blob: 4d0f3e027f5e0bff714bc2e95d90c8226755db8d [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2020 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Ray Tracing Shader Binding Table tests
*//*--------------------------------------------------------------------*/
#include "vktRayTracingShaderBindingTableTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkImageUtil.hpp"
#include "deRandom.hpp"
#include "tcuTexture.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuTestLog.hpp"
#include "tcuImageCompare.hpp"
#include "vkRayTracingUtil.hpp"
namespace vkt
{
namespace RayTracing
{
namespace
{
using namespace vk;
using namespace vkt;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
enum ShaderTestType
{
STT_HIT = 0,
STT_MISS = 1,
STT_CALL = 2,
STT_COUNT = 3
};
const deUint32 CHECKERBOARD_WIDTH = 8;
const deUint32 CHECKERBOARD_HEIGHT = 8;
const deUint32 HIT_GEOMETRY_COUNT = 3;
const deUint32 HIT_INSTANCE_COUNT = 1 + CHECKERBOARD_WIDTH * CHECKERBOARD_HEIGHT / ( 2 * HIT_GEOMETRY_COUNT );
const deUint32 MAX_SBT_RECORD_OFFSET = 3;
const deUint32 MAX_HIT_SBT_RECORD_STRIDE = HIT_GEOMETRY_COUNT + 1;
const deUint32 SBT_RANDOM_SEED = 1410;
struct TestParams;
class TestConfiguration
{
public:
virtual std::vector<de::SharedPtr<BottomLevelAccelerationStructure>> initBottomAccelerationStructures (Context& context,
TestParams& testParams) = 0;
virtual de::MovePtr<TopLevelAccelerationStructure> initTopAccelerationStructure (Context& context,
TestParams& testParams,
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures) = 0;
virtual de::MovePtr<BufferWithMemory> initUniformBuffer (Context& context,
TestParams& testParams) = 0;
virtual void initRayTracingShaders (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
Context& context,
TestParams& testParams) = 0;
virtual void initShaderBindingTables (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
Context& context,
TestParams& testParams,
VkPipeline pipeline,
deUint32 shaderGroupHandleSize,
deUint32 shaderGroupBaseAlignment,
de::MovePtr<BufferWithMemory>& raygenShaderBindingTable,
de::MovePtr<BufferWithMemory>& hitShaderBindingTable,
de::MovePtr<BufferWithMemory>& missShaderBindingTable,
de::MovePtr<BufferWithMemory>& callableShaderBindingTable,
VkStridedDeviceAddressRegionKHR& raygenShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& hitShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& missShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& callableShaderBindingTableRegion) = 0;
virtual bool verifyImage (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams) = 0;
virtual VkFormat getResultImageFormat () = 0;
virtual size_t getResultImageFormatSize () = 0;
virtual VkClearValue getClearValue () = 0;
};
struct TestParams
{
deUint32 width;
deUint32 height;
ShaderTestType shaderTestType;
deUint32 sbtOffset;
bool shaderRecordPresent;
deUint32 sbtRecordOffset;
deUint32 sbtRecordOffsetPassedToTraceRay;
deUint32 sbtRecordStride;
deUint32 sbtRecordStridePassedToTraceRay;
de::SharedPtr<TestConfiguration> testConfiguration;
};
std::vector<deUint32> getShaderCounts ()
{
std::vector<deUint32> shaderCount(STT_COUNT);
shaderCount[STT_HIT] = HIT_INSTANCE_COUNT + HIT_GEOMETRY_COUNT * MAX_HIT_SBT_RECORD_STRIDE + MAX_SBT_RECORD_OFFSET + 1;
shaderCount[STT_MISS] = MAX_SBT_RECORD_OFFSET + HIT_INSTANCE_COUNT + 1;
shaderCount[STT_CALL] = MAX_SBT_RECORD_OFFSET + HIT_INSTANCE_COUNT + 1;
return shaderCount;
}
deUint32 getShaderGroupHandleSize (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupHandleSize();
}
deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, VkFormat format)
{
const VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkImageCreateFlags)0u, // VkImageCreateFlags flags;
VK_IMAGE_TYPE_2D, // VkImageType imageType;
format, // VkFormat format;
makeExtent3D(width, height, 1), // VkExtent3D extent;
1u, // deUint32 mipLevels;
1u, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling;
VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
};
return imageCreateInfo;
}
class CheckerboardConfiguration : public TestConfiguration
{
public:
std::vector<de::SharedPtr<BottomLevelAccelerationStructure>> initBottomAccelerationStructures (Context& context,
TestParams& testParams) override;
de::MovePtr<TopLevelAccelerationStructure> initTopAccelerationStructure (Context& context,
TestParams& testParams,
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures) override;
de::MovePtr<BufferWithMemory> initUniformBuffer (Context& context,
TestParams& testParams) override;
void initRayTracingShaders (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
Context& context,
TestParams& testParams) override;
void initShaderBindingTables (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
Context& context,
TestParams& testParams,
VkPipeline pipeline,
deUint32 shaderGroupHandleSize,
deUint32 shaderGroupBaseAlignment,
de::MovePtr<BufferWithMemory>& raygenShaderBindingTable,
de::MovePtr<BufferWithMemory>& hitShaderBindingTable,
de::MovePtr<BufferWithMemory>& missShaderBindingTable,
de::MovePtr<BufferWithMemory>& callableShaderBindingTable,
VkStridedDeviceAddressRegionKHR& raygenShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& hitShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& missShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& callableShaderBindingTableRegion) override;
bool verifyImage (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams) override;
VkFormat getResultImageFormat () override;
size_t getResultImageFormatSize () override;
VkClearValue getClearValue () override;
};
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > CheckerboardConfiguration::initBottomAccelerationStructures (Context& context,
TestParams& testParams)
{
DE_UNREF(context);
std::vector<tcu::Vec3> corners;
for (deUint32 y = 0; y < testParams.height; ++y)
for (deUint32 x = 0; x < testParams.width; ++x)
{
if (((x + y) % 2) == 0)
continue;
corners.push_back(tcu::Vec3((float)x, (float)y, 0.0f));
}
de::Random rnd(SBT_RANDOM_SEED);
rnd.shuffle(begin(corners), end(corners));
tcu::Vec3 v0(0.0, 1.0, 0.0);
tcu::Vec3 v1(0.0, 0.0, 0.0);
tcu::Vec3 v2(1.0, 1.0, 0.0);
tcu::Vec3 v3(1.0, 0.0, 0.0);
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > result;
for (size_t cornerNdx = 0; cornerNdx < corners.size(); cornerNdx += HIT_GEOMETRY_COUNT)
{
de::MovePtr<BottomLevelAccelerationStructure> bottomLevelAccelerationStructure = makeBottomLevelAccelerationStructure();
size_t geometryCount = std::min(corners.size() - cornerNdx, size_t(HIT_GEOMETRY_COUNT));
bottomLevelAccelerationStructure->setGeometryCount(geometryCount);
