blob: a4aba4ddbc8db2c0cb3cceafc23c4a44a65f8132 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2019 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Ray Tracing Watertightness tests
*//*--------------------------------------------------------------------*/
#include "vktRayTracingWatertightnessTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkRayTracingUtil.hpp"
#include "deRandom.hpp"
#include <sstream>
namespace vkt
{
namespace RayTracing
{
namespace
{
using namespace vk;
using namespace std;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
struct CaseDef
{
deUint32 width;
deUint32 height;
deUint32 squaresGroupCount;
deUint32 geometriesGroupCount;
deUint32 instancesGroupCount;
deUint32 randomSeed;
deUint32 depth;
deUint32 useManyBottomASes;
};
VkFormat getImageFormat (void)
{
return VK_FORMAT_R32_UINT;
}
VkImageType getImageType (deUint32 depth)
{
DE_ASSERT(depth > 0u);
return ((depth == 1u) ? VK_IMAGE_TYPE_2D : VK_IMAGE_TYPE_3D);
}
VkImageTiling getImageTiling (void)
{
return VK_IMAGE_TILING_OPTIMAL;
}
VkImageUsageFlags getImageUsage (void)
{
return (VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
}
enum ShaderGroups
{
FIRST_GROUP = 0,
RAYGEN_GROUP = FIRST_GROUP,
MISS_GROUP,
HIT_GROUP,
GROUP_COUNT
};
static inline tcu::Vec3 mixVec3(const tcu::Vec3& a, const tcu::Vec3& b, const float alpha)
{
const tcu::Vec3 result = a * alpha + b * (1.0f - alpha);
return result;
}
deUint32 getShaderGroupSize(const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupHandleSize();
}
deUint32 getShaderGroupBaseAlignment(const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
Move<VkPipeline> makePipeline(const DeviceInterface& vkd,
const VkDevice device,
vk::BinaryCollection& collection,
de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
VkPipelineLayout pipelineLayout,
const deUint32 raygenGroup,
const deUint32 missGroup,
const deUint32 hitGroup)
{
Move<VkShaderModule> raygenShader = createShaderModule(vkd, device, collection.get("rgen"), 0);
Move<VkShaderModule> hitShader = createShaderModule(vkd, device, collection.get("ahit"), 0);
Move<VkShaderModule> missShader = createShaderModule(vkd, device, collection.get("miss"), 0);
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, raygenShader, raygenGroup);
rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR, hitShader, hitGroup);
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, missShader, missGroup);
Move<VkPipeline> pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout);
return pipeline;
}
VkImageCreateInfo makeImageCreateInfo(deUint32 width, deUint32 height, deUint32 depth, VkFormat format)
{
const VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkImageCreateFlags flags;
getImageType(depth),
format, // VkFormat format;
makeExtent3D(width, height, depth), // VkExtent3D extent;
1u, // deUint32 mipLevels;
1u, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
getImageTiling(), // VkImageTiling tiling;
getImageUsage(), // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
};
return imageCreateInfo;
}
class RayTracingWatertightnessTestInstance : public TestInstance
{
public:
RayTracingWatertightnessTestInstance(Context& context, const CaseDef& data, const bool& useClosedFan);
~RayTracingWatertightnessTestInstance(void);
tcu::TestStatus iterate(void);
protected:
void checkSupportInInstance(void) const;
de::MovePtr<BufferWithMemory> runTest(void);
de::MovePtr<TopLevelAccelerationStructure> initTopAccelerationStructure(VkCommandBuffer cmdBuffer,
vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures);
vector<de::SharedPtr<BottomLevelAccelerationStructure> > initBottomAccelerationStructures(VkCommandBuffer cmdBuffer);
