blob: 2a6d2c5556b4529ccb51a1aab47f38e2cb8e7d86 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2019 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Ray Tracing Build Large Shader Set tests
*//*--------------------------------------------------------------------*/
#include "vktRayTracingBuildLargeTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkRayTracingUtil.hpp"
#include "deClock.h"
#include <limits>
namespace vkt
{
namespace RayTracing
{
namespace
{
using namespace vk;
using namespace std;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
struct CaseDef
{
deUint32 width;
deUint32 height;
deUint32 squaresGroupCount;
deUint32 geometriesGroupCount;
deUint32 instancesGroupCount;
bool deferredOperation;
VkAccelerationStructureBuildTypeKHR buildType;
deUint32 workerThreadsCount;
};
deUint32 getShaderGroupSize (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupHandleSize();
}
deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
Move<VkPipeline> makePipeline (const DeviceInterface& vkd,
const VkDevice device,
vk::BinaryCollection& collection,
de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
VkPipelineLayout pipelineLayout,
const deUint32 groupCount,
const bool deferredOperation,
const deUint32 threadCount)
{
Move<VkShaderModule> raygenShader = createShaderModule(vkd, device, collection.get("rgen"), 0);
rayTracingPipeline->setDeferredOperation(deferredOperation, threadCount);
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, raygenShader, 0);
for (deUint32 groupNdx = 0; groupNdx < groupCount; ++groupNdx)
{
const std::string shaderName = "call" + de::toString(groupNdx);
Move<VkShaderModule> callShader = createShaderModule(vkd, device, collection.get(shaderName), 0);
rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR, callShader, 1 + groupNdx);
}
Move<VkPipeline> pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout);
return pipeline;
}
VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, VkFormat format)
{
const VkImageUsageFlags usage = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
const VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkImageCreateFlags)0u, // VkImageCreateFlags flags;
VK_IMAGE_TYPE_2D, // VkImageType imageType;
format, // VkFormat format;
makeExtent3D(width, height, 1u), // VkExtent3D extent;
1u, // deUint32 mipLevels;
1u, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling;
usage, // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
};
return imageCreateInfo;
}
class RayTracingBuildLargeTestInstance : public TestInstance
{
public:
RayTracingBuildLargeTestInstance (Context& context, const CaseDef& data);
~RayTracingBuildLargeTestInstance (void);
tcu::TestStatus iterate (void);
protected:
deUint32 iterateNoWorkers (void);
deUint32 iterateWithWorkers (void);
void checkSupportInInstance (void) const;
de::MovePtr<BufferWithMemory> runTest (const deUint32 threadCount);
deUint32 validateBuffer (de::MovePtr<BufferWithMemory> buffer);
de::SharedPtr<TopLevelAccelerationStructure> initTopAccelerationStructure (VkCommandBuffer cmdBuffer,
de::SharedPtr<BottomLevelAccelerationStructure>& bottomLevelAccelerationStructure);
de::SharedPtr<BottomLevelAccelerationStructure> initBottomAccelerationStructure (VkCommandBuffer cmdBuffer);
private:
CaseDef m_data;
};
RayTracingBuildLargeTestInstance::RayTracingBuildLargeTestInstance (Context& context, const CaseDef& data)
: vkt::TestInstance (context)
, m_data (data)
{
}
RayTracingBuildLargeTestInstance::~RayTracingBuildLargeTestInstance (void)
{
}
class RayTracingTestCase : public TestCase
{
public:
RayTracingTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data);
~RayTracingTestCase (void);
virtual void initPrograms (SourceCollections& programCollection) const;
virtual TestInstance* createInstance (Context& context) const;
virtual void checkSupport (Context& context) const;
private:
std::string generateDummyWork (const deUint32 shaderNdx) const;
CaseDef m_data;
};
RayTracingTestCase::RayTracingTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data)
: vkt::TestCase (context, name, desc)
, m_data (data)
{
DE_ASSERT((m_data.width * m_data.height) == (m_data.squaresGroupCount * m_data.geometriesGroupCount * m_data.instancesGroupCount));
}
RayTracingTestCase::~RayTracingTestCase (void)
{
}
void RayTracingTestCase::checkSupport(Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE )
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