for (size_t idx = cornerNdx; idx < cornerNdx + geometryCount; ++idx)
{
de::SharedPtr<RaytracedGeometryBase> geometry = makeRaytracedGeometry(VK_GEOMETRY_TYPE_TRIANGLES_KHR, VK_FORMAT_R32G32B32_SFLOAT, VK_INDEX_TYPE_NONE_KHR);
geometry->addVertex(corners[idx] + v0);
geometry->addVertex(corners[idx] + v1);
geometry->addVertex(corners[idx] + v2);
geometry->addVertex(corners[idx] + v2);
geometry->addVertex(corners[idx] + v1);
geometry->addVertex(corners[idx] + v3);
bottomLevelAccelerationStructure->addGeometry(geometry);
}
result.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(bottomLevelAccelerationStructure.release()));
}
return result;
}
de::MovePtr<TopLevelAccelerationStructure> CheckerboardConfiguration::initTopAccelerationStructure (Context& context,
TestParams& testParams,
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures)
{
DE_UNREF(context);
DE_UNREF(testParams);
de::MovePtr<TopLevelAccelerationStructure> result = makeTopLevelAccelerationStructure();
deUint32 instanceCount = deUint32(bottomLevelAccelerationStructures.size());
result->setInstanceCount(instanceCount);
VkTransformMatrixKHR identityMatrix = { { { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f, 0.0f } } };
for (deUint32 i = 0; i < instanceCount; ++i)
result->addInstance(bottomLevelAccelerationStructures[i], identityMatrix, 0u, 0xFF, (testParams.shaderTestType == STT_MISS) ? 0 : i);
return result;
}
de::MovePtr<BufferWithMemory> CheckerboardConfiguration::initUniformBuffer (Context& context,
TestParams& testParams)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
Allocator& allocator = context.getDefaultAllocator();
const VkBufferCreateInfo uniformBufferCreateInfo = makeBufferCreateInfo(sizeof(tcu::UVec4), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
de::MovePtr<BufferWithMemory> uniformBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, uniformBufferCreateInfo, MemoryRequirement::HostVisible));
tcu::UVec4 uniformValue; // x = sbtRecordOffset, y = sbtRecordStride, z = missIndex
switch (testParams.shaderTestType)
{
case STT_HIT:
{
uniformValue = tcu::UVec4(testParams.sbtRecordOffsetPassedToTraceRay, testParams.sbtRecordStride, 0, 0);
break;
}
case STT_MISS:
{
uniformValue = tcu::UVec4(0, 0, testParams.sbtRecordOffsetPassedToTraceRay, 0);
break;
}
case STT_CALL:
{
uniformValue = tcu::UVec4(testParams.sbtRecordOffsetPassedToTraceRay, testParams.sbtRecordStride, 0, 0);
break;
}
default:
TCU_THROW(InternalError, "Wrong shader test type");
}
deMemcpy(uniformBuffer->getAllocation().getHostPtr(), &uniformValue, sizeof(tcu::UVec4));
flushMappedMemoryRange(vkd, device, uniformBuffer->getAllocation().getMemory(), uniformBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE);
return uniformBuffer;
}
void CheckerboardConfiguration::initRayTracingShaders (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
Context& context,
TestParams& testParams)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
std::vector<deUint32> shaderCount = getShaderCounts();
switch (testParams.shaderTestType)
{
case STT_HIT:
{
if (testParams.shaderRecordPresent)
{
// shaders: rgen, chit_shaderRecord (N times), miss_0
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0);
for (deUint32 idx = 0; idx < shaderCount[STT_HIT]; ++idx)
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("chit_shaderRecord"), 0), 1+idx);
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_HIT]);
}
else
{
// shaders: rgen, chit_0 .. chit_N, miss_0
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0);
for (deUint32 idx = 0; idx < shaderCount[STT_HIT]; ++idx)
{
std::stringstream csname;
csname << "chit_" << idx;
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 1 + idx);
}
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_HIT]);
}
rayTracingPipeline->setMaxPayloadSize(16u);
break;
}
case STT_MISS:
{
if (testParams.shaderRecordPresent)
{
// shaders: rgen, chit_0, miss_shaderRecord ( N times )
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0);
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("chit_0"), 0), 1);
for (deUint32 idx = 0; idx < shaderCount[STT_MISS]; ++idx)
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_shaderRecord"), 0), 2 + idx);
}
else
{
// shaders: rgen, chit_0, miss_0 .. miss_N
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0);
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("chit_0"), 0), 1);
for (deUint32 idx = 0; idx < shaderCount[STT_MISS]; ++idx)
{
std::stringstream csname;
csname << "miss_" << idx;
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 2 + idx);
}
}
rayTracingPipeline->setMaxPayloadSize(16u);
break;
}
case STT_CALL:
{
if (testParams.shaderRecordPresent)
{
// shaders: rgen, chit_call_0 .. chit_call_N, miss_0, call_shaderRecord ( N times )
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0);
for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx)
{
std::stringstream csname;
csname << "chit_call_" << idx;
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 1 + idx);
}
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_CALL]);
for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx)
rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("call_shaderRecord"), 0), 2 + shaderCount[STT_CALL] + idx);
}
else
{
// shaders: rgen, chit_call_0 .. chit_call_N, miss_0, call_0 .. call_N
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0);
for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx)
{
std::stringstream csname;
csname << "chit_call_" << idx;
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 1 + idx);
}
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_CALL]);
for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx)
{
std::stringstream csname;
csname << "call_" << idx;
rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 2 + shaderCount[STT_CALL] + idx);
}
}
rayTracingPipeline->setMaxPayloadSize(16u);
break;
}
default:
TCU_THROW(InternalError, "Wrong shader test type");
}
}
void CheckerboardConfiguration::initShaderBindingTables (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
Context& context,
TestParams& testParams,
VkPipeline pipeline,
deUint32 shaderGroupHandleSize,
deUint32 shaderGroupBaseAlignment,
de::MovePtr<BufferWithMemory>& raygenShaderBindingTable,
de::MovePtr<BufferWithMemory>& hitShaderBindingTable,
de::MovePtr<BufferWithMemory>& missShaderBindingTable,
de::MovePtr<BufferWithMemory>& callableShaderBindingTable,
VkStridedDeviceAddressRegionKHR& raygenShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& hitShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& missShaderBindingTableRegion,
