blob: 87cdf6fe7e06fdfb25bfd62dd41ca9512e02369b [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
* Copyright (c) 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Depth clamp tests.
*//*--------------------------------------------------------------------*/
#include "vkDefs.hpp"
#include "vktDrawDepthClampTests.hpp"
#include "vktTestGroupUtil.hpp"
#include "vktTestCaseUtil.hpp"
#include "vktDrawCreateInfoUtil.hpp"
#include "vktDrawBufferObjectUtil.hpp"
#include "vktDrawImageObjectUtil.hpp"
#include "vkPrograms.hpp"
#include "vkTypeUtil.hpp"
#include "vkRefUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkImageUtil.hpp"
#include "vkQueryUtil.hpp"
#include "tcuTextureUtil.hpp"
#include <cmath>
#include <limits>
namespace vkt
{
namespace Draw
{
namespace {
using namespace vk;
using namespace de;
using std::string;
using tcu::Vec4;
static const int WIDTH = 256;
static const int HEIGHT = 256;
struct TestParams
{
string testNameSuffix;
float depthValue;
float expectedValue;
bool enableDepthBias;
float depthBiasConstantFactor;
bool skipUNorm;
bool skipSNorm;
std::vector<const char*> requiredExtensions;
};
const VkFormat depthStencilImageFormatsToTest[] =
{
VK_FORMAT_D16_UNORM,
VK_FORMAT_X8_D24_UNORM_PACK32,
VK_FORMAT_D32_SFLOAT,
VK_FORMAT_D16_UNORM_S8_UINT,
VK_FORMAT_D24_UNORM_S8_UINT,
VK_FORMAT_D32_SFLOAT_S8_UINT
};
const float depthEpsilonValuesByFormat[] =
{
1e-5f,
std::numeric_limits<float>::epsilon(),
std::numeric_limits<float>::epsilon(),
1e-5f,
std::numeric_limits<float>::epsilon(),
std::numeric_limits<float>::epsilon()
};
const float initialClearDepth = 0.5f;
const TestParams depthClearValuesToTest[] =
{
{
"", // testNameSuffix
0.3f, // depthValue
0.3f, // expectedValue
false, // enableDepthBias
0.0f, // depthBiasConstantFactor
false, // skipUNorm
false, // skipSNorm
{}, // requiredExtensions
},
{
"_clamp_input_negative", // testNameSuffix
-1e6f, // depthValue
0.0f, // expectedValue
false, // enableDepthBias
0.0f, // depthBiasConstantFactor
false, // skipUNorm
false, // skipSNorm
{}, // requiredExtensions
},
{
"_clamp_input_positive", // testNameSuffix
1.e6f, // depthValue
1.0f, // expectedValue
false, // enableDepthBias
0.0f, // depthBiasConstantFactor
false, // skipUNorm
false, // skipSNorm
{}, // requiredExtensions
},
{
"_depth_bias_clamp_input_negative", // testNameSuffix
0.3f, // depthValue
0.0f, // expectedValue
true, // enableDepthBias
-2e11f, // depthBiasConstantFactor
false, // skipUNorm
false, // skipSNorm
{}, // requiredExtensions
},
{
"_depth_bias_clamp_input_positive", // testNameSuffix
0.7f, // depthValue
1.0f, // expectedValue
true, // enableDepthBias
2e11f, // depthBiasConstantFactor
false, // skipUNorm
false, // skipSNorm
{}, // requiredExtensions
},
{
"_depth_range_unrestricted_negative", // testNameSuffix
-1.5f, // depthValue
-1.5f, // expectedValue
false, // enableDepthBias
0.0f, // depthBiasConstantFactor
true, // skipUNorm
true, // skipSNorm
{
"VK_EXT_depth_range_unrestricted" // requiredExtensions[0]
},
},
{
"_depth_range_unrestricted_positive", // testNameSuffix
1.5f, // depthValue
1.5f, // expectedValue
false, // enableDepthBias
0.0f, // depthBiasConstantFactor
true, // skipUNorm
true, // skipSNorm
{
"VK_EXT_depth_range_unrestricted" // requiredExtensions[0]
},
}
};
bool isUnormDepthFormat(VkFormat format)
{
switch (format)
{
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
case VK_FORMAT_D16_UNORM_S8_UINT:
/* Special case for combined depth-stencil-unorm modes for which tcu::getTextureChannelClass()
returns TEXTURECHANNELCLASS_LAST */
return true;
default:
return vk::isUnormFormat(format);
}
}
class DepthClampTestInstance : public TestInstance {
public:
DepthClampTestInstance (Context& context, const TestParams& params, const VkFormat format, const float epsilon);
tcu::TestStatus iterate ();
private:
tcu::ConstPixelBufferAccess draw (const VkViewport viewport);
