_BUFFER_DATA) ? ("bufferData") :
(m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA) ? ("bufferSubData") :
("mapBufferRange");
const bool isReferenceCase = (m_uploadBufferTarget == UPLOADBUFFERTARGET_DIFFERENT_BUFFER);
tcu::MessageBuilder message(&m_testCtx.getLog());
message << "Measuring the time used in " << targetFunctionName << " call, a buffer upload, "
<< targetFunctionName
<< " call using the uploaded buffer and readPixels call with different upload sizes.\n";
if (isReferenceCase)
message << "Rendering:\n"
<< " before test: create and use buffers B and C\n"
<< " first draw: render using buffer B\n"
<< ((m_uploadRange == UPLOADRANGE_FULL) ? (" upload: respecify buffer C contents\n") :
(m_uploadRange == UPLOADRANGE_PARTIAL) ? (" upload: modify buffer C contents\n") :
(nullptr))
<< " second draw: render using buffer C\n"
<< " read: readPixels\n";
else
message << "Rendering:\n"
<< " before test: create and use buffer B\n"
<< " first draw: render using buffer B\n"
<< ((m_uploadRange == UPLOADRANGE_FULL) ? (" upload: respecify buffer B contents\n") :
(m_uploadRange == UPLOADRANGE_PARTIAL) ? (" upload: modify buffer B contents\n") :
(nullptr))
<< " second draw: render using buffer B\n"
<< " read: readPixels\n";
message << "Uploading using " << uploadFunctionName
<< ((m_mapFlags == MAPFLAG_INVALIDATE_RANGE) ? (", flags = MAP_WRITE_BIT | MAP_INVALIDATE_RANGE_BIT") :
(m_mapFlags == MAPFLAG_INVALIDATE_BUFFER) ?
(", flags = MAP_WRITE_BIT | MAP_INVALIDATE_BUFFER_BIT") :
(m_mapFlags == MAPFLAG_NONE) ? ("") :
(nullptr))
<< "\n"
<< getNumSamples() << " test samples. Sample order is randomized.\n"
<< "All samples at even positions (first = 0) are tested before samples at odd positions.\n"
<< "Workload sizes are in the range [" << getMinWorkloadSize() << ", " << getMaxWorkloadSize()
<< "] vertices "
<< "([" << getHumanReadableByteSize(getMinWorkloadDataSize()) << ","
<< getHumanReadableByteSize(getMaxWorkloadDataSize()) << "] to be processed).\n"
<< "Test result is the approximated processing rate in MiB / s of the second draw call and the "
"readPixels call.\n";
if (isReferenceCase)
message << "Note! Test result should only be used as a baseline reference result for "
"buffer.render_after_upload.draw_modify_draw test group results.";
else
message << "Note! Test result may not be useful as is but instead should be compared against the "
"buffer.render_after_upload.reference.draw_upload_draw group results.\n";
message << tcu::TestLog::EndMessage;
}
}
void BufferInUseRenderTimeCase::runSample(SampleResult &sample)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const glu::Buffer arrayBuffer(m_context.getRenderContext());
const glu::Buffer indexBuffer(m_context.getRenderContext());
const glu::Buffer alternativeUploadBuffer(m_context.getRenderContext());
const int numVertices = getLayeredGridNumVertices(sample.scene);
tcu::Surface resultSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
uint64_t startTime;
uint64_t endTime;
std::vector<tcu::Vec4> vertexData;
std::vector<uint32_t> indexData;
// create data
generateLayeredGridVertexAttribData4C4V(vertexData, sample.scene);
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
generateLayeredGridIndexData(indexData, sample.scene);
// make buffers used
gl.bindBuffer(GL_ARRAY_BUFFER, *arrayBuffer);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexBuffer);
setupVertexAttribs();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
{
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
GL_STREAM_DRAW);
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
}
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
{
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
GL_STREAM_DRAW);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (glw::GLsizeiptr)(indexData.size() * sizeof(uint32_t)), &indexData[0],
GL_STREAM_DRAW);
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
}
else
DE_ASSERT(false);
// another pair of buffers for reference case
if (m_uploadBufferTarget == UPLOADBUFFERTARGET_DIFFERENT_BUFFER)
{
if (m_targetBuffer == TARGETBUFFER_VERTEX)
{
gl.bindBuffer(GL_ARRAY_BUFFER, *alternativeUploadBuffer);
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4)), &vertexData[0],
GL_STREAM_DRAW);
setupVertexAttribs();
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
}
else if (m_targetBuffer == TARGETBUFFER_INDEX)
{
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, *alternativeUploadBuffer);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (glw::GLsizeiptr)(indexData.size() * sizeof(uint32_t)),
&indexData[0], GL_STREAM_DRAW);
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
}
else
DE_ASSERT(false);
// restore state
gl.bindBuffer(GL_ARRAY_BUFFER, *arrayBuffer);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexBuffer);
setupVertexAttribs();
}
waitGLResults();
GLU_EXPECT_NO_ERROR(gl.getError(), "post buffer prepare");
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
waitGLResults();
tcu::warmupCPU();
// first draw
{
startTime = deGetMicroseconds();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.duration.firstRenderDuration = endTime - startTime;
}
// upload
{
glw::GLenum target;
glw::GLsizeiptr size;
glw::GLintptr offset = 0;
const void *source;
if (m_targetBuffer == TARGETBUFFER_VERTEX && m_uploadRange == UPLOADRANGE_FULL)
{
target = GL_ARRAY_BUFFER;
size = (glw::GLsizeiptr)(vertexData.size() * sizeof(tcu::Vec4));
source = &vertexData[0];
}
else if (m_targetBuffer == TARGETBUFFER_INDEX && m_uploadRange == UPLOADRANGE_FULL)
{
target = GL_ELEMENT_ARRAY_BUFFER;
size = (glw::GLsizeiptr)(indexData.size() * sizeof(uint32_t));
source = &indexData[0];
}
else if (m_targetBuffer == TARGETBUFFER_VERTEX && m_uploadRange == UPLOADRANGE_PARTIAL)
{
target = GL_ARRAY_BUFFER;
size = (glw::GLsizeiptr)deAlign32((int)(vertexData.size() * sizeof(tcu::Vec4)) / 2, 4);
offset = (glw::GLintptr)deAlign32((int)size / 2, 4);
source = (const uint8_t *)&vertexData[0] + offset;
}
else if (m_targetBuffer == TARGETBUFFER_INDEX && m_uploadRange == UPLOADRANGE_PARTIAL)
{
// upload to 25% - 75% range
target = GL_ELEMENT_ARRAY_BUFFER;
size = (glw::GLsizeiptr)deAlign32((int32_t)(indexData.size() * sizeof(uint32_t)) / 2, 4);
offset = (glw::GLintptr)deAlign32((int)size / 2, 4);
source = (const uint8_t *)&indexData[0] + offset;
}
else
{
DE_ASSERT(false);
return;
}
// reference case? don't modify the buffer in use
if (m_uploadBufferTarget == UPLOADBUFFERTARGET_DIFFERENT_BUFFER)
gl.bindBuffer(target, *alternativeUploadBuffer);
startTime = deGetMicroseconds();
if (m_uploadMethod == UPLOADMETHOD_BUFFER_DATA)
gl.bufferData(target, size, source, GL_STREAM_DRAW);
else if (m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA)
gl.bufferSubData(target, offset, size, source);
else if (m_uploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE)
{
const int mapFlags =
(m_mapFlags == MAPFLAG_INVALIDATE_BUFFER) ? (GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT) :
(m_mapFlags == MAPFLAG_INVALIDATE_RANGE) ? (GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT) :
(-1);
void *mapPtr;
glw::GLboolean unmapSuccessful;
mapPtr = gl.mapBufferRange(target, offset, size, mapFlags);
if (!mapPtr)
throw tcu::Exception("MapBufferRange returned NULL");
deMemcpy(mapPtr, source, (int)size);
// if unmapping fails, just try again later
unmapSuccessful = gl.unmapBuffer(target);
if (!unmapSuccessful)
throw UnmapFailureError();
}
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.uploadedDataSize = (int)size;
sample.result.duration.uploadDuration = endTime - startTime;
}
// second draw
{
// Source vertex data from alternative buffer in refernce case
if (m_uploadBufferTarget == UPLOADBUFFERTARGET_DIFFERENT_BUFFER && m_targetBuffer == TARGETBUFFER_VERTEX)
setupVertexAttribs();
startTime = deGetMicroseconds();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.result.duration.secondRenderDuration = endTime - startTime;
}
// read
{
startTime = deGetMicroseconds();