VkStridedDeviceAddressRegionKHR& callableShaderBindingTableRegion)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
Allocator& allocator = context.getDefaultAllocator();
std::vector<deUint32> shaderCount = getShaderCounts();
// shaderBindingTableOffset must be multiple of shaderGroupBaseAlignment
deUint32 shaderBindingTableOffset = testParams.sbtOffset * shaderGroupBaseAlignment;
// ShaderRecordKHR size must be multiple of shaderGroupHandleSize
deUint32 shaderRecordAlignedSize = deAlign32(shaderGroupHandleSize + deUint32(sizeof(tcu::UVec4)), shaderGroupHandleSize);
switch (testParams.shaderTestType)
{
case STT_HIT:
{
raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 );
if(testParams.shaderRecordPresent)
hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, shaderCount[STT_HIT], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset, sizeof(tcu::UVec4));
else
hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, shaderCount[STT_HIT], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset);
missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1 + shaderCount[STT_HIT], 1 );
raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
if (testParams.shaderRecordPresent)
hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), shaderBindingTableOffset), shaderRecordAlignedSize, shaderCount[STT_HIT] * shaderRecordAlignedSize);
else
hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), shaderBindingTableOffset), shaderGroupHandleSize, shaderCount[STT_HIT] * shaderGroupHandleSize);
missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
// fill ShaderRecordKHR data
if (testParams.shaderRecordPresent)
{
deUint8* hitAddressBegin = (deUint8*)hitShaderBindingTable->getAllocation().getHostPtr() + shaderBindingTableOffset;
for (size_t idx = 0; idx < shaderCount[STT_HIT]; ++idx)
{
deUint8* shaderRecordAddress = hitAddressBegin + idx * shaderRecordAlignedSize + size_t(shaderGroupHandleSize);
tcu::UVec4 shaderRecord(deUint32(idx), 0, 0, 0);
deMemcpy(shaderRecordAddress, &shaderRecord, sizeof(tcu::UVec4));
}
flushMappedMemoryRange(vkd, device, hitShaderBindingTable->getAllocation().getMemory(), hitShaderBindingTable->getAllocation().getOffset(), VK_WHOLE_SIZE);
}
break;
}
case STT_MISS:
{
raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 );
hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, 1 );
if (testParams.shaderRecordPresent)
missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2, shaderCount[STT_MISS], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset, sizeof(tcu::UVec4));
else
missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2, shaderCount[STT_MISS], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset);
raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), 0, shaderGroupHandleSize);
if (testParams.shaderRecordPresent)
missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), shaderBindingTableOffset), shaderRecordAlignedSize, shaderCount[STT_MISS] * shaderRecordAlignedSize);
else
missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), shaderBindingTableOffset), shaderGroupHandleSize, shaderCount[STT_MISS] * shaderGroupHandleSize);
callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
if (testParams.shaderRecordPresent)
{
deUint8* missAddressBegin = (deUint8*)missShaderBindingTable->getAllocation().getHostPtr() + shaderBindingTableOffset;
for (size_t idx = 0; idx < shaderCount[STT_MISS]; ++idx)
{
deUint8* shaderRecordAddress = missAddressBegin + idx * shaderRecordAlignedSize + size_t(shaderGroupHandleSize);
tcu::UVec4 shaderRecord(deUint32(idx), 0, 0, 0);
deMemcpy(shaderRecordAddress, &shaderRecord, sizeof(tcu::UVec4));
}
flushMappedMemoryRange(vkd, device, missShaderBindingTable->getAllocation().getMemory(), missShaderBindingTable->getAllocation().getOffset(), VK_WHOLE_SIZE);
}
break;
}
case STT_CALL:
{
raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 );
hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, shaderCount[STT_CALL]);
missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1 + shaderCount[STT_CALL], 1 );
if (testParams.shaderRecordPresent)
callableShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2 + shaderCount[STT_CALL], shaderCount[STT_CALL], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset, sizeof(tcu::UVec4));
else
callableShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2 + shaderCount[STT_CALL], shaderCount[STT_CALL], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset);
raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderCount[STT_CALL] * shaderGroupHandleSize);
missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
if (testParams.shaderRecordPresent)
callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, callableShaderBindingTable->get(), shaderBindingTableOffset), shaderRecordAlignedSize, shaderCount[STT_CALL] * shaderRecordAlignedSize);
else
callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, callableShaderBindingTable->get(), shaderBindingTableOffset), shaderGroupHandleSize, shaderCount[STT_CALL] * shaderGroupHandleSize);
if (testParams.shaderRecordPresent)
{
deUint8* callAddressBegin = (deUint8*)callableShaderBindingTable->getAllocation().getHostPtr() + shaderBindingTableOffset;
for (size_t idx = 0; idx < shaderCount[STT_CALL]; ++idx)
{
deUint8* shaderRecordAddress = callAddressBegin + idx * shaderRecordAlignedSize + size_t(shaderGroupHandleSize);
tcu::UVec4 shaderRecord(deUint32(idx), 0, 0, 0);
deMemcpy(shaderRecordAddress, &shaderRecord, sizeof(tcu::UVec4));
}
flushMappedMemoryRange(vkd, device, callableShaderBindingTable->getAllocation().getMemory(), callableShaderBindingTable->getAllocation().getOffset(), VK_WHOLE_SIZE);
}
break;
}
default:
TCU_THROW(InternalError, "Wrong shader test type");
}
}
bool CheckerboardConfiguration::verifyImage (BufferWithMemory* resultBuffer, Context& context, TestParams& testParams)
{
// create result image
tcu::TextureFormat imageFormat = vk::mapVkFormat(getResultImageFormat());
tcu::ConstPixelBufferAccess resultAccess(imageFormat, testParams.width, testParams.height, 1, resultBuffer->getAllocation().getHostPtr());
// recreate geometry indices and instance offsets
std::vector<tcu::UVec4> corners;
for (deUint32 y = 0; y < testParams.height; ++y)
for (deUint32 x = 0; x < testParams.width; ++x)
{
if (((x + y) % 2) == 0)
continue;
corners.push_back(tcu::UVec4(x, y, 0, 0));
}
de::Random rnd(SBT_RANDOM_SEED);
rnd.shuffle(begin(corners), end(corners));
deUint32 instanceOffset = 0;
for (size_t cornerNdx = 0; cornerNdx < corners.size(); cornerNdx += HIT_GEOMETRY_COUNT, ++instanceOffset)
{
size_t geometryCount = std::min(corners.size() - cornerNdx, size_t(HIT_GEOMETRY_COUNT));