if (m_data.buildType == VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR && accelerationStructureFeaturesKHR.accelerationStructureHostCommands == DE_FALSE)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructureHostCommands");
if (m_data.deferredOperation)
context.requireDeviceFunctionality("VK_KHR_deferred_host_operations");
}
std::string RayTracingTestCase::generateDummyWork (const deUint32 shaderNdx) const
{
std::string result;
for (deUint32 n = 0; n < shaderNdx % 256; ++n)
{
result += " color.b = color.b + 2 * " + de::toString(n) + ";\n";
result += " color.g = color.g + 3 * " + de::toString(n) + ";\n";
result += " color.b = color.b ^ color.g;\n";
result += " color.b = color.b % 223;\n";
result += " color.g = color.g % 227;\n";
result += " color.g = color.g ^ color.b;\n";
}
return result;
}
void RayTracingTestCase::initPrograms (SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) callableDataEXT float dummy;"
"layout(set = 0, binding = 1) uniform accelerationStructureEXT topLevelAS;\n"
"\n"
"void main()\n"
"{\n"
" uint n = " << m_data.width << " * gl_LaunchIDEXT.y + gl_LaunchIDEXT.x;\n"
" executeCallableEXT(n, 0);\n"
"}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
for (deUint32 y = 0; y < m_data.height; ++y)
for (deUint32 x = 0; x < m_data.width; ++x)
{
const deUint32 shaderNdx = m_data.width * y + x;
const bool dummyWork = (shaderNdx % 43 == 0);
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) callableDataInEXT float dummy;\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage2D image0_0;\n"
"void main()\n"
"{\n"
" uint r = (" << m_data.width << " * " << y / 3 << " + " << x << ") % 199;\n"
" uvec4 color = uvec4(r,0,0,1);\n"
<< (dummyWork ? generateDummyWork(shaderNdx) : "") <<
" imageStore(image0_0, ivec2(gl_LaunchIDEXT.xy), color);\n"
"}\n";
programCollection.glslSources.add("call" + de::toString(shaderNdx)) << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
}
TestInstance* RayTracingTestCase::createInstance (Context& context) const
{
return new RayTracingBuildLargeTestInstance(context, m_data);
}
de::SharedPtr<TopLevelAccelerationStructure> RayTracingBuildLargeTestInstance::initTopAccelerationStructure (VkCommandBuffer cmdBuffer,
de::SharedPtr<BottomLevelAccelerationStructure>& bottomLevelAccelerationStructure)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::MovePtr<TopLevelAccelerationStructure> result = makeTopLevelAccelerationStructure();
result->setInstanceCount(1);
result->setBuildType(m_data.buildType);
result->setDeferredOperation(m_data.deferredOperation);
result->addInstance(bottomLevelAccelerationStructure);
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return de::SharedPtr<TopLevelAccelerationStructure>(result.release());
}
de::SharedPtr<BottomLevelAccelerationStructure> RayTracingBuildLargeTestInstance::initBottomAccelerationStructure (VkCommandBuffer cmdBuffer)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
tcu::UVec2 startPos = tcu::UVec2(0u, 0u);
de::MovePtr<BottomLevelAccelerationStructure> result = makeBottomLevelAccelerationStructure();
result->setBuildType(m_data.buildType);
result->setDeferredOperation(m_data.deferredOperation);
result->setGeometryCount(m_data.geometriesGroupCount);
for (size_t geometryNdx = 0; geometryNdx < m_data.geometriesGroupCount; ++geometryNdx)
{
std::vector<tcu::Vec3> geometryData;
geometryData.reserve(m_data.squaresGroupCount * 3u);
for (size_t squareNdx = 0; squareNdx < m_data.squaresGroupCount; ++squareNdx)
{
const deUint32 n = m_data.width * startPos.y() + startPos.x();
const deUint32 m = (13 * (n + 1)) % (m_data.width * m_data.height);
const float x0 = float(startPos.x() + 0) / float(m_data.width);
const float y0 = float(startPos.y() + 0) / float(m_data.height);
const float x1 = float(startPos.x() + 1) / float(m_data.width);
const float y1 = float(startPos.y() + 1) / float(m_data.height);
const float xm = (x0 + x1) / 2.0f;
const float ym = (y0 + y1) / 2.0f;
geometryData.push_back(tcu::Vec3(x0, y0, -1.0f));
geometryData.push_back(tcu::Vec3(xm, y1, -1.0f));
geometryData.push_back(tcu::Vec3(x1, ym, -1.0f));
startPos.y() = m / m_data.width;
startPos.x() = m % m_data.width;
}
result->addGeometry(geometryData, true);
}
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return de::SharedPtr<BottomLevelAccelerationStructure>(result.release());
}
de::MovePtr<BufferWithMemory> RayTracingBuildLargeTestInstance::runTest (const deUint32 threadCount)
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const VkFormat format = VK_FORMAT_R32_UINT;
const deUint32 pixelCount = m_data.width * m_data.height;
const deUint32 callableShaderCount = m_data.width * m_data.height;