de::MovePtr<BottomLevelAccelerationStructure> initBottomAccelerationStructure(VkCommandBuffer cmdBuffer,
bool triangles);
private:
CaseDef m_data;
const bool m_useClosedFan;
};
RayTracingWatertightnessTestInstance::RayTracingWatertightnessTestInstance(Context& context, const CaseDef& data, const bool& useClosedFan)
: vkt::TestInstance(context)
, m_data(data)
, m_useClosedFan(useClosedFan)
{
}
RayTracingWatertightnessTestInstance::~RayTracingWatertightnessTestInstance(void)
{
}
class RayTracingTestCase : public TestCase
{
public:
RayTracingTestCase(tcu::TestContext& context, const char* name, const char* desc, const CaseDef data, const bool& useClosedFan);
~RayTracingTestCase(void);
virtual void initPrograms(SourceCollections& programCollection) const;
virtual TestInstance* createInstance(Context& context) const;
virtual void checkSupport(Context& context) const;
private:
CaseDef m_data;
const bool m_useClosedFan;
};
RayTracingTestCase::RayTracingTestCase(tcu::TestContext& context, const char* name, const char* desc, const CaseDef data, const bool& useClosedFan)
: vkt::TestCase(context, name, desc)
, m_data(data)
, m_useClosedFan(useClosedFan)
{
}
RayTracingTestCase::~RayTracingTestCase(void)
{
}
void RayTracingTestCase::checkSupport(Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
const auto& vki = context.getInstanceInterface();
const auto physDev = context.getPhysicalDevice();
const auto format = getImageFormat();
const auto formatProps = getPhysicalDeviceImageFormatProperties(vki, physDev, format, getImageType(m_data.depth), getImageTiling(), getImageUsage(), 0u);
const auto& maxExtent = formatProps.maxExtent;
if (m_data.width > maxExtent.width || m_data.height > maxExtent.height || m_data.depth > maxExtent.depth)
{
std::ostringstream msg;
msg << "Result image dimensions not supported (" << getFormatName(format) << " " << m_data.width << "x" << m_data.height << "x" << m_data.depth << ")";
TCU_THROW(NotSupportedError, msg.str());
}
}
void RayTracingTestCase::initPrograms(SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
{
std::stringstream css;
if (!m_useClosedFan)
{
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"hitAttributeEXT vec3 attribs;\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n"
"void main()\n"
"{\n"
" uvec4 color = uvec4(1,0,0,1);\n"
" imageStore(result, ivec2(gl_LaunchIDEXT.xy), color);\n"
"}\n";
}
else
{
css << "#version 460 core\n"
"\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage3D result;\n"
"\n"
"hitAttributeEXT vec3 attribs;\n"
"\n"
"void main()\n"
"{\n"
" imageAtomicAdd(result, ivec3(gl_LaunchIDEXT.xy, gl_PrimitiveID), 1);\n"
"}\n";
}
programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
if (!m_useClosedFan)
{
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT dummyPayload { vec4 dummy; };\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n"
"void main()\n"
"{\n"
" uvec4 color = uvec4(2,0,0,1);\n"
" imageStore(result, ivec2(gl_LaunchIDEXT.xy), color);\n"
"}\n";
}
else
{
css << "#version 460 core\n"
"\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(location = 0) rayPayloadInEXT dummyPayload { vec4 dummy; };\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage3D result;\n"
"\n"
"void main()\n"
"{\n"
" imageAtomicAdd(result, ivec3(gl_LaunchIDEXT.xy, 0), 10000);\n"
"}\n";
}
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
if (!m_useClosedFan)
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions;
}
else
{
std::stringstream css;
const auto& nSharedEdges = m_data.squaresGroupCount;
// NOTE: Zeroth invocation fires at the center of the closed fan. Subsequent invocations trace rays against center of shared edges.
