blob: 6c95b5d58c5b33c7fc6343a9983893c5cf065a5d [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture size tests.
*//*--------------------------------------------------------------------*/
#include "es3fTextureSizeTests.hpp"
#include "glsTextureTestUtil.hpp"
#include "gluTexture.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "tcuTestLog.hpp"
#include "tcuTextureUtil.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
namespace deqp
{
namespace gles3
{
namespace Functional
{
using std::string;
using std::vector;
using tcu::Sampler;
using tcu::TestLog;
using namespace glu;
using namespace gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
class Texture2DSizeCase : public tcu::TestCase
{
public:
Texture2DSizeCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name,
const char *description, uint32_t format, uint32_t dataType, int width, int height, bool mipmaps);
~Texture2DSizeCase(void);
void init(void);
void deinit(void);
IterateResult iterate(void);
private:
Texture2DSizeCase(const Texture2DSizeCase &other);
Texture2DSizeCase &operator=(const Texture2DSizeCase &other);
glu::RenderContext &m_renderCtx;
uint32_t m_format;
uint32_t m_dataType;
int m_width;
int m_height;
bool m_useMipmaps;
glu::Texture2D *m_texture;
TextureRenderer m_renderer;
};
Texture2DSizeCase::Texture2DSizeCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name,
const char *description, uint32_t format, uint32_t dataType, int width, int height,
bool mipmaps)
: TestCase(testCtx, name, description)
, m_renderCtx(renderCtx)
, m_format(format)
, m_dataType(dataType)
, m_width(width)
, m_height(height)
, m_useMipmaps(mipmaps)
, m_texture(DE_NULL)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_MEDIUMP)
{
}
Texture2DSizeCase::~Texture2DSizeCase(void)
{
Texture2DSizeCase::deinit();
}
void Texture2DSizeCase::init(void)
{
DE_ASSERT(!m_texture);
m_texture = new Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height);
int numLevels = m_useMipmaps ? deLog2Floor32(de::max(m_width, m_height)) + 1 : 1;
// Fill levels.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
m_texture->getRefTexture().allocLevel(levelNdx);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(levelNdx),
tcu::Vec4(-1.0f, -1.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f));
}
}
void Texture2DSizeCase::deinit(void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
Texture2DSizeCase::IterateResult Texture2DSizeCase::iterate(void)
{
const glw::Functions &gl = m_renderCtx.getFunctions();
TestLog &log = m_testCtx.getLog();
RandomViewport viewport(m_renderCtx.getRenderTarget(), 128, 128, deStringHash(getName()));
tcu::Surface renderedFrame(viewport.width, viewport.height);
tcu::Surface referenceFrame(viewport.width, viewport.height);
const tcu::IVec4 texBits = tcu::getTextureFormatBitDepth(glu::mapGLTransferFormat(m_format, m_dataType));
const tcu::PixelFormat &rtFmt = m_renderCtx.getRenderTarget().getPixelFormat();
const tcu::PixelFormat thresholdFormat(de::min(texBits[0], rtFmt.redBits), de::min(texBits[1], rtFmt.greenBits),
de::min(texBits[2], rtFmt.blueBits), de::min(texBits[3], rtFmt.alphaBits));
tcu::RGBA threshold = thresholdFormat.getColorThreshold() + tcu::RGBA(7, 7, 7, 7);
uint32_t wrapS = GL_CLAMP_TO_EDGE;
uint32_t wrapT = GL_CLAMP_TO_EDGE;
// Do not minify with GL_NEAREST. A large POT texture with a small POT render target will produce
// indeterminate results.