deUint32 geometryIndex = 0;
for (size_t idx = cornerNdx; idx < cornerNdx + geometryCount; ++idx, ++geometryIndex)
{
corners[idx].z() = instanceOffset;
corners[idx].w() = geometryIndex;
}
}
std::vector<deUint32> reference(testParams.width * testParams.height);
tcu::PixelBufferAccess referenceAccess(imageFormat, testParams.width, testParams.height, 1, reference.data());
// clear image with miss values
tcu::UVec4 missValue((testParams.shaderTestType == STT_MISS) ? testParams.sbtRecordOffset : 0, 0, 0, 0);
tcu::clear(referenceAccess, missValue);
// for each pixel - set its color to proper value
for (const auto& pixel : corners)
{
deUint32 shaderIndex;
switch (testParams.shaderTestType)
{
case STT_HIT:
{
shaderIndex = testParams.sbtRecordOffset + pixel.z() + pixel.w() * testParams.sbtRecordStride;
break;
}
case STT_MISS:
{
shaderIndex = 0;// pixel.z();
break;
}
case STT_CALL:
{
shaderIndex = testParams.sbtRecordOffset + pixel.z() + pixel.w() * testParams.sbtRecordStride;
break;
}
default:
TCU_THROW(InternalError, "Wrong shader test type");
}
referenceAccess.setPixel(tcu::UVec4(shaderIndex, 0, 0, 0), pixel.x(), pixel.y());
}
// compare result and reference
return tcu::intThresholdCompare(context.getTestContext().getLog(), "Result comparison", "", referenceAccess, resultAccess, tcu::UVec4(0), tcu::COMPARE_LOG_RESULT);
}
VkFormat CheckerboardConfiguration::getResultImageFormat ()
{
return VK_FORMAT_R32_UINT;
}
size_t CheckerboardConfiguration::getResultImageFormatSize ()
{
return sizeof(deUint32);
}
VkClearValue CheckerboardConfiguration::getClearValue ()
{
return makeClearValueColorU32(0xFF, 0u, 0u, 0u);
}
class ShaderBindingTableIndexingTestCase : public TestCase
{
public:
ShaderBindingTableIndexingTestCase (tcu::TestContext& context, const char* name, const char* desc, const TestParams data);
~ShaderBindingTableIndexingTestCase (void);
virtual void checkSupport (Context& context) const;
virtual void initPrograms (SourceCollections& programCollection) const;
virtual TestInstance* createInstance (Context& context) const;
private:
TestParams m_data;
};
class ShaderBindingTableIndexingTestInstance : public TestInstance
{
public:
ShaderBindingTableIndexingTestInstance (Context& context, const TestParams& data);
~ShaderBindingTableIndexingTestInstance (void);
tcu::TestStatus iterate (void);
protected:
de::MovePtr<BufferWithMemory> runTest ();
private:
TestParams m_data;
};
ShaderBindingTableIndexingTestCase::ShaderBindingTableIndexingTestCase (tcu::TestContext& context, const char* name, const char* desc, const TestParams data)
: vkt::TestCase (context, name, desc)
, m_data (data)
{
}
ShaderBindingTableIndexingTestCase::~ShaderBindingTableIndexingTestCase (void)
{
}
void ShaderBindingTableIndexingTestCase::checkSupport (Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE )
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
}
void ShaderBindingTableIndexingTestCase::initPrograms (SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
std::vector<deUint32> shaderCount = getShaderCounts();
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadEXT uvec4 hitValue;\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n"
"layout(set = 0, binding = 1) uniform TraceRaysParamsUBO\n"
"{\n"
" uvec4 trParams; // x = sbtRecordOffset, y = sbtRecordStride, z = missIndex\n"
"};\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT topLevelAS;\n"
"\n"
"void main()\n"
"{\n"
" float tmin = 0.0;\n"
" float tmax = 1.0;\n"
" vec3 origin = vec3(float(gl_LaunchIDEXT.x) + 0.5f, float(gl_LaunchIDEXT.y) + 0.5f, 0.5f);\n"
" vec3 direct = vec3(0.0, 0.0, -1.0);\n"
" hitValue = uvec4(0,0,0,0);\n"
" traceRayEXT(topLevelAS, 0, 0xFF, trParams.x, trParams.y, trParams.z, origin, tmin, direct, tmax, 0);\n"
" imageStore(result, ivec2(gl_LaunchIDEXT.xy), hitValue);\n"
"}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
for(deUint32 idx = 0; idx < shaderCount[STT_HIT]; ++idx)
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" hitValue = uvec4("<< idx << ",0,0,1);\n"
"}\n";
std::stringstream csname;
csname << "chit_" << idx;
programCollection.glslSources.add(csname.str()) << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(shaderRecordEXT) buffer block\n"
"{\n"
" uvec4 info;\n"
"};\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" hitValue = info;\n"
"}\n";
programCollection.glslSources.add("chit_shaderRecord") << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx)
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) callableDataEXT uvec4 value;\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" executeCallableEXT(" << idx << ", 0);\n"
" hitValue = value;\n"
"}\n";
std::stringstream csname;
csname << "chit_call_" << idx;
programCollection.glslSources.add(csname.str()) << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
for (deUint32 idx = 0; idx < shaderCount[STT_MISS]; ++idx)
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" hitValue = uvec4(" << idx <<",0,0,1);\n"
"}\n";
std::stringstream csname;
csname << "miss_" << idx;
programCollection.glslSources.add(csname.str()) << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(shaderRecordEXT) buffer block\n"
"{\n"
" uvec4 info;\n"
"};\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" hitValue = info;\n"
"}\n";
programCollection.glslSources.add("miss_shaderRecord") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx)
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) callableDataInEXT uvec4 result;\n"
"void main()\n"
"{\n"
" result = uvec4(" << idx << ",0,0,1);\n"
"}\n";
std::stringstream csname;
csname << "call_" << idx;
programCollection.glslSources.add(csname.str()) << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(shaderRecordEXT) buffer block\n"
"{\n"
" uvec4 info;\n"
"};\n"
"layout(location = 0) callableDataInEXT uvec4 result;\n"
"void main()\n"
"{\n"
" result = info;\n"
"}\n";
programCollection.glslSources.add("call_shaderRecord") << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
}
TestInstance* ShaderBindingTableIndexingTestCase::createInstance (Context& context) const
{
return new ShaderBindingTableIndexingTestInstance(context, m_data);
}
ShaderBindingTableIndexingTestInstance::ShaderBindingTableIndexingTestInstance (Context& context, const TestParams& data)
: vkt::TestInstance (context)
, m_data (data)
{
}
ShaderBindingTableIndexingTestInstance::~ShaderBindingTableIndexingTestInstance (void)
{
}
de::MovePtr<BufferWithMemory> ShaderBindingTableIndexingTestInstance::runTest ()
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const deUint32 pixelCount = m_data.width * m_data.height * 1;