css << "#version 460 core\n"
"\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(location = 0) rayPayloadEXT vec3 hitValue;\n"
"layout(set = 0, binding = 1) uniform accelerationStructureEXT topLevelAS;\n"
"\n"
"void main()\n"
"{\n"
" uint rayFlags = 0;\n"
" uint cullMask = 0xFF;\n"
" float tmin = 0.01;\n"
" float tmax = 9.0;\n"
" uint nRay = gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x;\n"
" vec3 origin = vec3(0.0, 0.0, -1.0);\n"
"\n"
" if (nRay > "<< de::toString(nSharedEdges + 1) << ")\n"
" {\n"
" return;\n"
" }\n"
"\n"
" float angleDiff = 2.0 * 3.14159265 / " << de::toString(nSharedEdges) << ";\n"
" vec2 sharedEdgeP1 = vec2(0, 0);\n"
" vec2 sharedEdgeP2 = (nRay == 0) ? vec2 (0, 0)\n"
" : vec2 (sin(angleDiff * (nRay - 1) ), cos(angleDiff * (nRay - 1) ));\n"
" vec3 target = vec3 (mix(sharedEdgeP1, sharedEdgeP2, vec2(0.5) ), 0.0);\n"
" vec3 direct = normalize(target - origin);\n"
"\n"
" traceRayEXT(topLevelAS, rayFlags, cullMask, 0, 0, 0, origin, tmin, direct, tmax, 0);\n"
"}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
}
TestInstance* RayTracingTestCase::createInstance(Context& context) const
{
return new RayTracingWatertightnessTestInstance(context, m_data, m_useClosedFan);
}
de::MovePtr<TopLevelAccelerationStructure> RayTracingWatertightnessTestInstance::initTopAccelerationStructure(VkCommandBuffer cmdBuffer,
vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::MovePtr<TopLevelAccelerationStructure> result = makeTopLevelAccelerationStructure();
result->setInstanceCount(bottomLevelAccelerationStructures.size());
for (size_t structNdx = 0; structNdx < bottomLevelAccelerationStructures.size(); ++structNdx)
result->addInstance(bottomLevelAccelerationStructures[structNdx]);
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return result;
}
de::MovePtr<BottomLevelAccelerationStructure> RayTracingWatertightnessTestInstance::initBottomAccelerationStructure(VkCommandBuffer cmdBuffer,
bool triangle)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::MovePtr<BottomLevelAccelerationStructure> result = makeBottomLevelAccelerationStructure();
de::Random rng(m_data.randomSeed);
std::vector<tcu::Vec3> vertices;
std::vector<tcu::UVec3> triangles;
std::vector<tcu::Vec3> geometryData;
result->setGeometryCount(1u);
if (!m_useClosedFan)
{
vertices.reserve(3u * m_data.squaresGroupCount);
vertices.push_back(tcu::Vec3(0.0f, 0.0f, -1.0f));
vertices.push_back(tcu::Vec3(0.0f, 1.0f, -1.0f));
vertices.push_back(tcu::Vec3(1.0f, 0.0f, -1.0f));
vertices.push_back(tcu::Vec3(1.0f, 1.0f, -1.0f));
triangles.reserve(m_data.squaresGroupCount);
triangles.push_back(tcu::UVec3(0, 1, 2));
triangles.push_back(tcu::UVec3(3, 2, 1));
while (triangles.size() < m_data.squaresGroupCount)
{
const deUint32 n = (deUint32)rng.getInt(0, (deUint32)triangles.size() - 1);
tcu::UVec3& t = triangles[n];
const tcu::Vec3& a = vertices[t.x()];
const tcu::Vec3& b = vertices[t.y()];
const tcu::Vec3& c = vertices[t.z()];
const float alfa = rng.getFloat(0.01f, 0.99f);
const float beta = rng.getFloat(0.01f, 0.99f);
const tcu::Vec3 mixed = mixVec3(mixVec3(a, b, alfa), c, beta);
const float z = -rng.getFloat(0.01f, 0.99f);
const tcu::Vec3 d = tcu::Vec3(mixed.x(), mixed.y(), z);
const deUint32& p = t.x();
const deUint32& q = t.y();
deUint32& r = t.z();
const deUint32 R = (deUint32)vertices.size();
vertices.push_back(d);
triangles.push_back(tcu::UVec3(q, r, R));
triangles.push_back(tcu::UVec3(p, r, R));
r = R;
}
geometryData.reserve(3u * triangles.size());
for (size_t i = 0; i < triangles.size(); ++i)
{
geometryData.push_back(vertices[triangles[i].x()]);
geometryData.push_back(vertices[triangles[i].y()]);
geometryData.push_back(vertices[triangles[i].z()]);
}
result->addGeometry(geometryData, triangle);
}
else
{
// Build a closed fan.