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
endTime = deGetMicroseconds();
sample.result.duration.readDuration = endTime - startTime;
}
// set results
sample.result.renderDataSize = getVertexDataSize() * sample.result.numVertices;
sample.result.duration.renderReadDuration =
sample.result.duration.secondRenderDuration + sample.result.duration.readDuration;
sample.result.duration.totalDuration =
sample.result.duration.firstRenderDuration + sample.result.duration.uploadDuration +
sample.result.duration.secondRenderDuration + sample.result.duration.readDuration;
sample.result.duration.fitResponseDuration = sample.result.duration.renderReadDuration;
}
class UploadWaitDrawCase : public RenderPerformanceTestBase
{
public:
struct Sample
{
int numFrames;
uint64_t uploadCallEndTime;
};
struct Result
{
uint64_t uploadDuration;
uint64_t renderDuration;
uint64_t readDuration;
uint64_t renderReadDuration;
uint64_t timeBeforeUse;
};
UploadWaitDrawCase(Context &context, const char *name, const char *description, DrawMethod drawMethod,
TargetBuffer targetBuffer, UploadMethod uploadMethod, BufferState bufferState);
~UploadWaitDrawCase(void);
private:
void init(void);
void deinit(void);
IterateResult iterate(void);
void uploadBuffer(Sample &sample, Result &result);
void drawFromBuffer(Sample &sample, Result &result);
void reuseAndDeleteBuffer(void);
void logAndSetTestResult(void);
void logSamples(void);
void drawMisc(void);
int findStabilizationSample(uint64_t Result::*target, const char *description);
bool checkSampleTemporalStability(uint64_t Result::*target, const char *description);
const DrawMethod m_drawMethod;
const TargetBuffer m_targetBuffer;
const UploadMethod m_uploadMethod;
const BufferState m_bufferState;
const int m_numSamplesPerSwap;
const int m_numMaxSwaps;
int m_frameNdx;
int m_sampleNdx;
int m_numVertices;
std::vector<tcu::Vec4> m_vertexData;
std::vector<uint32_t> m_indexData;
std::vector<Sample> m_samples;
std::vector<Result> m_results;
std::vector<int> m_iterationOrder;
uint32_t m_vertexBuffer;
uint32_t m_indexBuffer;
uint32_t m_miscBuffer;
int m_numMiscVertices;
};
UploadWaitDrawCase::UploadWaitDrawCase(Context &context, const char *name, const char *description,
DrawMethod drawMethod, TargetBuffer targetBuffer, UploadMethod uploadMethod,
BufferState bufferState)
: RenderPerformanceTestBase(context, name, description)
, m_drawMethod(drawMethod)
, m_targetBuffer(targetBuffer)
, m_uploadMethod(uploadMethod)
, m_bufferState(bufferState)
, m_numSamplesPerSwap(10)
, m_numMaxSwaps(4)
, m_frameNdx(0)
, m_sampleNdx(0)
, m_numVertices(-1)
, m_vertexBuffer(0)
, m_indexBuffer(0)
, m_miscBuffer(0)
, m_numMiscVertices(-1)
{
}
UploadWaitDrawCase::~UploadWaitDrawCase(void)
{
deinit();
}
void UploadWaitDrawCase::init(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int vertexAttribSize = (int)sizeof(tcu::Vec4) * 2; // color4, position4
const int vertexIndexSize = (int)sizeof(uint32_t);
const int vertexUploadDataSize = (m_targetBuffer == TARGETBUFFER_VERTEX) ? (vertexAttribSize) : (vertexIndexSize);
RenderPerformanceTestBase::init();
// requirements
if (m_context.getRenderTarget().getWidth() < RENDER_AREA_SIZE ||
m_context.getRenderTarget().getHeight() < RENDER_AREA_SIZE)
throw tcu::NotSupportedError("Test case requires " + de::toString<int>(RENDER_AREA_SIZE) + "x" +
de::toString<int>(RENDER_AREA_SIZE) + " render target");
// gl state
gl.viewport(0, 0, RENDER_AREA_SIZE, RENDER_AREA_SIZE);
// enable bleding to prevent grid layers from being discarded
gl.blendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
gl.blendEquation(GL_FUNC_ADD);
gl.enable(GL_BLEND);
// scene
{
LayeredGridSpec scene;
// create ~8MB workload with similar characteristics as in the other test
// => makes comparison to other results more straightforward
scene.gridWidth = 93;
scene.gridHeight = 93;
scene.gridLayers = 5;
generateLayeredGridVertexAttribData4C4V(m_vertexData, scene);
generateLayeredGridIndexData(m_indexData, scene);
m_numVertices = getLayeredGridNumVertices(scene);
}
// buffers
if (m_bufferState == BUFFERSTATE_NEW)
{
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
{
// reads from two buffers, prepare the static buffer
if (m_targetBuffer == TARGETBUFFER_VERTEX)
{
// index buffer is static, use another vertex buffer to keep original buffer in unused state
const glu::Buffer vertexCopyBuffer(m_context.getRenderContext());
gl.genBuffers(1, &m_indexBuffer);
gl.bindBuffer(GL_ARRAY_BUFFER, *vertexCopyBuffer);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer);
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(m_vertexData.size() * sizeof(tcu::Vec4)),
&m_vertexData[0], GL_STATIC_DRAW);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (glw::GLsizeiptr)(m_indexData.size() * sizeof(uint32_t)),
&m_indexData[0], GL_STATIC_DRAW);
setupVertexAttribs();
gl.drawElements(GL_TRIANGLES, m_numVertices, GL_UNSIGNED_INT, nullptr);
}
else if (m_targetBuffer == TARGETBUFFER_INDEX)
{
// vertex buffer is static
gl.genBuffers(1, &m_vertexBuffer);
gl.bindBuffer(GL_ARRAY_BUFFER, m_vertexBuffer);
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(m_vertexData.size() * sizeof(tcu::Vec4)),
&m_vertexData[0], GL_STATIC_DRAW);
setupVertexAttribs();
gl.drawArrays(GL_TRIANGLES, 0, m_numVertices);
}
else
DE_ASSERT(false);
}
}
else if (m_bufferState == BUFFERSTATE_EXISTING)
{
const glw::GLenum vertexUsage = (m_targetBuffer == TARGETBUFFER_VERTEX) ? (GL_STATIC_DRAW) : (GL_STATIC_DRAW);
const glw::GLenum indexUsage = (m_targetBuffer == TARGETBUFFER_INDEX) ? (GL_STATIC_DRAW) : (GL_STATIC_DRAW);
gl.genBuffers(1, &m_vertexBuffer);
gl.bindBuffer(GL_ARRAY_BUFFER, m_vertexBuffer);
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(m_vertexData.size() * sizeof(tcu::Vec4)), &m_vertexData[0],
vertexUsage);
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
{
gl.genBuffers(1, &m_indexBuffer);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (glw::GLsizeiptr)(m_indexData.size() * sizeof(uint32_t)),
&m_indexData[0], indexUsage);
}
setupVertexAttribs();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, m_numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, m_numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
}
else
DE_ASSERT(false);
// misc draw buffer
{
std::vector<tcu::Vec4> vertexData;
LayeredGridSpec scene;
// create ~1.5MB workload with similar characteristics
scene.gridWidth = 40;
scene.gridHeight = 40;
scene.gridLayers = 5;
generateLayeredGridVertexAttribData4C4V(vertexData, scene);
gl.genBuffers(1, &m_miscBuffer);
gl.bindBuffer(GL_ARRAY_BUFFER, m_miscBuffer);
gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(sizeof(tcu::Vec4) * vertexData.size()), &vertexData[0],
GL_STATIC_DRAW);
m_numMiscVertices = getLayeredGridNumVertices(scene);
}
// iterations
{
m_samples.resize((m_numMaxSwaps + 1) * m_numSamplesPerSwap);
m_results.resize((m_numMaxSwaps + 1) * m_numSamplesPerSwap);
for (int numSwaps = 0; numSwaps <= m_numMaxSwaps; ++numSwaps)
for (int sampleNdx = 0; sampleNdx < m_numSamplesPerSwap; ++sampleNdx)
{
const int index = numSwaps * m_numSamplesPerSwap + sampleNdx;
m_samples[index].numFrames = numSwaps;
}
m_iterationOrder.resize(m_samples.size());
generateTwoPassRandomIterationOrder(m_iterationOrder, (int)m_samples.size());
}
// log
m_testCtx.getLog()
<< tcu::TestLog::Message << "Measuring time used in "
<< ((m_drawMethod == DRAWMETHOD_DRAW_ARRAYS) ? ("drawArrays") : ("drawElements")) << " and readPixels call.\n"
<< "Drawing using a buffer that has been uploaded N frames ago. Testing with N within range [0, "
<< m_numMaxSwaps << "].\n"
<< "Uploaded buffer is a " << ((m_targetBuffer == TARGETBUFFER_VERTEX) ? ("vertex attribute") : ("index"))
<< " buffer.\n"
<< "Uploading using "
<< ((m_uploadMethod == UPLOADMETHOD_BUFFER_DATA) ?
("bufferData") :
(m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA) ?
("bufferSubData") :
(m_uploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE) ?