const Move<VkDescriptorSetLayout> descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.build(vkd, device);
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
const Move<VkDescriptorSet> descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const Move<VkPipelineLayout> pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get());
de::MovePtr<RayTracingPipeline> rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
m_data.testConfiguration->initRayTracingShaders(rayTracingPipeline, m_context, m_data);
Move<VkPipeline> pipeline = rayTracingPipeline->createPipeline(vkd, device, *pipelineLayout);
de::MovePtr<BufferWithMemory> raygenShaderBindingTable;
de::MovePtr<BufferWithMemory> hitShaderBindingTable;
de::MovePtr<BufferWithMemory> missShaderBindingTable;
de::MovePtr<BufferWithMemory> callableShaderBindingTable;
VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion;
VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion;
VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion;
VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion;
m_data.testConfiguration->initShaderBindingTables(rayTracingPipeline, m_context, m_data, *pipeline, getShaderGroupHandleSize(vki, physicalDevice), getShaderGroupBaseAlignment(vki, physicalDevice), raygenShaderBindingTable, hitShaderBindingTable, missShaderBindingTable, callableShaderBindingTable, raygenShaderBindingTableRegion, hitShaderBindingTableRegion, missShaderBindingTableRegion, callableShaderBindingTableRegion);
const VkFormat imageFormat = m_data.testConfiguration->getResultImageFormat();
const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, imageFormat);
const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u);
const de::MovePtr<ImageWithMemory> image = de::MovePtr<ImageWithMemory>(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any));
const Move<VkImageView> imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_2D, imageFormat, imageSubresourceRange);
const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(pixelCount*m_data.testConfiguration->getResultImageFormatSize(), VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkImageSubresourceLayers resultBufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u);
const VkBufferImageCopy resultBufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, 1), resultBufferImageSubresourceLayers);
de::MovePtr<BufferWithMemory> resultBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
const Move<VkCommandPool> cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
const Move<VkCommandBuffer> cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > bottomLevelAccelerationStructures;
de::MovePtr<TopLevelAccelerationStructure> topLevelAccelerationStructure;
de::MovePtr<BufferWithMemory> uniformBuffer;
beginCommandBuffer(vkd, *cmdBuffer, 0u);
{
const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
**image, imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier);
const VkClearValue clearValue = m_data.testConfiguration->getClearValue();
vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange);
const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
**image, imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier);
bottomLevelAccelerationStructures = m_data.testConfiguration->initBottomAccelerationStructures(m_context, m_data);
for (auto& blas : bottomLevelAccelerationStructures)
blas->createAndBuild(vkd, device, *cmdBuffer, allocator);
topLevelAccelerationStructure = m_data.testConfiguration->initTopAccelerationStructure(m_context, m_data, bottomLevelAccelerationStructures);
topLevelAccelerationStructure->createAndBuild(vkd, device, *cmdBuffer, allocator);
uniformBuffer = m_data.testConfiguration->initUniformBuffer(m_context, m_data);
VkDescriptorBufferInfo uniformBufferInfo = makeDescriptorBufferInfo(uniformBuffer->get(), 0ull, sizeof(tcu::UVec4));
const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get();
VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &uniformBufferInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(2u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline);
cmdTraceRays(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
m_data.width, m_data.height, 1);
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **resultBuffer, 1u, &resultBufferImageRegion);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier);
}
endCommandBuffer(vkd, *cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer.get());
invalidateMappedMemoryRange(vkd, device, resultBuffer->getAllocation().getMemory(), resultBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE);
return resultBuffer;
}
tcu::TestStatus ShaderBindingTableIndexingTestInstance::iterate (void)
{
// run test using arrays of pointers
const de::MovePtr<BufferWithMemory> buffer = runTest();
if (!m_data.testConfiguration->verifyImage(buffer.get(), m_context, m_data))
return tcu::TestStatus::fail("Fail");
return tcu::TestStatus::pass("Pass");
}
/*
Test the advertised shader group handle alignment requirements work as expected. The tests will prepare shader binding tables using
shader record buffers for padding and achieving the desired alignments.
+-------------------------------------------
| Shader | Shader | Aligned |
| Group | Record | Shader | ...
| Handle | Buffer | Group |
| | (padding) | Handle |
+-------------------------------------------
The number of geometries to try (hence the number of alignments and shader record buffers to try) is 32/align + 1, so 33 in the case
of align=1, and 2 in the case of align=32. This allows us to test all possible alignment values.
Geometries are triangles put alongside the X axis. The base triangle is:
0,1| x
| x x
| x 0.5,0.5
| x x x
| x x
| xxxxxxxxxxx
+-------------
0,0 1,0
A triangle surrounding point (0.5, 0.5), in the [0, 1] range of both the X and Y axis.
As more than one triangle is needed, each triangle is translated one more unit in the X axis, so each triangle is in the [i, i+1]
range. The Y axis doesn't change, triangles are always in the [0,1] range.
Triangles have Z=5, and one ray is traced per triangle, origin (i+0.5, 0.5, 0) direction (0, 0, 1), where i is gl_LaunchIDEXT.x.
For each geometry, the shader record buffer contents vary depending on the geometry index and the desired alignment (padding).
Alignment Element Type Element Count Data
1 uint8_t 1 0x80 | geometryID
2 uint16_t 1 0xABC0 | geometryID
4+ uint32_t alignment/4 For each element: 0xABCDE0F0 | (element << 8) | geometryID
The test will try to verify everything works properly and all shader record buffers can be read with the right values.