vertices.push_back(tcu::Vec3(0.0f, 0.0f, 0.0f));
for (deUint32 nSharedEdge = 0; nSharedEdge < m_data.squaresGroupCount; ++nSharedEdge)
{
const auto newVertex = tcu::Vec3(
deFloatSin(2.0f * float(nSharedEdge) * 3.14159265f / float(m_data.squaresGroupCount)),
deFloatCos(2.0f * float(nSharedEdge) * 3.14159265f / float(m_data.squaresGroupCount)),
0.0f);
vertices.push_back(newVertex);
}
for (deUint32 nSharedEdge = 0; nSharedEdge < m_data.squaresGroupCount; ++nSharedEdge)
{
const auto newTri = tcu::UVec3(
0,
1 + nSharedEdge,
(nSharedEdge != m_data.squaresGroupCount - 1) ? (2 + nSharedEdge)
: 1
);
triangles.push_back(newTri);
}
geometryData.reserve(3u * triangles.size());
for (size_t i = 0; i < triangles.size(); ++i)
{
geometryData.push_back(vertices[triangles[i].x()]);
geometryData.push_back(vertices[triangles[i].y()]);
geometryData.push_back(vertices[triangles[i].z()]);
}
result->addGeometry(geometryData, triangle, VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR);
}
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return result;
}
vector<de::SharedPtr<BottomLevelAccelerationStructure> > RayTracingWatertightnessTestInstance::initBottomAccelerationStructures(VkCommandBuffer cmdBuffer)
{
vector<de::SharedPtr<BottomLevelAccelerationStructure> > result;
if (!m_useClosedFan)
{
for (size_t instanceNdx = 0; instanceNdx < m_data.instancesGroupCount; ++instanceNdx)
{
de::MovePtr<BottomLevelAccelerationStructure> bottomLevelAccelerationStructure = initBottomAccelerationStructure(cmdBuffer, true);
result.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(bottomLevelAccelerationStructure.release()));
}
}
else
{
// Build a closed fan.
std::vector<tcu::Vec3> vertices;
std::vector<tcu::UVec3> triangles;
vertices.push_back(tcu::Vec3(0.0f, 0.0f, 0.0f));
for (deUint32 nSharedEdge = 0; nSharedEdge < m_data.squaresGroupCount; ++nSharedEdge)
{
const auto newVertex = tcu::Vec3(
deFloatSin(2.0f * float(nSharedEdge) * 3.14159265f / float(m_data.squaresGroupCount)),
deFloatCos(2.0f * float(nSharedEdge) * 3.14159265f / float(m_data.squaresGroupCount)),
0.0f);
vertices.push_back(newVertex);
}
for (deUint32 nSharedEdge = 0; nSharedEdge < m_data.squaresGroupCount; ++nSharedEdge)
{
const auto newTri = tcu::UVec3(
0,
1 + nSharedEdge,
(nSharedEdge != m_data.squaresGroupCount - 1) ? (2 + nSharedEdge)
: 1
);
triangles.push_back(newTri);
}
{
Allocator& allocator = m_context.getDefaultAllocator ();
const VkDevice device = m_context.getDevice ();
const DeviceInterface& vkd = m_context.getDeviceInterface ();
if (!m_data.useManyBottomASes)
{
std::vector<tcu::Vec3> geometryData;
de::MovePtr<BottomLevelAccelerationStructure> resultBLAS = makeBottomLevelAccelerationStructure();
geometryData.reserve(3u * triangles.size());
for (size_t i = 0; i < triangles.size(); ++i)
{
geometryData.push_back(vertices[triangles[i].x()]);
geometryData.push_back(vertices[triangles[i].y()]);
geometryData.push_back(vertices[triangles[i].z()]);
}
resultBLAS->addGeometry (geometryData, true /* triangles */, VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR);
resultBLAS->createAndBuild (vkd, device, cmdBuffer, allocator);
result.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(resultBLAS.release()));
}
else
{
for (size_t i = 0; i < triangles.size(); ++i)
{
std::vector<tcu::Vec3> geometryData;
de::MovePtr<BottomLevelAccelerationStructure> resultBLAS = makeBottomLevelAccelerationStructure();
geometryData.push_back(vertices[triangles[i].x()]);
geometryData.push_back(vertices[triangles[i].y()]);
geometryData.push_back(vertices[triangles[i].z()]);
resultBLAS->addGeometry (geometryData, true /* triangles */, VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR);
resultBLAS->createAndBuild (vkd, device, cmdBuffer, allocator);
result.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(resultBLAS.release()));
}
}
}
}
return result;
}
de::MovePtr<BufferWithMemory> RayTracingWatertightnessTestInstance::runTest(void)
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const VkFormat format = getImageFormat();
const deUint32 pixelCount = m_data.width * m_data.height * m_data.depth;
const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice);
const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice);
const Move<VkDescriptorSetLayout> descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.build(vkd, device);
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
const Move<VkDescriptorSet> descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const Move<VkPipelineLayout> pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get());
const Move<VkCommandPool> cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