("mapBufferRange, flags = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | "
"GL_MAP_UNSYNCHRONIZED_BIT") :
(nullptr))
<< "\n"
<< "Upload size is " << getHumanReadableByteSize(m_numVertices * vertexUploadDataSize) << ".\n"
<< ((m_bufferState == BUFFERSTATE_EXISTING) ? ("All test samples use the same buffer object.\n") : (""))
<< "Test result is the number of frames (swaps) required for the render time to stabilize.\n"
<< "Assuming combined time used in the draw call and readPixels call is stabilizes to a constant value.\n"
<< tcu::TestLog::EndMessage;
}
void UploadWaitDrawCase::deinit(void)
{
RenderPerformanceTestBase::deinit();
if (m_vertexBuffer)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_vertexBuffer);
m_vertexBuffer = 0;
}
if (m_indexBuffer)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_indexBuffer);
m_indexBuffer = 0;
}
if (m_miscBuffer)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_miscBuffer);
m_miscBuffer = 0;
}
}
UploadWaitDrawCase::IterateResult UploadWaitDrawCase::iterate(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
const int betweenIterationFrameCount = 5; // draw misc between test samples
const int frameNdx = m_frameNdx++;
const int currentSampleNdx = m_iterationOrder[m_sampleNdx];
// Simulate work for about 8ms
busyWait(8000);
// Busywork rendering during unused frames
if (frameNdx != m_samples[currentSampleNdx].numFrames)
{
// draw similar from another buffer
drawMisc();
}
if (frameNdx == 0)
{
// upload and start the clock
uploadBuffer(m_samples[currentSampleNdx], m_results[currentSampleNdx]);
}
if (frameNdx ==
m_samples[currentSampleNdx].numFrames) // \note: not else if, m_samples[currentSampleNdx].numFrames can be 0
{
// draw using the uploaded buffer
drawFromBuffer(m_samples[currentSampleNdx], m_results[currentSampleNdx]);
// re-use buffer for something else to make sure test iteration do not affect each other
if (m_bufferState == BUFFERSTATE_NEW)
reuseAndDeleteBuffer();
}
else if (frameNdx == m_samples[currentSampleNdx].numFrames + betweenIterationFrameCount)
{
// next sample
++m_sampleNdx;
m_frameNdx = 0;
}
GLU_EXPECT_NO_ERROR(gl.getError(), "post-iterate");
if (m_sampleNdx < (int)m_samples.size())
return CONTINUE;
logAndSetTestResult();
return STOP;
}
void UploadWaitDrawCase::uploadBuffer(Sample &sample, Result &result)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
uint64_t startTime;
uint64_t endTime;
glw::GLenum target;
glw::GLsizeiptr size;
const void *source;
// data source
if (m_targetBuffer == TARGETBUFFER_VERTEX)
{
DE_ASSERT((m_vertexBuffer == 0) == (m_bufferState == BUFFERSTATE_NEW));
target = GL_ARRAY_BUFFER;
size = (glw::GLsizeiptr)(m_vertexData.size() * sizeof(tcu::Vec4));
source = &m_vertexData[0];
}
else if (m_targetBuffer == TARGETBUFFER_INDEX)
{
DE_ASSERT((m_indexBuffer == 0) == (m_bufferState == BUFFERSTATE_NEW));
target = GL_ELEMENT_ARRAY_BUFFER;
size = (glw::GLsizeiptr)(m_indexData.size() * sizeof(uint32_t));
source = &m_indexData[0];
}
else
{
DE_ASSERT(false);
return;
}
// gen buffer
if (m_bufferState == BUFFERSTATE_NEW)
{
if (m_targetBuffer == TARGETBUFFER_VERTEX)
{
gl.genBuffers(1, &m_vertexBuffer);
gl.bindBuffer(GL_ARRAY_BUFFER, m_vertexBuffer);
}
else if (m_targetBuffer == TARGETBUFFER_INDEX)
{
gl.genBuffers(1, &m_indexBuffer);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer);
}
else
DE_ASSERT(false);
if (m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA || m_uploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE)
{
gl.bufferData(target, size, nullptr, GL_STATIC_DRAW);
}
}
else if (m_bufferState == BUFFERSTATE_EXISTING)
{
if (m_targetBuffer == TARGETBUFFER_VERTEX)
gl.bindBuffer(GL_ARRAY_BUFFER, m_vertexBuffer);
else if (m_targetBuffer == TARGETBUFFER_INDEX)
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer);
else
DE_ASSERT(false);
}
else
DE_ASSERT(false);
// upload
startTime = deGetMicroseconds();
if (m_uploadMethod == UPLOADMETHOD_BUFFER_DATA)
gl.bufferData(target, size, source, GL_STATIC_DRAW);
else if (m_uploadMethod == UPLOADMETHOD_BUFFER_SUB_DATA)
gl.bufferSubData(target, 0, size, source);
else if (m_uploadMethod == UPLOADMETHOD_MAP_BUFFER_RANGE)
{
void *mapPtr;
glw::GLboolean unmapSuccessful;
mapPtr = gl.mapBufferRange(target, 0, size,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_UNSYNCHRONIZED_BIT);
if (!mapPtr)
throw tcu::Exception("MapBufferRange returned NULL");
deMemcpy(mapPtr, source, (int)size);
// if unmapping fails, just try again later
unmapSuccessful = gl.unmapBuffer(target);
if (!unmapSuccessful)
throw UnmapFailureError();
}
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
sample.uploadCallEndTime = endTime;
result.uploadDuration = endTime - startTime;
}
void UploadWaitDrawCase::drawFromBuffer(Sample &sample, Result &result)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
tcu::Surface resultSurface(RENDER_AREA_SIZE, RENDER_AREA_SIZE);
uint64_t startTime;
uint64_t endTime;
DE_ASSERT(m_vertexBuffer != 0);
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
DE_ASSERT(m_indexBuffer == 0);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
DE_ASSERT(m_indexBuffer != 0);
else
DE_ASSERT(false);
// draw
{
gl.bindBuffer(GL_ARRAY_BUFFER, m_vertexBuffer);
if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer);
setupVertexAttribs();
// microseconds passed since return from upload call
result.timeBeforeUse = deGetMicroseconds() - sample.uploadCallEndTime;
startTime = deGetMicroseconds();
if (m_drawMethod == DRAWMETHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLES, 0, m_numVertices);
else if (m_drawMethod == DRAWMETHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, m_numVertices, GL_UNSIGNED_INT, nullptr);
else
DE_ASSERT(false);
endTime = deGetMicroseconds();
result.renderDuration = endTime - startTime;
}
// read
{
startTime = deGetMicroseconds();
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
endTime = deGetMicroseconds();
result.readDuration = endTime - startTime;
}
result.renderReadDuration = result.renderDuration + result.readDuration;
}
void UploadWaitDrawCase::reuseAndDeleteBuffer(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
if (m_targetBuffer == TARGETBUFFER_INDEX)
{
// respecify and delete index buffer
static const uint32_t indices[3] = {1, 3, 8};
DE_ASSERT(m_indexBuffer != 0);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
gl.drawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, nullptr);
gl.deleteBuffers(1, &m_indexBuffer);
m_indexBuffer = 0;
}
else if (m_targetBuffer == TARGETBUFFER_VERTEX)
{
// respecify and delete vertex buffer
static const tcu::Vec4 coloredTriangle[6] = {
tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(-0.4f, -0.4f, 0.0f, 1.0f), tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f),
tcu::Vec4(-0.2f, 0.4f, 0.0f, 1.0f), tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(0.8f, -0.1f, 0.0f, 1.0f),
};
DE_ASSERT(m_vertexBuffer != 0);
gl.bufferData(GL_ARRAY_BUFFER, sizeof(coloredTriangle), coloredTriangle, GL_STATIC_DRAW);
gl.drawArrays(GL_TRIANGLES, 0, 3);
gl.deleteBuffers(1, &m_vertexBuffer);
m_vertexBuffer = 0;
}
waitGLResults();
}
void UploadWaitDrawCase::logAndSetTestResult(void)
{
int uploadStabilization;
int renderReadStabilization;
int renderStabilization;
int readStabilization;
bool temporallyStable;
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Samples", "Result samples");
logSamples();
}
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Stabilization", "Sample stability");
// log stabilization points
renderReadStabilization = findStabilizationSample(&Result::renderReadDuration, "Combined draw and read");
uploadStabilization = findStabilizationSample(&Result::uploadDuration, "Upload time");
renderStabilization = findStabilizationSample(&Result::renderDuration, "Draw call time");
readStabilization = findStabilizationSample(&Result::readDuration, "ReadPixels time");
temporallyStable = true;
temporallyStable &= checkSampleTemporalStability(&Result::renderReadDuration, "Combined draw and read");
temporallyStable &= checkSampleTemporalStability(&Result::uploadDuration, "Upload time");
temporallyStable &= checkSampleTemporalStability(&Result::renderDuration, "Draw call time");
temporallyStable &= checkSampleTemporalStability(&Result::readDuration, "ReadPixels time");
}
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Results", "Results");
// Check result sanily
if (uploadStabilization != 0)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Warning! Upload times are not stable, test result may not be accurate."
<< tcu::TestLog::EndMessage;
if (!temporallyStable)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Warning! Time samples do not seem to be temporally stable, sample times seem to "
"drift to one direction during test execution."
<< tcu::TestLog::EndMessage;
// render & read
if (renderReadStabilization == -1)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Combined time used in draw call and ReadPixels did not stabilize."
<< tcu::TestLog::EndMessage;
else
m_testCtx.getLog() << tcu::TestLog::Integer(
"RenderReadStabilizationPoint", "Combined draw call and ReadPixels call time stabilization time",
"frames", QP_KEY_TAG_TIME, renderReadStabilization);
// draw call
if (renderStabilization == -1)
m_testCtx.getLog() << tcu::TestLog::Message << "Time used in draw call did not stabilize."
<< tcu::TestLog::EndMessage;
else
m_testCtx.getLog() << tcu::TestLog::Integer("DrawCallStabilizationPoint",
"Draw call time stabilization time", "frames", QP_KEY_TAG_TIME,
renderStabilization);
// readpixels
if (readStabilization == -1)
m_testCtx.getLog() << tcu::TestLog::Message << "Time used in ReadPixels did not stabilize."
