blob: c1218a3125841d87724877bcd5c5c7a3b2c7f0db [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file vktSparseResourcesTestsUtil.cpp
* \brief Sparse Resources Tests Utility Classes
*//*--------------------------------------------------------------------*/
#include "vktSparseResourcesTestsUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkDeviceUtil.hpp"
#include "vkTypeUtil.hpp"
#include "tcuTextureUtil.hpp"
#include <deMath.h>
using namespace vk;
namespace vkt
{
namespace sparse
{
tcu::UVec3 getShaderGridSize (const ImageType imageType, const tcu::UVec3& imageSize, const deUint32 mipLevel)
{
const deUint32 mipLevelX = std::max(imageSize.x() >> mipLevel, 1u);
const deUint32 mipLevelY = std::max(imageSize.y() >> mipLevel, 1u);
const deUint32 mipLevelZ = std::max(imageSize.z() >> mipLevel, 1u);
switch (imageType)
{
case IMAGE_TYPE_1D:
return tcu::UVec3(mipLevelX, 1u, 1u);
case IMAGE_TYPE_BUFFER:
return tcu::UVec3(imageSize.x(), 1u, 1u);
case IMAGE_TYPE_1D_ARRAY:
return tcu::UVec3(mipLevelX, imageSize.z(), 1u);
case IMAGE_TYPE_2D:
return tcu::UVec3(mipLevelX, mipLevelY, 1u);
case IMAGE_TYPE_2D_ARRAY:
return tcu::UVec3(mipLevelX, mipLevelY, imageSize.z());
case IMAGE_TYPE_3D:
return tcu::UVec3(mipLevelX, mipLevelY, mipLevelZ);
case IMAGE_TYPE_CUBE:
return tcu::UVec3(mipLevelX, mipLevelY, 6u);
case IMAGE_TYPE_CUBE_ARRAY:
return tcu::UVec3(mipLevelX, mipLevelY, 6u * imageSize.z());
default:
DE_FATAL("Unknown image type");
return tcu::UVec3(1u, 1u, 1u);
}
}
tcu::UVec3 getLayerSize (const ImageType imageType, const tcu::UVec3& imageSize)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_1D_ARRAY:
case IMAGE_TYPE_BUFFER:
return tcu::UVec3(imageSize.x(), 1u, 1u);
case IMAGE_TYPE_2D:
case IMAGE_TYPE_2D_ARRAY:
case IMAGE_TYPE_CUBE:
case IMAGE_TYPE_CUBE_ARRAY:
return tcu::UVec3(imageSize.x(), imageSize.y(), 1u);
case IMAGE_TYPE_3D:
return tcu::UVec3(imageSize.x(), imageSize.y(), imageSize.z());
default:
DE_FATAL("Unknown image type");
return tcu::UVec3(1u, 1u, 1u);
}
}
deUint32 getNumLayers (const ImageType imageType, const tcu::UVec3& imageSize)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_2D:
case IMAGE_TYPE_3D:
case IMAGE_TYPE_BUFFER:
return 1u;
case IMAGE_TYPE_1D_ARRAY:
case IMAGE_TYPE_2D_ARRAY:
return imageSize.z();
case IMAGE_TYPE_CUBE:
return 6u;
case IMAGE_TYPE_CUBE_ARRAY:
return imageSize.z() * 6u;
default:
DE_FATAL("Unknown image type");
return 0u;
}
}
deUint32 getNumPixels (const ImageType imageType, const tcu::UVec3& imageSize)
{
const tcu::UVec3 gridSize = getShaderGridSize(imageType, imageSize);
return gridSize.x() * gridSize.y() * gridSize.z();
}
deUint32 getDimensions (const ImageType imageType)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_BUFFER:
return 1u;
case IMAGE_TYPE_1D_ARRAY:
case IMAGE_TYPE_2D:
return 2u;
case IMAGE_TYPE_2D_ARRAY:
case IMAGE_TYPE_CUBE:
case IMAGE_TYPE_CUBE_ARRAY:
case IMAGE_TYPE_3D:
return 3u;
default:
DE_FATAL("Unknown image type");
return 0u;
}
}
deUint32 getLayerDimensions (const ImageType imageType)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_BUFFER:
case IMAGE_TYPE_1D_ARRAY:
return 1u;
case IMAGE_TYPE_2D:
case IMAGE_TYPE_2D_ARRAY:
case IMAGE_TYPE_CUBE:
case IMAGE_TYPE_CUBE_ARRAY:
return 2u;
case IMAGE_TYPE_3D:
return 3u;
default:
DE_FATAL("Unknown image type");
return 0u;
}
}
bool isImageSizeSupported (const InstanceInterface& instance, const VkPhysicalDevice physicalDevice, const ImageType imageType, const tcu::UVec3& imageSize)
{
const VkPhysicalDeviceProperties deviceProperties = getPhysicalDeviceProperties(instance, physicalDevice);