*/
struct ShaderGroupHandleAlignmentParams
{
const uint32_t alignment;
ShaderGroupHandleAlignmentParams (uint32_t alignment_)
: alignment (alignment_)
{
DE_ASSERT(alignment >= 1u && alignment <= 32u);
DE_ASSERT(deIsPowerOfTwo32(static_cast<int>(alignment)));
}
uint32_t geometryCount () const
{
return (32u / alignment + 1u);
}
uint32_t shaderRecordElementCount () const
{
return ((alignment <= 4u) ? 1u : (alignment / 4u));
}
std::string glslElementType () const
{
if (alignment == 1u)
return "uint8_t";
if (alignment == 2u)
return "uint16_t";
return "uint32_t";
}
std::string glslExtension () const
{
if (alignment == 1u)
return "GL_EXT_shader_explicit_arithmetic_types_int8";
if (alignment == 2u)
return "GL_EXT_shader_explicit_arithmetic_types_int16";
return "GL_EXT_shader_explicit_arithmetic_types_int32";
}
std::vector<uint8_t> getRecordData (uint32_t geometryID) const
{
std::vector<uint8_t> recordData;
switch (alignment)
{
case 1u:
recordData.push_back(static_cast<uint8_t>(0x80u | geometryID));
break;
case 2u:
recordData.push_back(uint8_t{0xABu});
recordData.push_back(static_cast<uint8_t>(0xC0u | geometryID));
break;
default:
{
const auto elemCount = shaderRecordElementCount();
for (uint32_t i = 0u; i < elemCount; ++i)
{
recordData.push_back(uint8_t{0xABu});
recordData.push_back(uint8_t{0xCDu});
recordData.push_back(static_cast<uint8_t>(0xE0u | i));
recordData.push_back(static_cast<uint8_t>(0xF0u | geometryID));
}
}
break;
}
return recordData;
}
};
class ShaderGroupHandleAlignmentCase : public TestCase
{
public:
ShaderGroupHandleAlignmentCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const ShaderGroupHandleAlignmentParams& params)
: TestCase (testCtx, name, description)
, m_params (params)
{
}
virtual ~ShaderGroupHandleAlignmentCase (void) {}
void checkSupport (Context& context) const override;
void initPrograms (vk::SourceCollections& programCollection) const override;
TestInstance* createInstance (Context& context) const override;
protected:
ShaderGroupHandleAlignmentParams m_params;
};
class ShaderGroupHandleAlignmentInstance : public TestInstance
{
public:
ShaderGroupHandleAlignmentInstance (Context& context, const ShaderGroupHandleAlignmentParams& params)
: TestInstance (context)
, m_params (params)
{}
virtual ~ShaderGroupHandleAlignmentInstance (void) {}
tcu::TestStatus iterate (void) override;
protected:
ShaderGroupHandleAlignmentParams m_params;
};
void ShaderGroupHandleAlignmentCase::checkSupport (Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const auto& vki = context.getInstanceInterface();
const auto physicalDevice = context.getPhysicalDevice();
const auto rtProperties = makeRayTracingProperties(vki, physicalDevice);
if (m_params.alignment < rtProperties->getShaderGroupHandleAlignment())
TCU_THROW(NotSupportedError, "Required shader group handle alignment not supported");
switch (m_params.alignment)
{
case 1u:
{
const auto& int8Features = context.getShaderFloat16Int8Features();
if (!int8Features.shaderInt8)
TCU_THROW(NotSupportedError, "shaderInt8 not supported");
const auto& int8StorageFeatures = context.get8BitStorageFeatures();
if (!int8StorageFeatures.storageBuffer8BitAccess)
TCU_THROW(NotSupportedError, "storageBuffer8BitAccess not supported");
}
break;
case 2u:
{
context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SHADER_INT16);
const auto& int16StorageFeatures = context.get16BitStorageFeatures();
if (!int16StorageFeatures.storageBuffer16BitAccess)
TCU_THROW(NotSupportedError, "storageBuffer16BitAccess not supported");
}
break;
default:
break;
}
}
void ShaderGroupHandleAlignmentCase::initPrograms (vk::SourceCollections& programCollection) const
{
const ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
const auto elemType = m_params.glslElementType();
const auto geometryCount = m_params.geometryCount();
const auto elementCount = m_params.shaderRecordElementCount();
const auto extension = m_params.glslExtension();
std::ostringstream descriptors;
descriptors
<< "layout(set=0, binding=0) uniform accelerationStructureEXT topLevelAS;\n"
<< "layout(set=0, binding=1, std430) buffer SSBOBlock {\n"
<< " " << elemType << " data[" << geometryCount << "][" << elementCount << "];\n"
<< "} ssbo;\n"
;
const auto descriptorsStr = descriptors.str();
std::ostringstream commonHeader;
commonHeader
<< "#version 460 core\n"
<< "#extension GL_EXT_ray_tracing : require\n"
<< "#extension " << extension << " : require\n"
;
const auto commontHeaderStr = commonHeader.str();
std::ostringstream rgen;
rgen
<< commontHeaderStr
<< "\n"
<< descriptorsStr
<< "layout(location=0) rayPayloadEXT vec4 unused;\n"
<< "\n"
<< "void main()\n"
<< "{\n"
<< " const uint rayFlags = 0;\n"
<< " const uint cullMask = 0xFF;\n"
<< " const float tMin = 0.0;\n"
<< " const float tMax = 10.0;\n"
<< " const vec3 origin = vec3(float(gl_LaunchIDEXT.x) + 0.5, 0.5, 0.0);\n"
<< " const vec3 direction = vec3(0.0, 0.0, 1.0);\n"
<< " const uint sbtOffset = 0;\n"
<< " const uint sbtStride = 1;\n"
<< " const uint missIndex = 0;\n"
<< " traceRayEXT(topLevelAS, rayFlags, cullMask, sbtOffset, sbtStride, missIndex, origin, tMin, direction, tMax, 0);\n"
<< "}\n"
;
std::ostringstream chit;
chit
<< commontHeaderStr
<< "\n"
<< descriptorsStr
<< "layout(location=0) rayPayloadInEXT vec4 unused;\n"
<< "layout(shaderRecordEXT, std430) buffer srbBlock {\n"
<< " " << elemType << " data[" << elementCount << "];\n"
<< "} srb;\n"
<< "\n"
<< "void main()\n"
<< "{\n"
<< " for (uint i = 0; i < " << elementCount << "; ++i) {\n"
<< " ssbo.data[gl_LaunchIDEXT.x][i] = srb.data[i];\n"
<< " }\n"
<< "}\n"
;
std::ostringstream miss;
miss
<< commontHeaderStr
<< "\n"
<< descriptorsStr
<< "layout(location=0) rayPayloadInEXT vec4 unused;\n"
<< "\n"
<< "void main()\n"
<< "{\n"
<< "}\n"
;
programCollection.glslSources.add("rgen") << glu::RaygenSource(rgen.str()) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(chit.str()) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(miss.str()) << buildOptions;
}
TestInstance* ShaderGroupHandleAlignmentCase::createInstance (Context& context) const
{
return new ShaderGroupHandleAlignmentInstance(context, m_params);
}
tcu::TestStatus ShaderGroupHandleAlignmentInstance::iterate (void)
{
const auto& vki = m_context.getInstanceInterface();
const auto physDev = m_context.getPhysicalDevice();
const auto& vkd = m_context.getDeviceInterface();
const auto device = m_context.getDevice();
auto& alloc = m_context.getDefaultAllocator();
const auto qIndex = m_context.getUniversalQueueFamilyIndex();
const auto queue = m_context.getUniversalQueue();
const auto stages = (VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR);
const auto geoCount = m_params.geometryCount();
const auto triangleZ = 5.0f;
// Command pool and buffer.