<< tcu::TestLog::EndMessage;
else
m_testCtx.getLog() << tcu::TestLog::Integer("ReadPixelsStabilizationPoint",
"ReadPixels call time stabilization time", "frames",
QP_KEY_TAG_TIME, readStabilization);
// Report renderReadStabilization
if (renderReadStabilization != -1)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(renderReadStabilization).c_str());
else
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(m_numMaxSwaps).c_str()); // don't report -1
}
}
void UploadWaitDrawCase::logSamples(void)
{
// Inverse m_iterationOrder
std::vector<int> runOrder(m_iterationOrder.size());
for (int ndx = 0; ndx < (int)m_iterationOrder.size(); ++ndx)
runOrder[m_iterationOrder[ndx]] = ndx;
// Log samples
m_testCtx.getLog() << tcu::TestLog::SampleList("Samples", "Samples") << tcu::TestLog::SampleInfo
<< tcu::TestLog::ValueInfo("NumSwaps", "SwapBuffers before use", "",
QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("Delay", "Time before use", "us", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("RunOrder", "Sample run order", "", QP_SAMPLE_VALUE_TAG_PREDICTOR)
<< tcu::TestLog::ValueInfo("DrawReadTime", "Draw call and ReadPixels time", "us",
QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("TotalTime", "Total time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("Upload time", "Upload time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("DrawCallTime", "Draw call time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::ValueInfo("ReadTime", "ReadPixels time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
<< tcu::TestLog::EndSampleInfo;
for (int sampleNdx = 0; sampleNdx < (int)m_samples.size(); ++sampleNdx)
m_testCtx.getLog() << tcu::TestLog::Sample << m_samples[sampleNdx].numFrames
<< (int)m_results[sampleNdx].timeBeforeUse << runOrder[sampleNdx]
<< (int)m_results[sampleNdx].renderReadDuration
<< (int)(m_results[sampleNdx].renderReadDuration + m_results[sampleNdx].uploadDuration)
<< (int)m_results[sampleNdx].uploadDuration << (int)m_results[sampleNdx].renderDuration
<< (int)m_results[sampleNdx].readDuration << tcu::TestLog::EndSample;
m_testCtx.getLog() << tcu::TestLog::EndSampleList;
}
void UploadWaitDrawCase::drawMisc(void)
{
const glw::Functions &gl = m_context.getRenderContext().getFunctions();
gl.bindBuffer(GL_ARRAY_BUFFER, m_miscBuffer);
setupVertexAttribs();
gl.drawArrays(GL_TRIANGLES, 0, m_numMiscVertices);
}
struct DistributionCompareResult
{
bool equal;
float standardDeviations;
};
template <typename Comparer>
static float sumOfRanks(const std::vector<uint64_t> &testSamples, const std::vector<uint64_t> &allSamples,
const Comparer &comparer)
{
float sum = 0;
for (int sampleNdx = 0; sampleNdx < (int)testSamples.size(); ++sampleNdx)
{
const uint64_t testSample = testSamples[sampleNdx];
const int lowerIndex =
(int)(std::lower_bound(allSamples.begin(), allSamples.end(), testSample, comparer) - allSamples.begin());
const int upperIndex =
(int)(std::upper_bound(allSamples.begin(), allSamples.end(), testSample, comparer) - allSamples.begin());
const int lowerRank = lowerIndex + 1; // convert zero-indexed to rank
const int upperRank = upperIndex; // convert zero-indexed to rank, upperIndex is last equal + 1
const float rankMidpoint = (float)(lowerRank + upperRank) / 2.0f;
sum += rankMidpoint;
}
return sum;
}
template <typename Comparer>
static DistributionCompareResult distributionCompare(const std::vector<uint64_t> &orderedObservationsA,
const std::vector<uint64_t> &orderedObservationsB,
const Comparer &comparer)
{
// Mann-Whitney U test
const int n1 = (int)orderedObservationsA.size();
const int n2 = (int)orderedObservationsB.size();
std::vector<uint64_t> allSamples(n1 + n2);
std::copy(orderedObservationsA.begin(), orderedObservationsA.end(), allSamples.begin());
std::copy(orderedObservationsB.begin(), orderedObservationsB.end(), allSamples.begin() + n1);
std::sort(allSamples.begin(), allSamples.end());
{
const float R1 = sumOfRanks(orderedObservationsA, allSamples, comparer);
const float U1 = (float)(n1 * n2 + n1 * (n1 + 1) / 2) - R1;
const float U2 = (float)(n1 * n2) - U1;
const float U = de::min(U1, U2);
// \note: sample sizes might not be large enough to expect normal distribution but we do it anyway
const float mU = (float)(n1 * n2) / 2.0f;
const float sigmaU = deFloatSqrt((float)(n1 * n2 * (n1 + n2 + 1)) / 12.0f);
const float z = (U - mU) / sigmaU;
DistributionCompareResult result;
result.equal = (de::abs(z) <= 1.96f); // accept within 95% confidence interval
result.standardDeviations = z;
return result;
}
}
template <typename T>
struct ThresholdComparer
{
float relativeThreshold;
T absoluteThreshold;
bool operator()(const T &a, const T &b) const
{
const float diff = de::abs((float)a - (float)b);
// thresholds
if (diff <= (float)absoluteThreshold)
return false;
if (diff <= float(a) * relativeThreshold || diff <= float(b) * relativeThreshold)
return false;
// cmp
return a < b;
}
};
int UploadWaitDrawCase::findStabilizationSample(uint64_t UploadWaitDrawCase::Result::*target, const char *description)
{
std::vector<std::vector<uint64_t>> sampleObservations(m_numMaxSwaps + 1);
ThresholdComparer<uint64_t> comparer;
comparer.relativeThreshold = 0.15f; // 15%
comparer.absoluteThreshold = 100; // (us), assumed sampling precision
// get observations and order them
for (int swapNdx = 0; swapNdx <= m_numMaxSwaps; ++swapNdx)
{
int insertNdx = 0;
sampleObservations[swapNdx].resize(m_numSamplesPerSwap);
for (int ndx = 0; ndx < (int)m_samples.size(); ++ndx)
if (m_samples[ndx].numFrames == swapNdx)
sampleObservations[swapNdx][insertNdx++] = m_results[ndx].*target;
DE_ASSERT(insertNdx == m_numSamplesPerSwap);
std::sort(sampleObservations[swapNdx].begin(), sampleObservations[swapNdx].end());
}
// find stabilization point
for (int sampleNdx = m_numMaxSwaps - 1; sampleNdx != -1; --sampleNdx)
{
// Distribution is equal to all following distributions
for (int cmpTargetDistribution = sampleNdx + 1; cmpTargetDistribution <= m_numMaxSwaps; ++cmpTargetDistribution)
{
// Stable section ends here?
const DistributionCompareResult result =
distributionCompare(sampleObservations[sampleNdx], sampleObservations[cmpTargetDistribution], comparer);
if (!result.equal)
{
// Last two samples are not equal? Samples never stabilized
if (sampleNdx == m_numMaxSwaps - 1)
{
m_testCtx.getLog() << tcu::TestLog::Message << description << ": Samples with swap count "
<< sampleNdx << " and " << cmpTargetDistribution
<< " do not seem to have the same distribution:\n"
<< "\tDifference in standard deviations: " << result.standardDeviations << "\n"
<< "\tSwap count " << sampleNdx
<< " median: " << linearSample(sampleObservations[sampleNdx], 0.5f) << "\n"
<< "\tSwap count " << cmpTargetDistribution
<< " median: " << linearSample(sampleObservations[cmpTargetDistribution], 0.5f)
<< "\n"
<< tcu::TestLog::EndMessage;
return -1;
}
else
{
m_testCtx.getLog() << tcu::TestLog::Message << description << ": Samples with swap count "
<< sampleNdx << " and " << cmpTargetDistribution
<< " do not seem to have the same distribution:\n"
<< "\tSamples with swap count " << sampleNdx
<< " are not part of the tail of stable results.\n"
<< "\tDifference in standard deviations: " << result.standardDeviations << "\n"
<< "\tSwap count " << sampleNdx
<< " median: " << linearSample(sampleObservations[sampleNdx], 0.5f) << "\n"
<< "\tSwap count " << cmpTargetDistribution
<< " median: " << linearSample(sampleObservations[cmpTargetDistribution], 0.5f)
<< "\n"
<< tcu::TestLog::EndMessage;
return sampleNdx + 1;
}
}
}
}
m_testCtx.getLog() << tcu::TestLog::Message << description << ": All samples seem to have the same distribution"
<< tcu::TestLog::EndMessage;
// all distributions equal
return 0;
}
bool UploadWaitDrawCase::checkSampleTemporalStability(uint64_t UploadWaitDrawCase::Result::*target,
const char *description)
{
// Try to find correlation with sample order and sample times
const int numDataPoints = (int)m_iterationOrder.size();
std::vector<tcu::Vec2> dataPoints(m_iterationOrder.size());
LineParametersWithConfidence lineFit;
for (int ndx = 0; ndx < (int)m_iterationOrder.size(); ++ndx)
{