switch (imageType)
{
case IMAGE_TYPE_1D:
return imageSize.x() <= deviceProperties.limits.maxImageDimension1D;
case IMAGE_TYPE_1D_ARRAY:
return imageSize.x() <= deviceProperties.limits.maxImageDimension1D &&
imageSize.z() <= deviceProperties.limits.maxImageArrayLayers;
case IMAGE_TYPE_2D:
return imageSize.x() <= deviceProperties.limits.maxImageDimension2D &&
imageSize.y() <= deviceProperties.limits.maxImageDimension2D;
case IMAGE_TYPE_2D_ARRAY:
return imageSize.x() <= deviceProperties.limits.maxImageDimension2D &&
imageSize.y() <= deviceProperties.limits.maxImageDimension2D &&
imageSize.z() <= deviceProperties.limits.maxImageArrayLayers;
case IMAGE_TYPE_CUBE:
return imageSize.x() <= deviceProperties.limits.maxImageDimensionCube &&
imageSize.y() <= deviceProperties.limits.maxImageDimensionCube;
case IMAGE_TYPE_CUBE_ARRAY:
return imageSize.x() <= deviceProperties.limits.maxImageDimensionCube &&
imageSize.y() <= deviceProperties.limits.maxImageDimensionCube &&
imageSize.z() <= deviceProperties.limits.maxImageArrayLayers;
case IMAGE_TYPE_3D:
return imageSize.x() <= deviceProperties.limits.maxImageDimension3D &&
imageSize.y() <= deviceProperties.limits.maxImageDimension3D &&
imageSize.z() <= deviceProperties.limits.maxImageDimension3D;
case IMAGE_TYPE_BUFFER:
return true;
default:
DE_FATAL("Unknown image type");
return false;
}
}
VkBufferImageCopy makeBufferImageCopy (const VkExtent3D extent,
const deUint32 layerCount,
const deUint32 mipmapLevel,
const VkDeviceSize bufferOffset)
{
const VkBufferImageCopy copyParams =
{
bufferOffset, // VkDeviceSize bufferOffset;
0u, // deUint32 bufferRowLength;
0u, // deUint32 bufferImageHeight;
makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, mipmapLevel, 0u, layerCount), // VkImageSubresourceLayers imageSubresource;
makeOffset3D(0, 0, 0), // VkOffset3D imageOffset;
extent, // VkExtent3D imageExtent;
};
return copyParams;
}
Move<VkPipeline> makeComputePipeline (const DeviceInterface& vk,
const VkDevice device,
const VkPipelineLayout pipelineLayout,
const VkShaderModule shaderModule,
const VkSpecializationInfo* specializationInfo)
{
const VkPipelineShaderStageCreateInfo pipelineShaderStageParams =
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineShaderStageCreateFlags flags;
VK_SHADER_STAGE_COMPUTE_BIT, // VkShaderStageFlagBits stage;
shaderModule, // VkShaderModule module;
"main", // const char* pName;
specializationInfo, // const VkSpecializationInfo* pSpecializationInfo;
};
const VkComputePipelineCreateInfo pipelineCreateInfo =
{
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineCreateFlags flags;
pipelineShaderStageParams, // VkPipelineShaderStageCreateInfo stage;
pipelineLayout, // VkPipelineLayout layout;
DE_NULL, // VkPipeline basePipelineHandle;
0, // deInt32 basePipelineIndex;
};
return createComputePipeline(vk, device, DE_NULL , &pipelineCreateInfo);
}
de::MovePtr<Allocation> bindImage (const DeviceInterface& vk, const VkDevice device, Allocator& allocator, const VkImage image, const MemoryRequirement requirement)
{
de::MovePtr<Allocation> alloc = allocator.allocate(getImageMemoryRequirements(vk, device, image), requirement);
VK_CHECK(vk.bindImageMemory(device, image, alloc->getMemory(), alloc->getOffset()));
return alloc;
}
de::MovePtr<Allocation> bindBuffer (const DeviceInterface& vk, const VkDevice device, Allocator& allocator, const VkBuffer buffer, const MemoryRequirement requirement)
{
de::MovePtr<Allocation> alloc(allocator.allocate(getBufferMemoryRequirements(vk, device, buffer), requirement));