const auto cmdPool = makeCommandPool(vkd, device, qIndex);
const auto cmdBufferPtr = allocateCommandBuffer(vkd, device, cmdPool.get(), VK_COMMAND_BUFFER_LEVEL_PRIMARY);
const auto cmdBuffer = cmdBufferPtr.get();
beginCommandBuffer(vkd, cmdBuffer);
// Build acceleration structures.
auto topLevelAS = makeTopLevelAccelerationStructure();
auto bottomLevelAS = makeBottomLevelAccelerationStructure();
// Create the needed amount of geometries (triangles) with the right coordinates.
const tcu::Vec3 baseLocation (0.5f, 0.5f, triangleZ);
const float vertexOffset = 0.25f; // From base location, to build a triangle around it.
for (uint32_t i = 0; i < geoCount; ++i)
{
// Triangle "center" or base location.
const tcu::Vec3 triangleLocation (baseLocation.x() + static_cast<float>(i), baseLocation.y(), baseLocation.z());
// Actual triangle.
const std::vector<tcu::Vec3> triangle
{
tcu::Vec3(triangleLocation.x() - vertexOffset, triangleLocation.y() - vertexOffset, triangleLocation.z()),
tcu::Vec3(triangleLocation.x() + vertexOffset, triangleLocation.y() - vertexOffset, triangleLocation.z()),
tcu::Vec3(triangleLocation.x(), triangleLocation.y() + vertexOffset, triangleLocation.z()),
};
bottomLevelAS->addGeometry(triangle, true/*triangles*/);
}
bottomLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc);
de::SharedPtr<BottomLevelAccelerationStructure> blasSharedPtr (bottomLevelAS.release());
topLevelAS->setInstanceCount(1);
topLevelAS->addInstance(blasSharedPtr, identityMatrix3x4, 0u, 0xFF, 0u, VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR);
topLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc);
// Get some ray tracing properties.
uint32_t shaderGroupHandleSize = 0u;
uint32_t shaderGroupBaseAlignment = 1u;
{
const auto rayTracingPropertiesKHR = makeRayTracingProperties(vki, physDev);
shaderGroupHandleSize = rayTracingPropertiesKHR->getShaderGroupHandleSize();
shaderGroupBaseAlignment = rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
// SSBO to copy results over from the shaders.
const auto shaderRecordSize = m_params.alignment;
const auto hitSBTStride = shaderGroupHandleSize + shaderRecordSize;
const auto ssboSize = static_cast<VkDeviceSize>(geoCount * hitSBTStride);
const auto ssboInfo = makeBufferCreateInfo(ssboSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
BufferWithMemory ssbo (vkd, device, alloc, ssboInfo, MemoryRequirement::HostVisible);
auto& ssboAlloc = ssbo.getAllocation();
void* ssboData = ssboAlloc.getHostPtr();
deMemset(ssboData, 0, static_cast<size_t>(ssboSize));
// Descriptor set layout and pipeline layout.
DescriptorSetLayoutBuilder setLayoutBuilder;
setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, stages);
setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, stages);
const auto setLayout = setLayoutBuilder.build(vkd, device);
const auto pipelineLayout = makePipelineLayout(vkd, device, setLayout.get());
// Descriptor pool and set.
DescriptorPoolBuilder poolBuilder;
poolBuilder.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR);
poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1u);
const auto descriptorPool = poolBuilder.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
const auto descriptorSet = makeDescriptorSet(vkd, device, descriptorPool.get(), setLayout.get());
// Update descriptor set.
{
const VkWriteDescriptorSetAccelerationStructureKHR accelDescInfo =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR,
nullptr,
1u,
topLevelAS.get()->getPtr(),
};
const auto ssboDescInfo = makeDescriptorBufferInfo(ssbo.get(), 0ull, ssboSize);
DescriptorSetUpdateBuilder updateBuilder;
updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelDescInfo);
updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &ssboDescInfo);
updateBuilder.update(vkd, device);
}
// Shader modules.
auto rgenModule = makeVkSharedPtr(createShaderModule(vkd, device, m_context.getBinaryCollection().get("rgen"), 0));
auto missModule = makeVkSharedPtr(createShaderModule(vkd, device, m_context.getBinaryCollection().get("miss"), 0));
auto chitModule = makeVkSharedPtr(createShaderModule(vkd, device, m_context.getBinaryCollection().get("chit"), 0));
// Create raytracing pipeline and shader binding tables.
Move<VkPipeline> pipeline;
de::MovePtr<BufferWithMemory> raygenSBT;
de::MovePtr<BufferWithMemory> missSBT;
de::MovePtr<BufferWithMemory> hitSBT;
de::MovePtr<BufferWithMemory> callableSBT;
VkStridedDeviceAddressRegionKHR raygenSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
VkStridedDeviceAddressRegionKHR missSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
VkStridedDeviceAddressRegionKHR hitSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
VkStridedDeviceAddressRegionKHR callableSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
// Create shader record buffer data.
using DataVec = std::vector<uint8_t>;
std::vector<DataVec> srbData;
for (uint32_t i = 0; i < geoCount; ++i)
{
srbData.emplace_back(m_params.getRecordData(i));
}
std::vector<const void*> srbDataPtrs;
srbDataPtrs.reserve(srbData.size());
std::transform(begin(srbData), end(srbData), std::back_inserter(srbDataPtrs), [](const DataVec& data) { return data.data(); });
// Generate ids for the closest hit and miss shaders according to the test parameters.