const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice);
const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice);
const Move<VkDescriptorSetLayout> descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.build(vkd, device);
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
const Move<VkDescriptorSet> descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const Move<VkPipelineLayout> pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get());
const Move<VkCommandPool> cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
const Move<VkCommandBuffer> cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
de::MovePtr<RayTracingPipeline> rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
const Move<VkPipeline> pipeline = makePipeline(vkd, device, m_context.getBinaryCollection(), rayTracingPipeline, *pipelineLayout, callableShaderCount, m_data.deferredOperation, threadCount);
const de::MovePtr<BufferWithMemory> raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1u);
const de::MovePtr<BufferWithMemory> callableShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1u, callableShaderCount);
const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, callableShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize * callableShaderCount);
const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, format);
const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u);
const de::MovePtr<ImageWithMemory> image = de::MovePtr<ImageWithMemory>(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any));
const Move<VkImageView> imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_2D, format, imageSubresourceRange);
const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount*sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u);
const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, 1u), bufferImageSubresourceLayers);
de::MovePtr<BufferWithMemory> buffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible));
const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
**image, imageSubresourceRange);
const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
**image, imageSubresourceRange);
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
const VkClearValue clearValue = makeClearValueColorU32(5u, 5u, 5u, 255u);
de::SharedPtr<BottomLevelAccelerationStructure> bottomLevelAccelerationStructure;
de::SharedPtr<TopLevelAccelerationStructure> topLevelAccelerationStructure;
beginCommandBuffer(vkd, *cmdBuffer, 0u);
{
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier);
vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier);
bottomLevelAccelerationStructure = initBottomAccelerationStructure(*cmdBuffer);
topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructure);
const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get();
VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline);
cmdTraceRays(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
m_data.width, m_data.height, 1);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier);
}
endCommandBuffer(vkd, *cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer.get());
invalidateMappedMemoryRange(vkd, device, buffer->getAllocation().getMemory(), buffer->getAllocation().getOffset(), pixelCount * sizeof(deUint32));
return buffer;
}
void RayTracingBuildLargeTestInstance::checkSupportInInstance (void) const
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const vk::VkPhysicalDeviceProperties& properties = m_context.getDeviceProperties();
const deUint32 requiredAllocations = 8u
+ TopLevelAccelerationStructure::getRequiredAllocationCount()
+ m_data.instancesGroupCount * BottomLevelAccelerationStructure::getRequiredAllocationCount();
de::MovePtr<RayTracingProperties> rayTracingProperties = makeRayTracingProperties(vki, physicalDevice);
if (rayTracingProperties->getMaxPrimitiveCount() < m_data.squaresGroupCount)
TCU_THROW(NotSupportedError, "Triangles required more than supported");
if (rayTracingProperties->getMaxGeometryCount() < m_data.geometriesGroupCount)
TCU_THROW(NotSupportedError, "Geometries required more than supported");
if (rayTracingProperties->getMaxInstanceCount() < m_data.instancesGroupCount)
TCU_THROW(NotSupportedError, "Instances required more than supported");
if (properties.limits.maxMemoryAllocationCount < requiredAllocations)
TCU_THROW(NotSupportedError, "Test requires more allocations allowed");
}
deUint32 RayTracingBuildLargeTestInstance::validateBuffer (de::MovePtr<BufferWithMemory> buffer)
{
const deUint32* bufferPtr = (deUint32*)buffer->getAllocation().getHostPtr();