VK_CHECK(vk.bindBufferMemory(device, buffer, alloc->getMemory(), alloc->getOffset()));
return alloc;
}
void submitCommands (const DeviceInterface& vk,
const VkQueue queue,
const VkCommandBuffer commandBuffer,
const deUint32 waitSemaphoreCount,
const VkSemaphore* pWaitSemaphores,
const VkPipelineStageFlags* pWaitDstStageMask,
const deUint32 signalSemaphoreCount,
const VkSemaphore* pSignalSemaphores)
{
const VkSubmitInfo submitInfo =
{
VK_STRUCTURE_TYPE_SUBMIT_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
waitSemaphoreCount, // deUint32 waitSemaphoreCount;
pWaitSemaphores, // const VkSemaphore* pWaitSemaphores;
pWaitDstStageMask, // const VkPipelineStageFlags* pWaitDstStageMask;
1u, // deUint32 commandBufferCount;
&commandBuffer, // const VkCommandBuffer* pCommandBuffers;
signalSemaphoreCount, // deUint32 signalSemaphoreCount;
pSignalSemaphores, // const VkSemaphore* pSignalSemaphores;
};
VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, DE_NULL));
}
void submitCommandsAndWait (const DeviceInterface& vk,
const VkDevice device,
const VkQueue queue,
const VkCommandBuffer commandBuffer,
const deUint32 waitSemaphoreCount,
const VkSemaphore* pWaitSemaphores,
const VkPipelineStageFlags* pWaitDstStageMask,
const deUint32 signalSemaphoreCount,
const VkSemaphore* pSignalSemaphores,
const bool useDeviceGroups,
const deUint32 physicalDeviceID)
{
const VkFenceCreateInfo fenceParams =
{
VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkFenceCreateFlags flags;
};
const Unique<VkFence> fence(createFence (vk, device, &fenceParams));
const deUint32 deviceMask = 1 << physicalDeviceID;
std::vector<deUint32> deviceIndices (waitSemaphoreCount, physicalDeviceID);
VkDeviceGroupSubmitInfo deviceGroupSubmitInfo =
{
VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO_KHR, //VkStructureType sType
DE_NULL, // const void* pNext
waitSemaphoreCount, // uint32_t waitSemaphoreCount
deviceIndices.size() ? &deviceIndices[0] : DE_NULL, // const uint32_t* pWaitSemaphoreDeviceIndices
1u, // uint32_t commandBufferCount
&deviceMask, // const uint32_t* pCommandBufferDeviceMasks
0u, // uint32_t signalSemaphoreCount
DE_NULL, // const uint32_t* pSignalSemaphoreDeviceIndices
};
const VkSubmitInfo submitInfo =
{
VK_STRUCTURE_TYPE_SUBMIT_INFO, // VkStructureType sType;
useDeviceGroups ? &deviceGroupSubmitInfo : DE_NULL, // const void* pNext;
waitSemaphoreCount, // deUint32 waitSemaphoreCount;
pWaitSemaphores, // const VkSemaphore* pWaitSemaphores;
pWaitDstStageMask, // const VkPipelineStageFlags* pWaitDstStageMask;
1u, // deUint32 commandBufferCount;
&commandBuffer, // const VkCommandBuffer* pCommandBuffers;
signalSemaphoreCount, // deUint32 signalSemaphoreCount;
pSignalSemaphores, // const VkSemaphore* pSignalSemaphores;
};
VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
VK_CHECK(vk.waitForFences(device, 1u, &fence.get(), DE_TRUE, ~0ull));
}
VkImageType mapImageType (const ImageType imageType)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_1D_ARRAY:
case IMAGE_TYPE_BUFFER:
return VK_IMAGE_TYPE_1D;
case IMAGE_TYPE_2D:
case IMAGE_TYPE_2D_ARRAY:
case IMAGE_TYPE_CUBE:
case IMAGE_TYPE_CUBE_ARRAY:
return VK_IMAGE_TYPE_2D;
case IMAGE_TYPE_3D:
return VK_IMAGE_TYPE_3D;
default:
DE_ASSERT(false);
return VK_IMAGE_TYPE_LAST;
}
}
VkImageViewType mapImageViewType (const ImageType imageType)
{
switch (imageType)
{
case IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
case IMAGE_TYPE_1D_ARRAY: return VK_IMAGE_VIEW_TYPE_1D_ARRAY;
case IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
case IMAGE_TYPE_2D_ARRAY: return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
case IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
case IMAGE_TYPE_CUBE: return VK_IMAGE_VIEW_TYPE_CUBE;
case IMAGE_TYPE_CUBE_ARRAY: return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
default:
DE_ASSERT(false);
return VK_IMAGE_VIEW_TYPE_LAST;
}
}
std::string getImageTypeName (const ImageType imageType)
{
switch (imageType)
{
case IMAGE_TYPE_1D: return "1d";
case IMAGE_TYPE_1D_ARRAY: return "1d_array";
case IMAGE_TYPE_2D: return "2d";
case IMAGE_TYPE_2D_ARRAY: return "2d_array";
case IMAGE_TYPE_3D: return "3d";
case IMAGE_TYPE_CUBE: return "cube";
case IMAGE_TYPE_CUBE_ARRAY: return "cube_array";
case IMAGE_TYPE_BUFFER: return "buffer";
default:
DE_ASSERT(false);
return "";
}
}
std::string getShaderImageType (const tcu::TextureFormat& format, const ImageType imageType)
{
std::string formatPart = tcu::getTextureChannelClass(format.type) == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER ? "u" :
tcu::getTextureChannelClass(format.type) == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER ? "i" : "";
std::string imageTypePart;
switch (imageType)
{
case IMAGE_TYPE_1D: imageTypePart = "1D"; break;
case IMAGE_TYPE_1D_ARRAY: imageTypePart = "1DArray"; break;
case IMAGE_TYPE_2D: imageTypePart = "2D"; break;
case IMAGE_TYPE_2D_ARRAY: imageTypePart = "2DArray"; break;
case IMAGE_TYPE_3D: imageTypePart = "3D"; break;
case IMAGE_TYPE_CUBE: imageTypePart = "Cube"; break;
case IMAGE_TYPE_CUBE_ARRAY: imageTypePart = "CubeArray"; break;
case IMAGE_TYPE_BUFFER: imageTypePart = "Buffer"; break;
default:
DE_ASSERT(false);
}
return formatPart + "image" + imageTypePart;
}
std::string getShaderImageDataType(const tcu::TextureFormat& format)
{
switch (tcu::getTextureChannelClass(format.type))
{
case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
return "uvec4";
case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
return "ivec4";
case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
return "vec4";
default:
DE_ASSERT(false);
return "";
}
}
std::string getShaderImageFormatQualifier (const tcu::TextureFormat& format)
{
const char* orderPart;
const char* typePart;
switch (format.order)
{
case tcu::TextureFormat::R: orderPart = "r"; break;
case tcu::TextureFormat::RG: orderPart = "rg"; break;
case tcu::TextureFormat::RGB: orderPart = "rgb"; break;
case tcu::TextureFormat::RGBA: orderPart = "rgba"; break;
default:
DE_ASSERT(false);
orderPart = DE_NULL;
}
switch (format.type)
{
case tcu::TextureFormat::FLOAT: typePart = "32f"; break;
case tcu::TextureFormat::HALF_FLOAT: typePart = "16f"; break;
case tcu::TextureFormat::UNSIGNED_INT32: typePart = "32ui"; break;
case tcu::TextureFormat::UNSIGNED_INT16: typePart = "16ui"; break;
case tcu::TextureFormat::UNSIGNED_INT8: typePart = "8ui"; break;
case tcu::TextureFormat::SIGNED_INT32: typePart = "32i"; break;
case tcu::TextureFormat::SIGNED_INT16: typePart = "16i"; break;
case tcu::TextureFormat::SIGNED_INT8: typePart = "8i"; break;
case tcu::TextureFormat::UNORM_INT16: typePart = "16"; break;
case tcu::TextureFormat::UNORM_INT8: typePart = "8"; break;
case tcu::TextureFormat::SNORM_INT16: typePart = "16_snorm"; break;
case tcu::TextureFormat::SNORM_INT8: typePart = "8_snorm"; break;
default:
DE_ASSERT(false);
typePart = DE_NULL;
}
return std::string() + orderPart + typePart;
}
std::string getShaderImageCoordinates (const ImageType imageType,
const std::string& x,
const std::string& xy,
