blob: 7601ee9c1f61e991e699ad6dd0bdbb40e32f3ad4 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Fuzzy image comparison.
*//*--------------------------------------------------------------------*/
#include "tcuFuzzyImageCompare.hpp"
#include "tcuTexture.hpp"
#include "tcuTextureUtil.hpp"
#include "deMath.h"
#include "deRandom.hpp"
#include <vector>
namespace tcu
{
enum
{
MIN_ERR_THRESHOLD = 4 // Magic to make small differences go away
};
using std::vector;
template <int Channel>
static inline uint8_t getChannel(uint32_t color)
{
return (uint8_t)((color >> (Channel * 8)) & 0xff);
}
static inline uint8_t getChannel(uint32_t color, int channel)
{
return (uint8_t)((color >> (channel * 8)) & 0xff);
}
static inline uint32_t setChannel(uint32_t color, int channel, uint8_t val)
{
return (color & ~(0xffu << (8 * channel))) | (val << (8 * channel));
}
static inline Vec4 toFloatVec(uint32_t color)
{
return Vec4((float)getChannel<0>(color), (float)getChannel<1>(color), (float)getChannel<2>(color),
(float)getChannel<3>(color));
}
static inline uint8_t roundToUint8Sat(float v)
{
return (uint8_t)de::clamp((int)(v + 0.5f), 0, 255);
}
static inline uint32_t toColor(Vec4 v)
{
return roundToUint8Sat(v[0]) | (roundToUint8Sat(v[1]) << 8) | (roundToUint8Sat(v[2]) << 16) |
(roundToUint8Sat(v[3]) << 24);
}
template <int NumChannels>
static inline uint32_t readUnorm8(const tcu::ConstPixelBufferAccess &src, int x, int y)
{
const uint8_t *ptr = (const uint8_t *)src.getDataPtr() + src.getRowPitch() * y + x * NumChannels;
uint32_t v = 0;
for (int c = 0; c < NumChannels; c++)
v |= ptr[c] << (c * 8);
if (NumChannels < 4)
v |= 0xffu << 24;
return v;
}
#if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
template <>
inline uint32_t readUnorm8<4>(const tcu::ConstPixelBufferAccess &src, int x, int y)
{
return *(const uint32_t *)((const uint8_t *)src.getDataPtr() + src.getRowPitch() * y + x * 4);
}
#endif
template <int NumChannels>
static inline void writeUnorm8(const tcu::PixelBufferAccess &dst, int x, int y, uint32_t val)
{
uint8_t *ptr = (uint8_t *)dst.getDataPtr() + dst.getRowPitch() * y + x * NumChannels;
for (int c = 0; c < NumChannels; c++)
ptr[c] = getChannel(val, c);
}
#if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
template <>
inline void writeUnorm8<4>(const tcu::PixelBufferAccess &dst, int x, int y, uint32_t val)
{
*(uint32_t *)((uint8_t *)dst.getDataPtr() + dst.getRowPitch() * y + x * 4) = val;
}
#endif
static inline uint32_t colorDistSquared(uint32_t pa, uint32_t pb)
{
const int r = de::max<int>(de::abs((int)getChannel<0>(pa) - (int)getChannel<0>(pb)) - MIN_ERR_THRESHOLD, 0);
const int g = de::max<int>(de::abs((int)getChannel<1>(pa) - (int)getChannel<1>(pb)) - MIN_ERR_THRESHOLD, 0);
const int b = de::max<int>(de::abs((int)getChannel<2>(pa) - (int)getChannel<2>(pb)) - MIN_ERR_THRESHOLD, 0);
const int a = de::max<int>(de::abs((int)getChannel<3>(pa) - (int)getChannel<3>(pb)) - MIN_ERR_THRESHOLD, 0);
return uint32_t(r * r + g * g + b * b + a * a);
}
template <int NumChannels>
inline uint32_t bilinearSample(const ConstPixelBufferAccess &src, float u, float v)
{
int w = src.getWidth();
int h = src.getHeight();
int x0 = deFloorFloatToInt32(u - 0.5f);
int x1 = x0 + 1;
int y0 = deFloorFloatToInt32(v - 0.5f);
int y1 = y0 + 1;
int i0 = de::clamp(x0, 0, w - 1);
int i1 = de::clamp(x1, 0, w - 1);
int j0 = de::clamp(y0, 0, h - 1);
int j1 = de::clamp(y1, 0, h - 1);
float a = deFloatFrac(u - 0.5f);
float b = deFloatFrac(v - 0.5f);
uint32_t p00 = readUnorm8<NumChannels>(src, i0, j0);
uint32_t p10 = readUnorm8<NumChannels>(src, i1, j0);
uint32_t p01 = readUnorm8<NumChannels>(src, i0, j1);
uint32_t p11 = readUnorm8<NumChannels>(src, i1, j1);
uint32_t dst = 0;
// Interpolate.