dataPoints[m_iterationOrder[ndx]].x() = (float)ndx;
dataPoints[m_iterationOrder[ndx]].y() = (float)(m_results[m_iterationOrder[ndx]].*target);
}
lineFit = theilSenSiegelLinearRegression(dataPoints, 0.6f);
// Difference of more than 25% of the offset along the whole sample range
if (de::abs(lineFit.coefficient) * (float)numDataPoints > de::abs(lineFit.offset) * 0.25f)
{
m_testCtx.getLog() << tcu::TestLog::Message << description
<< ": Correlation with data point observation order and result time. Results are not "
"temporally stable, observations are not independent.\n"
<< "\tCoefficient: " << lineFit.coefficient << " (us / observation)\n"
<< tcu::TestLog::EndMessage;
return false;
}
else
return true;
}
} // namespace
BufferDataUploadTests::BufferDataUploadTests(Context &context)
: TestCaseGroup(context, "data_upload", "Buffer data upload performance tests")
{
}
BufferDataUploadTests::~BufferDataUploadTests(void)
{
}
void BufferDataUploadTests::init(void)
{
static const struct BufferUsage
{
const char *name;
uint32_t usage;
bool primaryUsage;
} bufferUsages[] = {
{"stream_draw", GL_STREAM_DRAW, true}, {"stream_read", GL_STREAM_READ, false},
{"stream_copy", GL_STREAM_COPY, false}, {"static_draw", GL_STATIC_DRAW, true},
{"static_read", GL_STATIC_READ, false}, {"static_copy", GL_STATIC_COPY, false},
{"dynamic_draw", GL_DYNAMIC_DRAW, true}, {"dynamic_read", GL_DYNAMIC_READ, false},
{"dynamic_copy", GL_DYNAMIC_COPY, false},
};
tcu::TestCaseGroup *const referenceGroup = new tcu::TestCaseGroup(m_testCtx, "reference", "Reference functions");
tcu::TestCaseGroup *const functionCallGroup =
new tcu::TestCaseGroup(m_testCtx, "function_call", "Function call timing");
tcu::TestCaseGroup *const modifyAfterUseGroup =
new tcu::TestCaseGroup(m_testCtx, "modify_after_use", "Function call time after buffer has been used");
tcu::TestCaseGroup *const renderAfterUploadGroup = new tcu::TestCaseGroup(
m_testCtx, "render_after_upload", "Function call time of draw commands after buffer has been modified");
addChild(referenceGroup);
addChild(functionCallGroup);
addChild(modifyAfterUseGroup);
addChild(renderAfterUploadGroup);
// .reference
{
static const struct BufferSizeRange
{
const char *name;
int minBufferSize;
int maxBufferSize;
int numSamples;
bool largeBuffersCase;
} sizeRanges[] = {
{"small_buffers", 0, 1 << 18, 64, false}, // !< 0kB - 256kB
{"large_buffers", 1 << 18, 1 << 24, 32, true}, // !< 256kB - 16MB
};
for (int bufferSizeRangeNdx = 0; bufferSizeRangeNdx < DE_LENGTH_OF_ARRAY(sizeRanges); ++bufferSizeRangeNdx)
{
referenceGroup->addChild(new ReferenceMemcpyCase(
m_context, std::string("memcpy_").append(sizeRanges[bufferSizeRangeNdx].name).c_str(),
"Test memcpy performance", sizeRanges[bufferSizeRangeNdx].minBufferSize,
sizeRanges[bufferSizeRangeNdx].maxBufferSize, sizeRanges[bufferSizeRangeNdx].numSamples,
sizeRanges[bufferSizeRangeNdx].largeBuffersCase));
}
}
// .function_call
{
const int minBufferSize = 0; // !< 0kiB
const int maxBufferSize = 1 << 24; // !< 16MiB
const int numDataSamples = 25;
const int numMapSamples = 25;
tcu::TestCaseGroup *const bufferDataMethodGroup =
new tcu::TestCaseGroup(m_testCtx, "buffer_data", "Use glBufferData");
tcu::TestCaseGroup *const bufferSubDataMethodGroup =
new tcu::TestCaseGroup(m_testCtx, "buffer_sub_data", "Use glBufferSubData");
tcu::TestCaseGroup *const mapBufferRangeMethodGroup =
new tcu::TestCaseGroup(m_testCtx, "map_buffer_range", "Use glMapBufferRange");
functionCallGroup->addChild(bufferDataMethodGroup);
functionCallGroup->addChild(bufferSubDataMethodGroup);
functionCallGroup->addChild(mapBufferRangeMethodGroup);
// .buffer_data
{
static const struct TargetCase
{
tcu::TestCaseGroup *group;
BufferDataUploadCase::CaseType caseType;
bool allUsages;
} targetCases[] = {
{new tcu::TestCaseGroup(m_testCtx, "new_buffer", "Target new buffer"),
BufferDataUploadCase::CASE_NEW_BUFFER, true},
{new tcu::TestCaseGroup(m_testCtx, "unspecified_buffer", "Target new unspecified buffer"),
BufferDataUploadCase::CASE_UNSPECIFIED_BUFFER, true},
{new tcu::TestCaseGroup(m_testCtx, "specified_buffer", "Target new specified buffer"),
BufferDataUploadCase::CASE_SPECIFIED_BUFFER, true},
{new tcu::TestCaseGroup(m_testCtx, "used_buffer", "Target buffer that was used in draw"),
BufferDataUploadCase::CASE_USED_BUFFER, true},
{new tcu::TestCaseGroup(m_testCtx, "larger_used_buffer", "Target larger buffer that was used in draw"),
BufferDataUploadCase::CASE_USED_LARGER_BUFFER, false},
};
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targetCases); ++targetNdx)
{
bufferDataMethodGroup->addChild(targetCases[targetNdx].group);
for (int usageNdx = 0; usageNdx < DE_LENGTH_OF_ARRAY(bufferUsages); ++usageNdx)
if (bufferUsages[usageNdx].primaryUsage || targetCases[targetNdx].allUsages)
targetCases[targetNdx].group->addChild(new BufferDataUploadCase(
m_context, std::string("usage_").append(bufferUsages[usageNdx].name).c_str(),
std::string("Test with usage = ").append(bufferUsages[usageNdx].name).c_str(),
minBufferSize, maxBufferSize, numDataSamples, bufferUsages[usageNdx].usage,
targetCases[targetNdx].caseType));
}
}
// .buffer_sub_data
{
static const struct FlagCase
{
tcu::TestCaseGroup *group;
BufferSubDataUploadCase::CaseType parentCase;
bool allUsages;
int flags;
} flagCases[] = {
{new tcu::TestCaseGroup(m_testCtx, "used_buffer_full_upload", ""),
BufferSubDataUploadCase::CASE_USED_BUFFER, true, BufferSubDataUploadCase::FLAG_FULL_UPLOAD},
{new tcu::TestCaseGroup(m_testCtx, "used_buffer_invalidate_before_full_upload",
"Clear buffer with bufferData(...,NULL) before sub data call"),
BufferSubDataUploadCase::CASE_USED_BUFFER, false,
BufferSubDataUploadCase::FLAG_FULL_UPLOAD | BufferSubDataUploadCase::FLAG_INVALIDATE_BEFORE_USE},
{new tcu::TestCaseGroup(m_testCtx, "used_buffer_partial_upload", ""),
BufferSubDataUploadCase::CASE_USED_BUFFER, true, BufferSubDataUploadCase::FLAG_PARTIAL_UPLOAD},
{new tcu::TestCaseGroup(m_testCtx, "used_buffer_invalidate_before_partial_upload",
"Clear buffer with bufferData(...,NULL) before sub data call"),
BufferSubDataUploadCase::CASE_USED_BUFFER, false,
BufferSubDataUploadCase::FLAG_PARTIAL_UPLOAD | BufferSubDataUploadCase::FLAG_INVALIDATE_BEFORE_USE},
};
for (int flagNdx = 0; flagNdx < DE_LENGTH_OF_ARRAY(flagCases); ++flagNdx)
{
bufferSubDataMethodGroup->addChild(flagCases[flagNdx].group);
for (int usageNdx = 0; usageNdx < DE_LENGTH_OF_ARRAY(bufferUsages); ++usageNdx)
if (bufferUsages[usageNdx].primaryUsage || flagCases[flagNdx].allUsages)
flagCases[flagNdx].group->addChild(new BufferSubDataUploadCase(
m_context, std::string("usage_").append(bufferUsages[usageNdx].name).c_str(),
std::string("Test with usage = ").append(bufferUsages[usageNdx].name).c_str(),
minBufferSize, maxBufferSize, numDataSamples, bufferUsages[usageNdx].usage,
flagCases[flagNdx].parentCase, flagCases[flagNdx].flags));
}
}
// .map_buffer_range
{
static const struct FlagCase
{
const char *name;
bool usefulForUnusedBuffers;
bool allUsages;
int glFlags;
int caseFlags;
} flagCases[] = {
{"flag_write_full", true, true, GL_MAP_WRITE_BIT, 0},
{"flag_write_partial", true, true, GL_MAP_WRITE_BIT, MapBufferRangeCase::FLAG_PARTIAL},
{"flag_read_write_full", true, true, GL_MAP_WRITE_BIT | GL_MAP_READ_BIT, 0},
{"flag_read_write_partial", true, true, GL_MAP_WRITE_BIT | GL_MAP_READ_BIT,
MapBufferRangeCase::FLAG_PARTIAL},
{"flag_invalidate_range_full", true, false, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT, 0},
{"flag_invalidate_range_partial", true, false, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT,
MapBufferRangeCase::FLAG_PARTIAL},
{"flag_invalidate_buffer_full", true, false, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT, 0},
{"flag_invalidate_buffer_partial", true, false, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT,
MapBufferRangeCase::FLAG_PARTIAL},
{"flag_write_full_manual_invalidate_buffer", false, false,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT, MapBufferRangeCase::FLAG_MANUAL_INVALIDATION},
{"flag_write_partial_manual_invalidate_buffer", false, false,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT,