{
const auto rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, rgenModule, 0u);
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, missModule, 1u);
for (uint32_t i = 0; i < geoCount; ++i)
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, chitModule, 2u + i);
pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout.get());
raygenSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 0u, 1u);
raygenSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenSBT->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
missSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 1u, 1u);
missSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missSBT->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
hitSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 2u, geoCount,
0u, 0u, MemoryRequirement::Any, 0u, 0u, shaderRecordSize, srbDataPtrs.data(), false/*autoalign*/);
hitSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitSBT->get(), 0), hitSBTStride, hitSBTStride*geoCount);
}
// Trace rays and verify ssbo contents.
vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline.get());
vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
vkd.cmdTraceRaysKHR(cmdBuffer, &raygenSBTRegion, &missSBTRegion, &hitSBTRegion, &callableSBTRegion, geoCount, 1u, 1u);
const auto shaderToHostBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
cmdPipelineMemoryBarrier(vkd, cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_HOST_BIT, &shaderToHostBarrier);
endCommandBuffer(vkd, cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer);
invalidateAlloc(vkd, device, ssboAlloc);
// Verify SSBO.
const auto ssboDataAsBytes = reinterpret_cast<const uint8_t*>(ssboData);
size_t ssboDataIdx = 0u;
bool fail = false;
auto& log = m_context.getTestContext().getLog();
for (const auto& dataVec : srbData)
for (const uint8_t byte : dataVec)
{
const uint8_t outputByte = ssboDataAsBytes[ssboDataIdx++];
if (byte != outputByte)
{
std::ostringstream msg;
msg
<< std::hex << std::setfill('0')
<< "Unexpectd output data: "
<< "0x" << std::setw(2) << static_cast<int>(outputByte)
<< " vs "
<< "0x" << std::setw(2) << static_cast<int>(byte)
;
log << tcu::TestLog::Message << msg.str() << tcu::TestLog::EndMessage;
fail = true;
}
}
if (fail)
return tcu::TestStatus::fail("Unexpected output data found; check log for details");
return tcu::TestStatus::pass("Pass");
}
} // anonymous
tcu::TestCaseGroup* createShaderBindingTableTests (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "shader_binding_table", "Tests veryfying shader binding tables"));
struct ShaderTestTypeData
{
ShaderTestType shaderTestType;
const char* name;
} shaderTestTypes[] =
{
{ STT_HIT, "indexing_hit" },
{ STT_MISS, "indexing_miss" },
{ STT_CALL, "indexing_call" },
};
struct ShaderBufferOffsetData
{
deUint32 sbtOffset;
const char* name;
} shaderBufferOffsets[] =
{
{ 0u, "sbt_offset_0" },
{ 4u, "sbt_offset_4" },
{ 7u, "sbt_offset_7" },
{ 16u, "sbt_offset_16" },
};
struct ShaderRecordData
{
bool present;
const char* name;
} shaderRecords[] =
{
{ false, "no_shaderrecord" },
{ true, "shaderrecord" },
};
for (size_t shaderTestNdx = 0; shaderTestNdx < DE_LENGTH_OF_ARRAY(shaderTestTypes); ++shaderTestNdx)
{
de::MovePtr<tcu::TestCaseGroup> shaderTestGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderTestTypes[shaderTestNdx].name, ""));
for (size_t sbtOffsetNdx = 0; sbtOffsetNdx < DE_LENGTH_OF_ARRAY(shaderBufferOffsets); ++sbtOffsetNdx)
{
de::MovePtr<tcu::TestCaseGroup> sbtOffsetGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderBufferOffsets[sbtOffsetNdx].name, ""));
for (size_t shaderRecordNdx = 0; shaderRecordNdx < DE_LENGTH_OF_ARRAY(shaderRecords); ++shaderRecordNdx)
{
de::MovePtr<tcu::TestCaseGroup> shaderRecordGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderRecords[shaderRecordNdx].name, ""));
deUint32 maxSbtRecordStride = (shaderTestTypes[shaderTestNdx].shaderTestType == STT_HIT) ? MAX_HIT_SBT_RECORD_STRIDE + 1 : 1;
deUint32 maxSbtRecordOffset = MAX_SBT_RECORD_OFFSET;
const deUint32 maxSbtRecordOffsetWithExtraBits = (shaderTestTypes[shaderTestNdx].shaderTestType == STT_MISS) ? MAX_SBT_RECORD_OFFSET | (~((1u << 16) - 1)) //< Only 16 least significant bits matter for miss indices
: MAX_SBT_RECORD_OFFSET | (~((1u << 4) - 1)); //< Only 4 least significant bits matter for SBT record offsets
for (deUint32 sbtRecordOffset = 0; sbtRecordOffset <= maxSbtRecordOffset; ++sbtRecordOffset)
for (deUint32 sbtRecordStride = 0; sbtRecordStride <= maxSbtRecordStride; ++sbtRecordStride)
{
if ((shaderTestTypes[shaderTestNdx].shaderTestType != STT_HIT) &&
(sbtRecordStride == maxSbtRecordStride))
{
continue;
}
TestParams testParams
{
CHECKERBOARD_WIDTH,
CHECKERBOARD_HEIGHT,
shaderTestTypes[shaderTestNdx].shaderTestType,
shaderBufferOffsets[sbtOffsetNdx].sbtOffset,
shaderRecords[shaderRecordNdx].present,
sbtRecordOffset,
(sbtRecordOffset == maxSbtRecordOffset) ? maxSbtRecordOffsetWithExtraBits
: sbtRecordOffset,
//< Only first 4 least significant bits matter for SBT record stride
sbtRecordStride,
(sbtRecordStride == maxSbtRecordStride) ? maxSbtRecordStride | (~((1u << 4) - 1))
: sbtRecordStride,
de::SharedPtr<TestConfiguration>(new CheckerboardConfiguration())
};
std::stringstream str;
str << sbtRecordOffset << "_" << sbtRecordStride;
if (testParams.sbtRecordStride != testParams.sbtRecordStridePassedToTraceRay)
{
str << "_extraSBTRecordStrideBits";
}
if (testParams.sbtRecordOffset != testParams.sbtRecordOffsetPassedToTraceRay)
{
str << "_extrabits";
}
shaderRecordGroup->addChild(new ShaderBindingTableIndexingTestCase(group->getTestContext(), str.str().c_str(), "", testParams));
}
sbtOffsetGroup->addChild(shaderRecordGroup.release());
}
shaderTestGroup->addChild(sbtOffsetGroup.release());
}
group->addChild(shaderTestGroup.release());
}
{
const uint32_t kAlignments[] = { 1u, 2u, 4u, 8u, 16u, 32u };
de::MovePtr<tcu::TestCaseGroup> handleAlignmentGroup (new tcu::TestCaseGroup(testCtx, "handle_alignment", "Test allowed handle alignments"));
for (const auto alignment : kAlignments)
{
const auto alignStr = std::to_string(alignment);
const auto testName = "alignment_" + alignStr;
const auto testDesc = "Check aligning shader group handles to " + alignStr + " bytes";
handleAlignmentGroup->addChild(new ShaderGroupHandleAlignmentCase(testCtx, testName, testDesc, ShaderGroupHandleAlignmentParams{alignment}));
}
group->addChild(handleAlignmentGroup.release());
}
return group.release();
}
} // RayTracing
} // vkt