for (int c = 0; c < NumChannels; c++)
{
float f = (getChannel(p00, c) * (1.0f - a) * (1.0f - b)) + (getChannel(p10, c) * (a) * (1.0f - b)) +
(getChannel(p01, c) * (1.0f - a) * (b)) + (getChannel(p11, c) * (a) * (b));
dst = setChannel(dst, c, roundToUint8Sat(f));
}
return dst;
}
template <int DstChannels, int SrcChannels>
static void separableConvolve(const PixelBufferAccess &dst, const ConstPixelBufferAccess &src, int shiftX, int shiftY,
const std::vector<float> &kernelX, const std::vector<float> &kernelY)
{
DE_ASSERT(dst.getWidth() == src.getWidth() && dst.getHeight() == src.getHeight());
TextureLevel tmp(dst.getFormat(), dst.getHeight(), dst.getWidth());
PixelBufferAccess tmpAccess = tmp.getAccess();
int kw = (int)kernelX.size();
int kh = (int)kernelY.size();
// Horizontal pass
// \note Temporary surface is written in column-wise order
for (int j = 0; j < src.getHeight(); j++)
{
for (int i = 0; i < src.getWidth(); i++)
{
Vec4 sum(0);
for (int kx = 0; kx < kw; kx++)
{
float f = kernelX[kw - kx - 1];
uint32_t p = readUnorm8<SrcChannels>(src, de::clamp(i + kx - shiftX, 0, src.getWidth() - 1), j);
sum += toFloatVec(p) * f;
}
writeUnorm8<DstChannels>(tmpAccess, j, i, toColor(sum));
}
}
// Vertical pass
for (int j = 0; j < src.getHeight(); j++)
{
for (int i = 0; i < src.getWidth(); i++)
{
Vec4 sum(0.0f);
for (int ky = 0; ky < kh; ky++)
{
float f = kernelY[kh - ky - 1];
uint32_t p = readUnorm8<DstChannels>(tmpAccess, de::clamp(j + ky - shiftY, 0, tmp.getWidth() - 1), i);
sum += toFloatVec(p) * f;
}
writeUnorm8<DstChannels>(dst, i, j, toColor(sum));
}
}
}
template <int NumChannels>
static uint32_t distSquaredToNeighbor(de::Random &rnd, uint32_t pixel, const ConstPixelBufferAccess &surface, int x,
int y)
{
// (x, y) + (0, 0)
uint32_t minDist = colorDistSquared(pixel, readUnorm8<NumChannels>(surface, x, y));
if (minDist == 0)
return minDist;
// Area around (x, y)
static const int s_coords[8][2] = {{-1, -1}, {0, -1}, {+1, -1}, {-1, 0}, {+1, 0}, {-1, +1}, {0, +1}, {+1, +1}};
for (int d = 0; d < (int)DE_LENGTH_OF_ARRAY(s_coords); d++)
{
int dx = x + s_coords[d][0];
int dy = y + s_coords[d][1];
if (!deInBounds32(dx, 0, surface.getWidth()) || !deInBounds32(dy, 0, surface.getHeight()))
continue;
minDist = de::min(minDist, colorDistSquared(pixel, readUnorm8<NumChannels>(surface, dx, dy)));
if (minDist == 0)
return minDist;
}
// Random bilinear-interpolated samples around (x, y)
for (int s = 0; s < 32; s++)
{
float dx = (float)x + rnd.getFloat() * 2.0f - 0.5f;
float dy = (float)y + rnd.getFloat() * 2.0f - 0.5f;
uint32_t sample = bilinearSample<NumChannels>(surface, dx, dy);
minDist = de::min(minDist, colorDistSquared(pixel, sample));
if (minDist == 0)
return minDist;
}
return minDist;
}
static inline float toGrayscale(const Vec4 &c)
{
return 0.2126f * c[0] + 0.7152f * c[1] + 0.0722f * c[2];
}
static bool isFormatSupported(const TextureFormat &format)
{
return format.type == TextureFormat::UNORM_INT8 &&
(format.order == TextureFormat::RGB || format.order == TextureFormat::RGBA);