MapBufferRangeCase::FLAG_PARTIAL | MapBufferRangeCase::FLAG_MANUAL_INVALIDATION},
{"flag_unsynchronized_full", true, false, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT, 0},
{"flag_unsynchronized_partial", true, false, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT,
MapBufferRangeCase::FLAG_PARTIAL},
{"flag_unsynchronized_and_invalidate_buffer_full", true, false,
GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_INVALIDATE_BUFFER_BIT, 0},
{"flag_unsynchronized_and_invalidate_buffer_partial", true, false,
GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_INVALIDATE_BUFFER_BIT,
MapBufferRangeCase::FLAG_PARTIAL},
};
static const struct FlushCases
{
const char *name;
int glFlags;
int caseFlags;
} flushCases[] = {
{"flag_flush_explicit_map_full", GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT, 0},
{"flag_flush_explicit_map_partial", GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT,
MapBufferRangeFlushCase::FLAG_PARTIAL},
{"flag_flush_explicit_map_full_flush_in_parts", GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT,
MapBufferRangeFlushCase::FLAG_FLUSH_IN_PARTS},
{"flag_flush_explicit_map_full_flush_partial", GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT,
MapBufferRangeFlushCase::FLAG_FLUSH_PARTIAL},
};
static const struct MapTestGroup
{
int flags;
bool unusedBufferCase;
tcu::TestCaseGroup *group;
} groups[] = {
{
MapBufferRangeCase::FLAG_USE_UNUSED_UNSPECIFIED_BUFFER,
true,
new tcu::TestCaseGroup(m_testCtx, "new_unspecified_buffer",
"Test with unused, unspecified buffers"),
},
{
MapBufferRangeCase::FLAG_USE_UNUSED_SPECIFIED_BUFFER,
true,
new tcu::TestCaseGroup(m_testCtx, "new_specified_buffer", "Test with unused, specified buffers"),
},
{0, false,
new tcu::TestCaseGroup(m_testCtx, "used_buffer",
"Test with used (data has been sourced from a buffer) buffers")},
};
// we OR same flags to both range and flushRange cases, make sure it is legal
DE_STATIC_ASSERT((int)MapBufferRangeCase::FLAG_USE_UNUSED_SPECIFIED_BUFFER ==
(int)MapBufferRangeFlushCase::FLAG_USE_UNUSED_SPECIFIED_BUFFER);
DE_STATIC_ASSERT((int)MapBufferRangeCase::FLAG_USE_UNUSED_UNSPECIFIED_BUFFER ==
(int)MapBufferRangeFlushCase::FLAG_USE_UNUSED_UNSPECIFIED_BUFFER);
for (int groupNdx = 0; groupNdx < DE_LENGTH_OF_ARRAY(groups); ++groupNdx)
{
tcu::TestCaseGroup *const bufferTypeGroup = groups[groupNdx].group;
mapBufferRangeMethodGroup->addChild(bufferTypeGroup);
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(flagCases); ++caseNdx)
{
if (groups[groupNdx].unusedBufferCase && !flagCases[caseNdx].usefulForUnusedBuffers)
continue;
tcu::TestCaseGroup *const bufferUsageGroup =
new tcu::TestCaseGroup(m_testCtx, flagCases[caseNdx].name, "");
bufferTypeGroup->addChild(bufferUsageGroup);
for (int usageNdx = 0; usageNdx < DE_LENGTH_OF_ARRAY(bufferUsages); ++usageNdx)
if (bufferUsages[usageNdx].primaryUsage || flagCases[caseNdx].allUsages)
bufferUsageGroup->addChild(new MapBufferRangeCase(
m_context, bufferUsages[usageNdx].name,
std::string("Test with usage = ").append(bufferUsages[usageNdx].name).c_str(),
minBufferSize, maxBufferSize, numMapSamples, bufferUsages[usageNdx].usage,
flagCases[caseNdx].glFlags, flagCases[caseNdx].caseFlags | groups[groupNdx].flags));
}
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(flushCases); ++caseNdx)
{
tcu::TestCaseGroup *const bufferUsageGroup =
new tcu::TestCaseGroup(m_testCtx, flushCases[caseNdx].name, "");
bufferTypeGroup->addChild(bufferUsageGroup);
for (int usageNdx = 0; usageNdx < DE_LENGTH_OF_ARRAY(bufferUsages); ++usageNdx)
if (bufferUsages[usageNdx].primaryUsage)
bufferUsageGroup->addChild(new MapBufferRangeFlushCase(
m_context, bufferUsages[usageNdx].name,
std::string("Test with usage = ").append(bufferUsages[usageNdx].name).c_str(),
minBufferSize, maxBufferSize, numMapSamples, bufferUsages[usageNdx].usage,
flushCases[caseNdx].glFlags, flushCases[caseNdx].caseFlags | groups[groupNdx].flags));
}
}
}
}
// .modify_after_use
{
const int minBufferSize = 0; // !< 0kiB
const int maxBufferSize = 1 << 24; // !< 16MiB
static const struct Usage
{
const char *name;
const char *description;
uint32_t usage;
} usages[] = {
{"static_draw", "Test with GL_STATIC_DRAW", GL_STATIC_DRAW},
{"dynamic_draw", "Test with GL_DYNAMIC_DRAW", GL_DYNAMIC_DRAW},
{"stream_draw", "Test with GL_STREAM_DRAW", GL_STREAM_DRAW},
};
for (int usageNdx = 0; usageNdx < DE_LENGTH_OF_ARRAY(usages); ++usageNdx)
{
tcu::TestCaseGroup *const usageGroup =
new tcu::TestCaseGroup(m_testCtx, usages[usageNdx].name, usages[usageNdx].description);
modifyAfterUseGroup->addChild(usageGroup);
usageGroup->addChild(new ModifyAfterWithBufferDataCase(m_context, "buffer_data",
"Respecify buffer contents after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, 0));
usageGroup->addChild(new ModifyAfterWithBufferDataCase(
m_context, "buffer_data_different_size", "Respecify buffer contents and size after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, ModifyAfterWithBufferDataCase::FLAG_RESPECIFY_SIZE));
usageGroup->addChild(new ModifyAfterWithBufferDataCase(
m_context, "buffer_data_repeated", "Respecify buffer contents after upload and use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, ModifyAfterWithBufferDataCase::FLAG_UPLOAD_REPEATED));
usageGroup->addChild(new ModifyAfterWithBufferSubDataCase(
m_context, "buffer_sub_data_full", "Respecify buffer contents after use", minBufferSize, maxBufferSize,
usages[usageNdx].usage, 0));
usageGroup->addChild(new ModifyAfterWithBufferSubDataCase(
m_context, "buffer_sub_data_partial", "Respecify buffer contents partially use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, ModifyAfterWithBufferSubDataCase::FLAG_PARTIAL));
usageGroup->addChild(new ModifyAfterWithBufferSubDataCase(
m_context, "buffer_sub_data_full_repeated", "Respecify buffer contents after upload and use",
minBufferSize, maxBufferSize, usages[usageNdx].usage,
ModifyAfterWithBufferSubDataCase::FLAG_UPLOAD_REPEATED));
usageGroup->addChild(new ModifyAfterWithBufferSubDataCase(
m_context, "buffer_sub_data_partial_repeated", "Respecify buffer contents partially upload and use",
minBufferSize, maxBufferSize, usages[usageNdx].usage,
ModifyAfterWithBufferSubDataCase::FLAG_UPLOAD_REPEATED |
ModifyAfterWithBufferSubDataCase::FLAG_PARTIAL));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_write_full", "Respecify buffer contents after use", minBufferSize, maxBufferSize,
usages[usageNdx].usage, 0, GL_MAP_WRITE_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_write_partial", "Respecify buffer contents partially after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, ModifyAfterWithMapBufferRangeCase::FLAG_PARTIAL,
GL_MAP_WRITE_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_read_write_full", "Respecify buffer contents after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, 0, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_read_write_partial", "Respecify buffer contents partially after use",
minBufferSize, maxBufferSize, usages[usageNdx].usage, ModifyAfterWithMapBufferRangeCase::FLAG_PARTIAL,
GL_MAP_READ_BIT | GL_MAP_WRITE_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_invalidate_range_full", "Respecify buffer contents after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, 0, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_invalidate_range_partial", "Respecify buffer contents partially after use",
minBufferSize, maxBufferSize, usages[usageNdx].usage, ModifyAfterWithMapBufferRangeCase::FLAG_PARTIAL,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_invalidate_buffer_full", "Respecify buffer contents after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, 0, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_invalidate_buffer_partial", "Respecify buffer contents partially after use",
minBufferSize, maxBufferSize, usages[usageNdx].usage, ModifyAfterWithMapBufferRangeCase::FLAG_PARTIAL,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_unsynchronized_full", "Respecify buffer contents after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, 0, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferRangeCase(