const std::string& xyz)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_BUFFER:
return x;
case IMAGE_TYPE_1D_ARRAY:
case IMAGE_TYPE_2D:
return xy;
case IMAGE_TYPE_2D_ARRAY:
case IMAGE_TYPE_3D:
case IMAGE_TYPE_CUBE:
case IMAGE_TYPE_CUBE_ARRAY:
return xyz;
default:
DE_ASSERT(0);
return "";
}
}
deUint32 getImageMaxMipLevels (const VkImageFormatProperties& imageFormatProperties, const VkExtent3D& extent)
{
const deUint32 widestEdge = std::max(std::max(extent.width, extent.height), extent.depth);
return std::min(static_cast<deUint32>(deFloatLog2(static_cast<float>(widestEdge))) + 1u, imageFormatProperties.maxMipLevels);
}
deUint32 getImageMipLevelSizeInBytes(const VkExtent3D& baseExtents, const deUint32 layersCount, const tcu::TextureFormat& format, const deUint32 mipmapLevel, const deUint32 mipmapMemoryAlignment)
{
const VkExtent3D extents = mipLevelExtents(baseExtents, mipmapLevel);
return deAlign32(extents.width * extents.height * extents.depth * layersCount * tcu::getPixelSize(format), mipmapMemoryAlignment);
}
deUint32 getImageSizeInBytes(const VkExtent3D& baseExtents, const deUint32 layersCount, const tcu::TextureFormat& format, const deUint32 mipmapLevelsCount, const deUint32 mipmapMemoryAlignment)
{
deUint32 imageSizeInBytes = 0;
for (deUint32 mipmapLevel = 0; mipmapLevel < mipmapLevelsCount; ++mipmapLevel)
imageSizeInBytes += getImageMipLevelSizeInBytes(baseExtents, layersCount, format, mipmapLevel, mipmapMemoryAlignment);
return imageSizeInBytes;
}
VkSparseImageMemoryBind makeSparseImageMemoryBind (const DeviceInterface& vk,
const VkDevice device,
const VkDeviceSize allocationSize,
const deUint32 memoryType,
const VkImageSubresource& subresource,
const VkOffset3D& offset,
const VkExtent3D& extent)
{
const VkMemoryAllocateInfo allocInfo =
{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
allocationSize, // VkDeviceSize allocationSize;
memoryType, // deUint32 memoryTypeIndex;
};
VkDeviceMemory deviceMemory = 0;
VK_CHECK(vk.allocateMemory(device, &allocInfo, DE_NULL, &deviceMemory));
VkSparseImageMemoryBind imageMemoryBind;
imageMemoryBind.subresource = subresource;
imageMemoryBind.memory = deviceMemory;
imageMemoryBind.memoryOffset = 0u;
imageMemoryBind.flags = 0u;
imageMemoryBind.offset = offset;
imageMemoryBind.extent = extent;
return imageMemoryBind;
}
VkSparseMemoryBind makeSparseMemoryBind (const DeviceInterface& vk,
const VkDevice device,
const VkDeviceSize allocationSize,
const deUint32 memoryType,
const VkDeviceSize resourceOffset,
const VkSparseMemoryBindFlags flags)
{
const VkMemoryAllocateInfo allocInfo =
{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
allocationSize, // VkDeviceSize allocationSize;
memoryType, // deUint32 memoryTypeIndex;
};
VkDeviceMemory deviceMemory = 0;
VK_CHECK(vk.allocateMemory(device, &allocInfo, DE_NULL, &deviceMemory));
VkSparseMemoryBind memoryBind;
memoryBind.resourceOffset = resourceOffset;
memoryBind.size = allocationSize;
memoryBind.memory = deviceMemory;
memoryBind.memoryOffset = 0u;
memoryBind.flags = flags;
return memoryBind;
}
void requireFeatures (const InstanceInterface& vki, const VkPhysicalDevice physDevice, const FeatureFlags flags)
{
const VkPhysicalDeviceFeatures features = getPhysicalDeviceFeatures(vki, physDevice);
if (((flags & FEATURE_TESSELLATION_SHADER) != 0) && !features.tessellationShader)
throw tcu::NotSupportedError("Tessellation shader not supported");
if (((flags & FEATURE_GEOMETRY_SHADER) != 0) && !features.geometryShader)
throw tcu::NotSupportedError("Geometry shader not supported");