deUint32 failures = 0;
deUint32 pos = 0;
for (deUint32 y = 0; y < m_data.height; ++y)
for (deUint32 x = 0; x < m_data.width; ++x)
{
const deUint32 expectedValue = (m_data.width * (y / 3) + x) % 199;
if (bufferPtr[pos] != expectedValue)
failures++;
++pos;
}
return failures;
}
deUint32 RayTracingBuildLargeTestInstance::iterateNoWorkers (void)
{
de::MovePtr<BufferWithMemory> buffer = runTest(0);
const deUint32 failures = validateBuffer(buffer);
return failures;
}
deUint32 RayTracingBuildLargeTestInstance::iterateWithWorkers (void)
{
de::MovePtr<BufferWithMemory> singleThreadBuffer = runTest(0);
const deUint32 singleThreadFailures = validateBuffer(singleThreadBuffer);
de::MovePtr<BufferWithMemory> multiThreadBuffer = runTest(m_data.workerThreadsCount);
const deUint32 multiThreadFailures = validateBuffer(multiThreadBuffer);
const deUint32 failures = singleThreadFailures + multiThreadFailures;
return failures;
}
tcu::TestStatus RayTracingBuildLargeTestInstance::iterate (void)
{
checkSupportInInstance();
const deUint32 failures = m_data.workerThreadsCount == 0
? iterateNoWorkers()
: iterateWithWorkers();
if (failures == 0)
return tcu::TestStatus::pass("Pass");
else
return tcu::TestStatus::fail("failures=" + de::toString(failures));
}
} // anonymous
tcu::TestCaseGroup* createBuildLargeShaderSetTests (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "large_shader_set", "Build large shader set using CPU host threading"));
const deUint32 sizes[] = { 8, 16, 32, 64 };
const struct
{
const char* buildTypeName;
bool deferredOperation;
const VkAccelerationStructureBuildTypeKHR buildType;
}
buildTypes[] =
{
{ "gpu", false, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR },
{ "cpu_ht", true, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR },
};
const deUint32 threads[] = { 1, 2, 3, 4, 8, std::numeric_limits<deUint32>::max() };
for (size_t buildNdx = 0; buildNdx < DE_LENGTH_OF_ARRAY(buildTypes); ++buildNdx)
{
de::MovePtr<tcu::TestCaseGroup> buildTypeGroup(new tcu::TestCaseGroup(testCtx, buildTypes[buildNdx].buildTypeName, ""));
for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx)
{
const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx];
const deUint32 squaresGroupCount = largestGroup;
const deUint32 geometriesGroupCount = 1;
const deUint32 instancesGroupCount = 1;
const CaseDef caseDef =
{
sizes[sizesNdx], // deUint32 width;
sizes[sizesNdx], // deUint32 height;
squaresGroupCount, // deUint32 squaresGroupCount;
geometriesGroupCount, // deUint32 geometriesGroupCount;
instancesGroupCount, // deUint32 instancesGroupCount;
buildTypes[buildNdx].deferredOperation, // bool deferredOperation;
buildTypes[buildNdx].buildType, // VkAccelerationStructureBuildTypeKHR buildType;
0, // deUint32 threadsCount;
};
const std::string testName = de::toString(largestGroup);
buildTypeGroup->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef));
}
group->addChild(buildTypeGroup.release());
}
for (size_t threadsNdx = 0; threadsNdx < DE_LENGTH_OF_ARRAY(threads); ++threadsNdx)
{
for (size_t buildNdx = 0; buildNdx < DE_LENGTH_OF_ARRAY(buildTypes); ++buildNdx)
{
if (buildTypes[buildNdx].buildType != VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR)
continue;
const std::string suffix = threads[threadsNdx] == std::numeric_limits<deUint32>::max() ? "max" : de::toString(threads[threadsNdx]);
const std::string buildTypeGroupName = std::string(buildTypes[buildNdx].buildTypeName) + '_' + suffix;
de::MovePtr<tcu::TestCaseGroup> buildTypeGroup (new tcu::TestCaseGroup(testCtx, buildTypeGroupName.c_str(), ""));
for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx)
{
const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx];
const deUint32 squaresGroupCount = largestGroup;
const deUint32 geometriesGroupCount = 1;
const deUint32 instancesGroupCount = 1;
const CaseDef caseDef =
{
sizes[sizesNdx], // deUint32 width;
sizes[sizesNdx], // deUint32 height;
squaresGroupCount, // deUint32 squaresGroupCount;
geometriesGroupCount, // deUint32 geometriesGroupCount;
instancesGroupCount, // deUint32 instancesGroupCount;
buildTypes[buildNdx].deferredOperation, // bool deferredOperation;
buildTypes[buildNdx].buildType, // VkAccelerationStructureBuildTypeKHR buildType;
threads[threadsNdx], // deUint32 workerThreadsCount;
};
const std::string testName = de::toString(largestGroup);
buildTypeGroup->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef));
}
group->addChild(buildTypeGroup.release());
}
}
return group.release();
}
} // RayTracing
} // vkt