m_context, "map_flag_unsynchronized_partial", "Respecify buffer contents partially after use",
minBufferSize, maxBufferSize, usages[usageNdx].usage, ModifyAfterWithMapBufferRangeCase::FLAG_PARTIAL,
GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferFlushCase(
m_context, "map_flag_flush_explicit_full", "Respecify buffer contents after use", minBufferSize,
maxBufferSize, usages[usageNdx].usage, 0, GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT));
usageGroup->addChild(new ModifyAfterWithMapBufferFlushCase(
m_context, "map_flag_flush_explicit_partial", "Respecify buffer contents partially after use",
minBufferSize, maxBufferSize, usages[usageNdx].usage, ModifyAfterWithMapBufferFlushCase::FLAG_PARTIAL,
GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT));
}
}
// .render_after_upload
{
// .reference
{
tcu::TestCaseGroup *const renderReferenceGroup =
new tcu::TestCaseGroup(m_testCtx, "reference", "Baseline results");
renderAfterUploadGroup->addChild(renderReferenceGroup);
// .draw
{
tcu::TestCaseGroup *const drawGroup =
new tcu::TestCaseGroup(m_testCtx, "draw", "Time usage of functions with non-modified buffers");
renderReferenceGroup->addChild(drawGroup);
// Time consumed by readPixels
drawGroup->addChild(new ReferenceReadPixelsTimeCase(
m_context, "read_pixels", "Measure time consumed by readPixels() function call"));
// Time consumed by rendering
drawGroup->addChild(new ReferenceRenderTimeCase(m_context, "draw_arrays",
"Measure time consumed by drawArrays() function call",
DRAWMETHOD_DRAW_ARRAYS));
drawGroup->addChild(new ReferenceRenderTimeCase(m_context, "draw_elements",
"Measure time consumed by drawElements() function call",
DRAWMETHOD_DRAW_ELEMENTS));
}
// .draw_upload_draw
{
static const struct
{
const char *name;
const char *description;
DrawMethod drawMethod;
TargetBuffer targetBuffer;
bool partial;
} uploadTargets[] = {
{"draw_arrays_upload_vertices",
"Measure time consumed by drawArrays, vertex attribute upload, another drawArrays, and readPixels "
"function calls.",
DRAWMETHOD_DRAW_ARRAYS, TARGETBUFFER_VERTEX, false},
{"draw_arrays_upload_vertices_partial",
"Measure time consumed by drawArrays, partial vertex attribute upload, another drawArrays, and "
"readPixels function calls.",
DRAWMETHOD_DRAW_ARRAYS, TARGETBUFFER_VERTEX, true},
{"draw_elements_upload_vertices",
"Measure time consumed by drawElements, vertex attribute upload, another drawElements, and "
"readPixels function calls.",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_VERTEX, false},
{"draw_elements_upload_indices",
"Measure time consumed by drawElements, index upload, another drawElements, and readPixels "
"function calls.",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_INDEX, false},
{"draw_elements_upload_indices_partial",
"Measure time consumed by drawElements, partial index upload, another drawElements, and "
"readPixels function calls.",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_INDEX, true},
};
static const struct
{
const char *name;
const char *description;
UploadMethod uploadMethod;
BufferInUseRenderTimeCase::MapFlags mapFlags;
bool supportsPartialUpload;
} uploadMethods[] = {
{"buffer_data", "bufferData", UPLOADMETHOD_BUFFER_DATA, BufferInUseRenderTimeCase::MAPFLAG_NONE,
false},
{"buffer_sub_data", "bufferSubData", UPLOADMETHOD_BUFFER_SUB_DATA,
BufferInUseRenderTimeCase::MAPFLAG_NONE, true},
{"map_buffer_range_invalidate_range", "mapBufferRange", UPLOADMETHOD_MAP_BUFFER_RANGE,
BufferInUseRenderTimeCase::MAPFLAG_INVALIDATE_RANGE, true},
{"map_buffer_range_invalidate_buffer", "mapBufferRange", UPLOADMETHOD_MAP_BUFFER_RANGE,
BufferInUseRenderTimeCase::MAPFLAG_INVALIDATE_BUFFER, false},
};
tcu::TestCaseGroup *const drawUploadDrawGroup = new tcu::TestCaseGroup(
m_testCtx, "draw_upload_draw", "Time usage of functions draw, upload and another draw");
renderReferenceGroup->addChild(drawUploadDrawGroup);
for (int uploadTargetNdx = 0; uploadTargetNdx < DE_LENGTH_OF_ARRAY(uploadTargets); ++uploadTargetNdx)
for (int uploadMethodNdx = 0; uploadMethodNdx < DE_LENGTH_OF_ARRAY(uploadMethods);
++uploadMethodNdx)
{
const std::string name = std::string() + uploadTargets[uploadTargetNdx].name + "_with_" +
uploadMethods[uploadMethodNdx].name;
if (uploadTargets[uploadTargetNdx].partial &&
!uploadMethods[uploadMethodNdx].supportsPartialUpload)
continue;
drawUploadDrawGroup->addChild(new BufferInUseRenderTimeCase(
m_context, name.c_str(), uploadTargets[uploadTargetNdx].description,
uploadTargets[uploadTargetNdx].drawMethod, uploadMethods[uploadMethodNdx].mapFlags,
uploadTargets[uploadTargetNdx].targetBuffer, uploadMethods[uploadMethodNdx].uploadMethod,
(uploadTargets[uploadTargetNdx].partial) ? (UPLOADRANGE_PARTIAL) : (UPLOADRANGE_FULL),
BufferInUseRenderTimeCase::UPLOADBUFFERTARGET_DIFFERENT_BUFFER));
}
}
}
// .upload_unrelated_and_draw
{
static const struct
{
const char *name;
const char *description;
DrawMethod drawMethod;
} drawMethods[] = {
{"draw_arrays", "drawArrays", DRAWMETHOD_DRAW_ARRAYS},
{"draw_elements", "drawElements", DRAWMETHOD_DRAW_ELEMENTS},
};
static const struct
{
const char *name;
UploadMethod uploadMethod;
} uploadMethods[] = {
{"buffer_data", UPLOADMETHOD_BUFFER_DATA},
{"buffer_sub_data", UPLOADMETHOD_BUFFER_SUB_DATA},
{"map_buffer_range", UPLOADMETHOD_MAP_BUFFER_RANGE},
};
tcu::TestCaseGroup *const uploadUnrelatedGroup = new tcu::TestCaseGroup(
m_testCtx, "upload_unrelated_and_draw", "Time usage of functions after an unrelated upload");
renderAfterUploadGroup->addChild(uploadUnrelatedGroup);
for (int drawMethodNdx = 0; drawMethodNdx < DE_LENGTH_OF_ARRAY(drawMethods); ++drawMethodNdx)
for (int uploadMethodNdx = 0; uploadMethodNdx < DE_LENGTH_OF_ARRAY(uploadMethods); ++uploadMethodNdx)
{
const std::string name = std::string() + drawMethods[drawMethodNdx].name +
"_upload_unrelated_with_" + uploadMethods[uploadMethodNdx].name;
const std::string desc = std::string() + "Measure time consumed by " +
drawMethods[drawMethodNdx].description +
" function call after an unrelated upload";
// Time consumed by rendering command after an unrelated upload
uploadUnrelatedGroup->addChild(new UnrelatedUploadRenderTimeCase(
m_context, name.c_str(), desc.c_str(), drawMethods[drawMethodNdx].drawMethod,
uploadMethods[uploadMethodNdx].uploadMethod));
}
}
// .upload_and_draw
{
static const struct
{
const char *name;
const char *description;
BufferState bufferState;
UnrelatedBufferType unrelatedBuffer;
bool supportsPartialUpload;
} bufferConfigs[] = {
{"used_buffer", "Upload to an used buffer", BUFFERSTATE_EXISTING, UNRELATEDBUFFERTYPE_NONE, true},
{"new_buffer", "Upload to a new buffer", BUFFERSTATE_NEW, UNRELATEDBUFFERTYPE_NONE, false},
{"used_buffer_and_unrelated_upload", "Upload to an used buffer and an unrelated buffer and then draw",
BUFFERSTATE_EXISTING, UNRELATEDBUFFERTYPE_VERTEX, true},
{"new_buffer_and_unrelated_upload", "Upload to a new buffer and an unrelated buffer and then draw",
BUFFERSTATE_NEW, UNRELATEDBUFFERTYPE_VERTEX, false},
};
tcu::TestCaseGroup *const uploadAndDrawGroup = new tcu::TestCaseGroup(
m_testCtx, "upload_and_draw", "Time usage of rendering functions with modified buffers");
renderAfterUploadGroup->addChild(uploadAndDrawGroup);
// .used_buffer
// .new_buffer
// .used_buffer_and_unrelated_upload
// .new_buffer_and_unrelated_upload
for (int stateNdx = 0; stateNdx < DE_LENGTH_OF_ARRAY(bufferConfigs); ++stateNdx)
{
static const struct
{
const char *name;
const char *description;
DrawMethod drawMethod;
TargetBuffer targetBuffer;
bool partial;
} uploadTargets[] = {
{"draw_arrays_upload_vertices",
"Measure time consumed by vertex attribute upload, drawArrays, and readPixels function calls",
DRAWMETHOD_DRAW_ARRAYS, TARGETBUFFER_VERTEX, false},
{"draw_arrays_upload_vertices_partial",
"Measure time consumed by partial vertex attribute upload, drawArrays, and readPixels function "
"calls",
DRAWMETHOD_DRAW_ARRAYS, TARGETBUFFER_VERTEX, true},
{"draw_elements_upload_vertices",
"Measure time consumed by vertex attribute upload, drawElements, and readPixels function calls",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_VERTEX, false},