}
float fuzzyCompare(const FuzzyCompareParams &params, const ConstPixelBufferAccess &ref,
const ConstPixelBufferAccess &cmp, const PixelBufferAccess &errorMask)
{
DE_ASSERT(ref.getWidth() == cmp.getWidth() && ref.getHeight() == cmp.getHeight());
DE_ASSERT(errorMask.getWidth() == ref.getWidth() && errorMask.getHeight() == ref.getHeight());
if (!isFormatSupported(ref.getFormat()) || !isFormatSupported(cmp.getFormat()))
throw InternalError("Unsupported format in fuzzy comparison", DE_NULL, __FILE__, __LINE__);
int width = ref.getWidth();
int height = ref.getHeight();
de::Random rnd(667);
// Filtered
TextureLevel refFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
TextureLevel cmpFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
// Kernel = {0.1, 0.8, 0.1}
vector<float> kernel(3);
kernel[0] = kernel[2] = 0.1f;
kernel[1] = 0.8f;
int shift = (int)(kernel.size() - 1) / 2;
switch (ref.getFormat().order)
{
case TextureFormat::RGBA:
separableConvolve<4, 4>(refFiltered, ref, shift, shift, kernel, kernel);
break;
case TextureFormat::RGB:
separableConvolve<4, 3>(refFiltered, ref, shift, shift, kernel, kernel);
break;
default:
DE_ASSERT(false);
}
switch (cmp.getFormat().order)
{
case TextureFormat::RGBA:
separableConvolve<4, 4>(cmpFiltered, cmp, shift, shift, kernel, kernel);
break;
case TextureFormat::RGB:
separableConvolve<4, 3>(cmpFiltered, cmp, shift, shift, kernel, kernel);
break;
default:
DE_ASSERT(false);
}
int numSamples = 0;
uint64_t distSum4 = 0ull;
// Clear error mask to green.
clear(errorMask, Vec4(0.0f, 1.0f, 0.0f, 1.0f));
ConstPixelBufferAccess refAccess = refFiltered.getAccess();
ConstPixelBufferAccess cmpAccess = cmpFiltered.getAccess();
for (int y = 1; y < height - 1; y++)
{
for (int x = 1; x<width - 1; x += params.maxSampleSkip> 0 ? (int)rnd.getInt(1, params.maxSampleSkip) : 1)
{
const uint32_t minDist2RefToCmp =
distSquaredToNeighbor<4>(rnd, readUnorm8<4>(refAccess, x, y), cmpAccess, x, y);
const uint32_t minDist2CmpToRef =
distSquaredToNeighbor<4>(rnd, readUnorm8<4>(cmpAccess, x, y), refAccess, x, y);
const uint32_t minDist2 = de::min(minDist2RefToCmp, minDist2CmpToRef);
const uint64_t newSum4 = distSum4 + minDist2 * minDist2;
distSum4 = (newSum4 >= distSum4) ? newSum4 : ~0ull; // In case of overflow
numSamples += 1;
// Build error image.
{
const int scale = 255 - MIN_ERR_THRESHOLD;
const float err2 = float(minDist2) / float(scale * scale);
const float err4 = err2 * err2;
const float red = err4 * 500.0f;
const float luma = toGrayscale(cmp.getPixel(x, y));
const float rF = 0.7f + 0.3f * luma;
errorMask.setPixel(Vec4(red * rF, (1.0f - red) * rF, 0.0f, 1.0f), x, y);
}
}
}
{
// Scale error sum based on number of samples taken
const double pSamples = double((width - 2) * (height - 2)) / double(numSamples);
const uint64_t colScale = uint64_t(255 - MIN_ERR_THRESHOLD);
const uint64_t colScale4 = colScale * colScale * colScale * colScale;
return float(double(distSum4) / double(colScale4) * pSamples);
}
}
} // namespace tcu