const Move<VkCommandBuffer> cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
de::MovePtr<RayTracingPipeline> rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
const Move<VkPipeline> pipeline = makePipeline(vkd, device, m_context.getBinaryCollection(), rayTracingPipeline, *pipelineLayout, RAYGEN_GROUP, MISS_GROUP, HIT_GROUP);
const de::MovePtr<BufferWithMemory> raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, RAYGEN_GROUP, 1u);
const de::MovePtr<BufferWithMemory> missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, MISS_GROUP, 1u);
const de::MovePtr<BufferWithMemory> hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, HIT_GROUP, 1u);
const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, m_data.depth, format);
const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u);
const de::MovePtr<ImageWithMemory> image = de::MovePtr<ImageWithMemory>(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any));
const Move<VkImageView> imageView = makeImageView(vkd, device, **image, (m_data.depth != 1) ? VK_IMAGE_VIEW_TYPE_3D : VK_IMAGE_VIEW_TYPE_2D, format, imageSubresourceRange);
const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount * sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1);
const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, m_data.depth), bufferImageSubresourceLayers);
de::MovePtr<BufferWithMemory> buffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible));
const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
**image, imageSubresourceRange);
const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
**image, imageSubresourceRange);
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
const VkClearValue clearValue = (!m_useClosedFan) ? makeClearValueColorU32(5u, 5u, 5u, 255u)
: makeClearValueColorU32(0u, 0u, 0u, 0u);
vector<de::SharedPtr<BottomLevelAccelerationStructure> > bottomLevelAccelerationStructures;
de::MovePtr<TopLevelAccelerationStructure> topLevelAccelerationStructure;
beginCommandBuffer(vkd, *cmdBuffer, 0u);
{
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier);
vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier);
bottomLevelAccelerationStructures = initBottomAccelerationStructures(*cmdBuffer);
topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructures);
const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get();
VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline);
if (!m_useClosedFan)
{
cmdTraceRays(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
m_data.width, m_data.height, 1);
}
else
{
cmdTraceRays(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
1 + m_data.width,
m_data.height,
1);
}
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier);
}
endCommandBuffer(vkd, *cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer.get());
invalidateAlloc(vkd, device, buffer->getAllocation());
return buffer;
}
void RayTracingWatertightnessTestInstance::checkSupportInInstance(void) const
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const vk::VkPhysicalDeviceProperties& properties = m_context.getDeviceProperties();
const deUint32 requiredAllocations = 8u
+ TopLevelAccelerationStructure::getRequiredAllocationCount()
+ m_data.instancesGroupCount * BottomLevelAccelerationStructure::getRequiredAllocationCount();
de::MovePtr<RayTracingProperties> rayTracingProperties = makeRayTracingProperties(vki, physicalDevice);
if (rayTracingProperties->getMaxPrimitiveCount() < m_data.squaresGroupCount)
TCU_THROW(NotSupportedError, "Triangles required more than supported");
if (rayTracingProperties->getMaxGeometryCount() < m_data.geometriesGroupCount)
TCU_THROW(NotSupportedError, "Geometries required more than supported");
if (rayTracingProperties->getMaxInstanceCount() < m_data.instancesGroupCount)
TCU_THROW(NotSupportedError, "Instances required more than supported");
if (properties.limits.maxMemoryAllocationCount < requiredAllocations)
TCU_THROW(NotSupportedError, "Test requires more allocations allowed");
}
tcu::TestStatus RayTracingWatertightnessTestInstance::iterate(void)
{
checkSupportInInstance();
const de::MovePtr<BufferWithMemory> bufferGPU = runTest();
const deUint32* bufferPtrGPU = (deUint32*)bufferGPU->getAllocation().getHostPtr();
deUint32 failures = 0u;
deUint32 qualityWarningIssued = 0u;
if (!m_useClosedFan)
{
deUint32 pos = 0;
for (deUint32 nIntersection = 0; nIntersection < m_data.squaresGroupCount; ++nIntersection)
{
if (bufferPtrGPU[pos] != 1)
failures++;
++pos;
}
}
else
{
// Values larger than 1, excl. 10000 raise a failure since they indicate the impl ignored the VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR flag.