if (((flags & FEATURE_SHADER_FLOAT_64) != 0) && !features.shaderFloat64)
throw tcu::NotSupportedError("Double-precision floats not supported");
if (((flags & FEATURE_VERTEX_PIPELINE_STORES_AND_ATOMICS) != 0) && !features.vertexPipelineStoresAndAtomics)
throw tcu::NotSupportedError("SSBO and image writes not supported in vertex pipeline");
if (((flags & FEATURE_FRAGMENT_STORES_AND_ATOMICS) != 0) && !features.fragmentStoresAndAtomics)
throw tcu::NotSupportedError("SSBO and image writes not supported in fragment shader");
if (((flags & FEATURE_SHADER_TESSELLATION_AND_GEOMETRY_POINT_SIZE) != 0) && !features.shaderTessellationAndGeometryPointSize)
throw tcu::NotSupportedError("Tessellation and geometry shaders don't support PointSize built-in");
}
deUint32 findMatchingMemoryType (const InstanceInterface& instance,
const VkPhysicalDevice physicalDevice,
const VkMemoryRequirements& objectMemoryRequirements,
const MemoryRequirement& memoryRequirement)
{
const VkPhysicalDeviceMemoryProperties deviceMemoryProperties = getPhysicalDeviceMemoryProperties(instance, physicalDevice);
for (deUint32 memoryTypeNdx = 0; memoryTypeNdx < deviceMemoryProperties.memoryTypeCount; ++memoryTypeNdx)
{
if ((objectMemoryRequirements.memoryTypeBits & (1u << memoryTypeNdx)) != 0 &&
memoryRequirement.matchesHeap(deviceMemoryProperties.memoryTypes[memoryTypeNdx].propertyFlags))
{
return memoryTypeNdx;
}
}
return NO_MATCH_FOUND;
}
deUint32 getHeapIndexForMemoryType (const InstanceInterface& instance,
const VkPhysicalDevice physicalDevice,
const deUint32 memoryType)
{
const VkPhysicalDeviceMemoryProperties deviceMemoryProperties = getPhysicalDeviceMemoryProperties(instance, physicalDevice);
DE_ASSERT(memoryType < deviceMemoryProperties.memoryTypeCount);
return deviceMemoryProperties.memoryTypes[memoryType].heapIndex;
}
bool checkSparseSupportForImageType (const InstanceInterface& instance,
const VkPhysicalDevice physicalDevice,
const ImageType imageType)
{
const VkPhysicalDeviceFeatures deviceFeatures = getPhysicalDeviceFeatures(instance, physicalDevice);
if (!deviceFeatures.sparseBinding)
return false;
switch (mapImageType(imageType))
{
case VK_IMAGE_TYPE_2D:
return deviceFeatures.sparseResidencyImage2D == VK_TRUE;
case VK_IMAGE_TYPE_3D:
return deviceFeatures.sparseResidencyImage3D == VK_TRUE;
default:
DE_ASSERT(0);
return false;
};
}
bool checkSparseSupportForImageFormat (const InstanceInterface& instance,
const VkPhysicalDevice physicalDevice,
const VkImageCreateInfo& imageInfo)
{
const std::vector<VkSparseImageFormatProperties> sparseImageFormatPropVec = getPhysicalDeviceSparseImageFormatProperties(
instance, physicalDevice, imageInfo.format, imageInfo.imageType, imageInfo.samples, imageInfo.usage, imageInfo.tiling);
return sparseImageFormatPropVec.size() > 0u;
}
bool checkImageFormatFeatureSupport (const InstanceInterface& instance,
const VkPhysicalDevice physicalDevice,
const VkFormat format,
const VkFormatFeatureFlags featureFlags)
{
const VkFormatProperties formatProperties = getPhysicalDeviceFormatProperties(instance, physicalDevice, format);
return (formatProperties.optimalTilingFeatures & featureFlags) == featureFlags;
}
deUint32 getSparseAspectRequirementsIndex (const std::vector<VkSparseImageMemoryRequirements>& requirements,
const VkImageAspectFlags aspectFlags)
{
for (deUint32 memoryReqNdx = 0; memoryReqNdx < requirements.size(); ++memoryReqNdx)
{
if (requirements[memoryReqNdx].formatProperties.aspectMask & aspectFlags)
return memoryReqNdx;
}
return NO_MATCH_FOUND;
}
} // sparse
} // vkt