{"draw_elements_upload_indices",
"Measure time consumed by index upload, drawElements, and readPixels function calls",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_INDEX, false},
{"draw_elements_upload_indices_partial",
"Measure time consumed by partial index upload, drawElements, and readPixels function calls",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_INDEX, true},
};
static const struct
{
const char *name;
const char *description;
UploadMethod uploadMethod;
bool supportsPartialUpload;
} uploadMethods[] = {
{"buffer_data", "bufferData", UPLOADMETHOD_BUFFER_DATA, false},
{"buffer_sub_data", "bufferSubData", UPLOADMETHOD_BUFFER_SUB_DATA, true},
{"map_buffer_range", "mapBufferRange", UPLOADMETHOD_MAP_BUFFER_RANGE, true},
};
tcu::TestCaseGroup *const group = new tcu::TestCaseGroup(m_testCtx, bufferConfigs[stateNdx].name,
bufferConfigs[stateNdx].description);
uploadAndDrawGroup->addChild(group);
for (int uploadTargetNdx = 0; uploadTargetNdx < DE_LENGTH_OF_ARRAY(uploadTargets); ++uploadTargetNdx)
for (int uploadMethodNdx = 0; uploadMethodNdx < DE_LENGTH_OF_ARRAY(uploadMethods);
++uploadMethodNdx)
{
const std::string name = std::string() + uploadTargets[uploadTargetNdx].name + "_with_" +
uploadMethods[uploadMethodNdx].name;
if (uploadTargets[uploadTargetNdx].partial &&
!uploadMethods[uploadMethodNdx].supportsPartialUpload)
continue;
if (uploadTargets[uploadTargetNdx].partial && !bufferConfigs[stateNdx].supportsPartialUpload)
continue;
// Don't log unrelated buffer information to samples if there is no such buffer
if (bufferConfigs[stateNdx].unrelatedBuffer == UNRELATEDBUFFERTYPE_NONE)
{
typedef UploadRenderReadDuration SampleType;
typedef GenericUploadRenderTimeCase<SampleType> TestType;
group->addChild(new TestType(
m_context, name.c_str(), uploadTargets[uploadTargetNdx].description,
uploadTargets[uploadTargetNdx].drawMethod, uploadTargets[uploadTargetNdx].targetBuffer,
uploadMethods[uploadMethodNdx].uploadMethod, bufferConfigs[stateNdx].bufferState,
(uploadTargets[uploadTargetNdx].partial) ? (UPLOADRANGE_PARTIAL) : (UPLOADRANGE_FULL),
bufferConfigs[stateNdx].unrelatedBuffer));
}
else
{
typedef UploadRenderReadDurationWithUnrelatedUploadSize SampleType;
typedef GenericUploadRenderTimeCase<SampleType> TestType;
group->addChild(new TestType(
m_context, name.c_str(), uploadTargets[uploadTargetNdx].description,
uploadTargets[uploadTargetNdx].drawMethod, uploadTargets[uploadTargetNdx].targetBuffer,
uploadMethods[uploadMethodNdx].uploadMethod, bufferConfigs[stateNdx].bufferState,
(uploadTargets[uploadTargetNdx].partial) ? (UPLOADRANGE_PARTIAL) : (UPLOADRANGE_FULL),
bufferConfigs[stateNdx].unrelatedBuffer));
}
}
}
}
// .draw_modify_draw
{
static const struct
{
const char *name;
const char *description;
DrawMethod drawMethod;
TargetBuffer targetBuffer;
bool partial;
} uploadTargets[] = {
{"draw_arrays_upload_vertices",
"Measure time consumed by drawArrays, vertex attribute upload, another drawArrays, and readPixels "
"function calls.",
DRAWMETHOD_DRAW_ARRAYS, TARGETBUFFER_VERTEX, false},
{"draw_arrays_upload_vertices_partial",
"Measure time consumed by drawArrays, partial vertex attribute upload, another drawArrays, and "
"readPixels function calls.",
DRAWMETHOD_DRAW_ARRAYS, TARGETBUFFER_VERTEX, true},
{"draw_elements_upload_vertices",
"Measure time consumed by drawElements, vertex attribute upload, another drawElements, and readPixels "
"function calls.",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_VERTEX, false},
{"draw_elements_upload_indices",
"Measure time consumed by drawElements, index upload, another drawElements, and readPixels function "
"calls.",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_INDEX, false},
{"draw_elements_upload_indices_partial",
"Measure time consumed by drawElements, partial index upload, another drawElements, and readPixels "
"function calls.",
DRAWMETHOD_DRAW_ELEMENTS, TARGETBUFFER_INDEX, true},
};
static const struct
{
const char *name;
const char *description;
UploadMethod uploadMethod;
BufferInUseRenderTimeCase::MapFlags mapFlags;
bool supportsPartialUpload;
} uploadMethods[] = {
{"buffer_data", "bufferData", UPLOADMETHOD_BUFFER_DATA, BufferInUseRenderTimeCase::MAPFLAG_NONE, false},
{"buffer_sub_data", "bufferSubData", UPLOADMETHOD_BUFFER_SUB_DATA,
BufferInUseRenderTimeCase::MAPFLAG_NONE, true},
{"map_buffer_range_invalidate_range", "mapBufferRange", UPLOADMETHOD_MAP_BUFFER_RANGE,
BufferInUseRenderTimeCase::MAPFLAG_INVALIDATE_RANGE, true},
{"map_buffer_range_invalidate_buffer", "mapBufferRange", UPLOADMETHOD_MAP_BUFFER_RANGE,
BufferInUseRenderTimeCase::MAPFLAG_INVALIDATE_BUFFER, false},
};
tcu::TestCaseGroup *const drawModifyDrawGroup = new tcu::TestCaseGroup(
m_testCtx, "draw_modify_draw",
"Time used in rendering functions with modified buffers while original buffer is still in use");
renderAfterUploadGroup->addChild(drawModifyDrawGroup);
for (int uploadTargetNdx = 0; uploadTargetNdx < DE_LENGTH_OF_ARRAY(uploadTargets); ++uploadTargetNdx)
for (int uploadMethodNdx = 0; uploadMethodNdx < DE_LENGTH_OF_ARRAY(uploadMethods); ++uploadMethodNdx)
{
const std::string name = std::string() + uploadTargets[uploadTargetNdx].name + "_with_" +
uploadMethods[uploadMethodNdx].name;
if (uploadTargets[uploadTargetNdx].partial && !uploadMethods[uploadMethodNdx].supportsPartialUpload)
continue;
drawModifyDrawGroup->addChild(new BufferInUseRenderTimeCase(
m_context, name.c_str(), uploadTargets[uploadTargetNdx].description,
uploadTargets[uploadTargetNdx].drawMethod, uploadMethods[uploadMethodNdx].mapFlags,
uploadTargets[uploadTargetNdx].targetBuffer, uploadMethods[uploadMethodNdx].uploadMethod,
(uploadTargets[uploadTargetNdx].partial) ? (UPLOADRANGE_PARTIAL) : (UPLOADRANGE_FULL),
BufferInUseRenderTimeCase::UPLOADBUFFERTARGET_SAME_BUFFER));
}
}
// .upload_wait_draw
{
static const struct
{
const char *name;
const char *description;
BufferState bufferState;
} bufferStates[] = {
{"new_buffer", "Uploading to just generated name", BUFFERSTATE_NEW},
{"used_buffer", "Uploading to a used buffer", BUFFERSTATE_EXISTING},
};
static const struct
{
const char *name;
const char *description;
DrawMethod drawMethod;
TargetBuffer targetBuffer;
} uploadTargets[] = {
{"draw_arrays_vertices", "Upload vertex data, draw with drawArrays", DRAWMETHOD_DRAW_ARRAYS,
TARGETBUFFER_VERTEX},
{"draw_elements_vertices", "Upload vertex data, draw with drawElements", DRAWMETHOD_DRAW_ELEMENTS,
TARGETBUFFER_VERTEX},
{"draw_elements_indices", "Upload index data, draw with drawElements", DRAWMETHOD_DRAW_ELEMENTS,
TARGETBUFFER_INDEX},
};
static const struct
{
const char *name;
const char *description;
UploadMethod uploadMethod;
} uploadMethods[] = {
{"buffer_data", "bufferData", UPLOADMETHOD_BUFFER_DATA},
{"buffer_sub_data", "bufferSubData", UPLOADMETHOD_BUFFER_SUB_DATA},
{"map_buffer_range", "mapBufferRange", UPLOADMETHOD_MAP_BUFFER_RANGE},
};
tcu::TestCaseGroup *const uploadSwapDrawGroup = new tcu::TestCaseGroup(
m_testCtx, "upload_wait_draw", "Time used in rendering functions after a buffer upload N frames ago");
renderAfterUploadGroup->addChild(uploadSwapDrawGroup);
for (int bufferStateNdx = 0; bufferStateNdx < DE_LENGTH_OF_ARRAY(bufferStates); ++bufferStateNdx)
{
tcu::TestCaseGroup *const bufferGroup = new tcu::TestCaseGroup(
m_testCtx, bufferStates[bufferStateNdx].name, bufferStates[bufferStateNdx].description);
uploadSwapDrawGroup->addChild(bufferGroup);
for (int uploadTargetNdx = 0; uploadTargetNdx < DE_LENGTH_OF_ARRAY(uploadTargets); ++uploadTargetNdx)
for (int uploadMethodNdx = 0; uploadMethodNdx < DE_LENGTH_OF_ARRAY(uploadMethods);
++uploadMethodNdx)
{
const std::string name = std::string() + uploadTargets[uploadTargetNdx].name + "_with_" +
uploadMethods[uploadMethodNdx].name;
bufferGroup->addChild(new UploadWaitDrawCase(
m_context, name.c_str(), uploadTargets[uploadTargetNdx].description,
uploadTargets[uploadTargetNdx].drawMethod, uploadTargets[uploadTargetNdx].targetBuffer,
uploadMethods[uploadMethodNdx].uploadMethod, bufferStates[bufferStateNdx].bufferState));
}
}
}
}
}
} // namespace Performance
} // namespace gles3
} // namespace deqp