// A value of 10000 triggers a quality warning, as this indicates a miss which, per spec language, is discouraged but not forbidden.
//
// See the miss shader for explanation of the magic number.
for (deUint32 pos = 0; pos < m_data.width * m_data.height * m_data.depth; ++pos)
{
if (bufferPtrGPU[pos] == 10000u)
{
qualityWarningIssued = 1u;
}
else
if (bufferPtrGPU[pos] > 1u)
{
failures ++;
}
}
}
if (failures == 0u)
{
if (qualityWarningIssued)
return tcu::TestStatus(QP_TEST_RESULT_QUALITY_WARNING, "Miss shader invoked for a shared edge/vertex.");
else
return tcu::TestStatus::pass("Pass");
}
else
return tcu::TestStatus::fail("failures=" + de::toString(failures));
}
} // anonymous
tcu::TestCaseGroup* createWatertightnessTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> watertightnessGroup(new tcu::TestCaseGroup(testCtx, "watertightness", "Ray watertightness tests"));
const size_t numTests = 10;
for (size_t testNdx = 0; testNdx < numTests; ++testNdx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, de::toString(testNdx).c_str(), ""));
const deUint32 sizes[] = { 4, 16, 64, 256, 1024, 4096, 16384, 65536 };
// Legacy tests
for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx)
{
const deUint32 squaresGroupCount = sizes[sizesNdx];
const deUint32 geometriesGroupCount = 1;
const deUint32 instancesGroupCount = 1;
const deUint32 randomSeed = (deUint32)(5 * testNdx + 11 * sizes[sizesNdx]);
const CaseDef caseDef =
{
256u,
256u,
squaresGroupCount,
geometriesGroupCount,
instancesGroupCount,
randomSeed,
1, /* depth - irrelevant */
0 /* useManyBottomASes - irrelevant */
};
const std::string testName = de::toString(caseDef.squaresGroupCount);
group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef, false /* useClosedFan */));
}
watertightnessGroup->addChild(group.release());
}
// Closed fan tests
{
const deUint32 sizes[] = { 4, 16, 64, 256, 1024 };
for (deUint32 nBottomASConfig = 0; nBottomASConfig < 2; ++nBottomASConfig)
{
const auto groupName = (nBottomASConfig == 0) ? "closedFan"
: "closedFan2";
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, groupName, ""));
for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx)
{
const deUint32 sharedEdgeCount = sizes[sizesNdx];
const CaseDef caseDef =
{
// The extra item in <width> is required to accomodate the extra center vertex, against which the test also shoots rays.
1 + static_cast<deUint32>(deSqrt(sharedEdgeCount)), /* width */
static_cast<deUint32>(deSqrt(sharedEdgeCount)), /* height */
sharedEdgeCount,
1, /* geometriesGroupCount - irrelevant */
1, /* instancesGroupCount - irrelevant */
1, /* randomSeed - irrelevant */
sharedEdgeCount, /* depth */
nBottomASConfig
};
const std::string testName = de::toString(sharedEdgeCount);
group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef, true /* useClosedFan */));
}
watertightnessGroup->addChild(group.release());
}
}
return watertightnessGroup.release();
}
} // RayTracing
} // vkt