uint32_t minFilter = m_useMipmaps ? GL_NEAREST_MIPMAP_NEAREST : GL_LINEAR;
uint32_t magFilter = GL_NEAREST;
vector<float> texCoord;
computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapT);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_2D);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()),
m_texture->getRefTexture(), &texCoord[0],
ReferenceParams(TEXTURETYPE_2D, mapGLSampler(wrapS, wrapT, minFilter, magFilter)));
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
class TextureCubeSizeCase : public tcu::TestCase
{
public:
TextureCubeSizeCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name,
const char *description, uint32_t format, uint32_t dataType, int width, int height,
bool mipmaps);
~TextureCubeSizeCase(void);
void init(void);
void deinit(void);
IterateResult iterate(void);
private:
TextureCubeSizeCase(const TextureCubeSizeCase &other);
TextureCubeSizeCase &operator=(const TextureCubeSizeCase &other);
bool testFace(tcu::CubeFace face);
glu::RenderContext &m_renderCtx;
uint32_t m_format;
uint32_t m_dataType;
int m_width;
int m_height;
bool m_useMipmaps;
glu::TextureCube *m_texture;
TextureRenderer m_renderer;
int m_curFace;
bool m_isOk;
};
TextureCubeSizeCase::TextureCubeSizeCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name,
const char *description, uint32_t format, uint32_t dataType, int width,
int height, bool mipmaps)
: TestCase(testCtx, name, description)
, m_renderCtx(renderCtx)
, m_format(format)
, m_dataType(dataType)
, m_width(width)
, m_height(height)
, m_useMipmaps(mipmaps)
, m_texture(DE_NULL)
, m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_MEDIUMP)
, m_curFace(0)
, m_isOk(false)
{
}
TextureCubeSizeCase::~TextureCubeSizeCase(void)
{
TextureCubeSizeCase::deinit();
}
void TextureCubeSizeCase::init(void)
{
DE_ASSERT(!m_texture);
DE_ASSERT(m_width == m_height);
m_texture = new TextureCube(m_renderCtx, m_format, m_dataType, m_width);
static const tcu::Vec4 gradients[tcu::CUBEFACE_LAST][2] = {
{tcu::Vec4(-1.0f, -1.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // negative x
{tcu::Vec4(0.0f, -1.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // positive x
{tcu::Vec4(-1.0f, 0.0f, -1.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // negative y
{tcu::Vec4(-1.0f, -1.0f, 0.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)}, // positive y
{tcu::Vec4(-1.0f, -1.0f, -1.0f, 0.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f)}, // negative z
{tcu::Vec4(0.0f, 0.0f, 0.0f, 2.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)} // positive z
};
int numLevels = m_useMipmaps ? deLog2Floor32(de::max(m_width, m_height)) + 1 : 1;
// Fill levels.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
m_texture->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
fillWithComponentGradients(m_texture->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face),
gradients[face][0], gradients[face][1]);
}
}
// Upload texture data to GL.
m_texture->upload();
// Initialize iteration state.
m_curFace = 0;
m_isOk = true;
}
void TextureCubeSizeCase::deinit(void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool TextureCubeSizeCase::testFace(tcu::CubeFace face)
{
const glw::Functions &gl = m_renderCtx.getFunctions();
TestLog &log = m_testCtx.getLog();
RandomViewport viewport(m_renderCtx.getRenderTarget(), 128, 128, deStringHash(getName()) + (uint32_t)face);
tcu::Surface renderedFrame(viewport.width, viewport.height);
tcu::Surface referenceFrame(viewport.width, viewport.height);
const tcu::IVec4 texBits = tcu::getTextureFormatBitDepth(glu::mapGLTransferFormat(m_format, m_dataType));
const tcu::PixelFormat &rtFmt = m_renderCtx.getRenderTarget().getPixelFormat();
const tcu::PixelFormat thresholdFormat(de::min(texBits[0], rtFmt.redBits), de::min(texBits[1], rtFmt.greenBits),
de::min(texBits[2], rtFmt.blueBits), de::min(texBits[3], rtFmt.alphaBits));
tcu::RGBA threshold = thresholdFormat.getColorThreshold() + tcu::RGBA(7, 7, 7, 7);
uint32_t wrapS = GL_CLAMP_TO_EDGE;
uint32_t wrapT = GL_CLAMP_TO_EDGE;
// Do not minify with GL_NEAREST. A large POT texture with a small POT render target will produce
// indeterminate results.
uint32_t minFilter = m_useMipmaps ? GL_NEAREST_MIPMAP_NEAREST : GL_LINEAR;
uint32_t magFilter = GL_NEAREST;
vector<float> texCoord;
computeQuadTexCoordCube(texCoord, face);
// \todo [2011-10-28 pyry] Image set name / section?
log << TestLog::Message << face << TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, wrapS);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, wrapT);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, minFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, magFilter);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_CUBE);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
Sampler sampler = mapGLSampler(wrapS, wrapT, minFilter, magFilter);
sampler.seamlessCubeMap = true;
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()),
m_texture->getRefTexture(), &texCoord[0], ReferenceParams(TEXTURETYPE_CUBE, sampler));
// Compare and log.
return compareImages(log, referenceFrame, renderedFrame, threshold);
}
TextureCubeSizeCase::IterateResult TextureCubeSizeCase::iterate(void)
{
// Execute test for all faces.
if (!testFace((tcu::CubeFace)m_curFace))
m_isOk = false;
m_curFace += 1;
if (m_curFace == tcu::CUBEFACE_LAST)
{
m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
m_isOk ? "Pass" : "Image comparison failed");
return STOP;
}
else
return CONTINUE;
}
TextureSizeTests::TextureSizeTests(Context &context) : TestCaseGroup(context, "size", "Texture Size Tests")
{
}
TextureSizeTests::~TextureSizeTests(void)
{
}
void TextureSizeTests::init(void)
{
struct
{
int width;
int height;
} sizes2D[] = {{64, 64}, // Spec-mandated minimum.
{65, 63},
{512, 512},
{1024, 1024},
{2048, 2048}};
struct
{
int width;
int height;
} sizesCube[] = {{15, 15}, {16, 16}, // Spec-mandated minimum
{64, 64}, {128, 128}, {256, 256}, {512, 512}};
struct
{
const char *name;
uint32_t format;
uint32_t dataType;
} formats[] = {{"l8", GL_LUMINANCE, GL_UNSIGNED_BYTE},
{"rgba4444", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4},
{"rgb888", GL_RGB, GL_UNSIGNED_BYTE},
{"rgba8888", GL_RGBA, GL_UNSIGNED_BYTE}};
// 2D cases.
tcu::TestCaseGroup *group2D = new tcu::TestCaseGroup(m_testCtx, "2d", "2D Texture Size Tests");
addChild(group2D);
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(sizes2D); sizeNdx++)
{
int width = sizes2D[sizeNdx].width;
int height = sizes2D[sizeNdx].height;
bool isPOT = deIsPowerOfTwo32(width) && deIsPowerOfTwo32(height);
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(formats); formatNdx++)
{
for (int mipmap = 0; mipmap < (isPOT ? 2 : 1); mipmap++)
{
std::ostringstream name;
name << width << "x" << height << "_" << formats[formatNdx].name << (mipmap ? "_mipmap" : "");
group2D->addChild(new Texture2DSizeCase(m_testCtx, m_context.getRenderContext(), name.str().c_str(), "",
formats[formatNdx].format, formats[formatNdx].dataType, width,
height, mipmap != 0));
}
}
}
// Cubemap cases.
tcu::TestCaseGroup *groupCube = new tcu::TestCaseGroup(m_testCtx, "cube", "Cubemap Texture Size Tests");
addChild(groupCube);
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(sizesCube); sizeNdx++)
{
int width = sizesCube[sizeNdx].width;
int height = sizesCube[sizeNdx].height;
bool isPOT = deIsPowerOfTwo32(width) && deIsPowerOfTwo32(height);
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(formats); formatNdx++)
{
for (int mipmap = 0; mipmap < (isPOT ? 2 : 1); mipmap++)
{
std::ostringstream name;
name << width << "x" << height << "_" << formats[formatNdx].name << (mipmap ? "_mipmap" : "");
groupCube->addChild(new TextureCubeSizeCase(m_testCtx, m_context.getRenderContext(), name.str().c_str(),
"", formats[formatNdx].format, formats[formatNdx].dataType,
width, height, mipmap != 0));
}
}
}
}
} // namespace Functional
} // namespace gles3
} // namespace deqp