const TestParams m_params;
const VkFormat m_format;
const float m_epsilon;
SharedPtr<Image> m_depthTargetImage;
Move<VkImageView> m_depthTargetView;
SharedPtr<Buffer> m_vertexBuffer;
Move<VkRenderPass> m_renderPass;
Move<VkFramebuffer> m_framebuffer;
Move<VkPipelineLayout> m_pipelineLayout;
Move<VkPipeline> m_pipeline;
};
static const Vec4 vertices[] = {
Vec4(-1.0f, -1.0f, 0.5f, 1.0f), // 0 -- 2
Vec4(-1.0f, 1.0f, 0.5f, 1.0f), // | / |
Vec4( 1.0f, -1.0f, 0.5f, 1.0f), // | / |
Vec4( 1.0f, 1.0f, 0.5f, 1.0f) // 1 -- 3
};
static const VkPrimitiveTopology verticesTopology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
DepthClampTestInstance::DepthClampTestInstance (Context& context, const TestParams& params, const VkFormat format, const float epsilon)
: TestInstance(context)
, m_params(params)
, m_format(format)
, m_epsilon(epsilon)
{
const DeviceInterface& vk = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
DescriptorPoolBuilder descriptorPoolBuilder;
DescriptorSetLayoutBuilder descriptorSetLayoutBuilder;
// Vertex data
{
const size_t verticesCount = DE_LENGTH_OF_ARRAY(vertices);
const VkDeviceSize dataSize = verticesCount * sizeof(Vec4);
m_vertexBuffer = Buffer::createAndAlloc(vk, device, BufferCreateInfo(dataSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT),
m_context.getDefaultAllocator(), MemoryRequirement::HostVisible);
Vec4 testVertices[verticesCount];
deMemcpy(testVertices, vertices, dataSize);
for(size_t i = 0; i < verticesCount; ++i)
testVertices[i][2] = params.depthValue;
deMemcpy(m_vertexBuffer->getBoundMemory().getHostPtr(), testVertices, static_cast<std::size_t>(dataSize));
flushMappedMemoryRange(vk, device, m_vertexBuffer->getBoundMemory().getMemory(), m_vertexBuffer->getBoundMemory().getOffset(), VK_WHOLE_SIZE);
}
// Render pass
{
const VkImageUsageFlags targetImageUsageFlags = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
const ImageCreateInfo targetImageCreateInfo (VK_IMAGE_TYPE_2D, m_format, { WIDTH, HEIGHT, 1u }, 1u, 1u, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_TILING_OPTIMAL, targetImageUsageFlags);
m_depthTargetImage = Image::createAndAlloc(vk, device, targetImageCreateInfo, m_context.getDefaultAllocator(), queueFamilyIndex);
RenderPassCreateInfo renderPassCreateInfo;
renderPassCreateInfo.addAttachment(AttachmentDescription(
m_format, // format
VK_SAMPLE_COUNT_1_BIT, // samples
VK_ATTACHMENT_LOAD_OP_LOAD, // loadOp
VK_ATTACHMENT_STORE_OP_STORE, // storeOp
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp
VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, // initialLayout
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL)); // finalLayout
const VkAttachmentReference depthAttachmentReference = makeAttachmentReference(0u, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
renderPassCreateInfo.addSubpass(SubpassDescription(
VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint
(VkSubpassDescriptionFlags)0, // flags
0u, // inputAttachmentCount
DE_NULL, // inputAttachments
0u, // colorAttachmentCount
DE_NULL, // colorAttachments
DE_NULL, // resolveAttachments
depthAttachmentReference, // depthStencilAttachment
0u, // preserveAttachmentCount
DE_NULL)); // preserveAttachments
m_renderPass = createRenderPass(vk, device, &renderPassCreateInfo);
}
const ImageViewCreateInfo depthTargetViewInfo (m_depthTargetImage->object(), VK_IMAGE_VIEW_TYPE_2D, m_format);
m_depthTargetView = createImageView(vk, device, &depthTargetViewInfo);
const std::vector<VkImageView> depthAttachments { *m_depthTargetView };
FramebufferCreateInfo framebufferCreateInfo (*m_renderPass, depthAttachments, WIDTH, HEIGHT, 1);
m_framebuffer = createFramebuffer(vk, device, &framebufferCreateInfo);
// Vertex input
const VkVertexInputBindingDescription vertexInputBindingDescription =
{
0u, // uint32_t binding;
sizeof(Vec4), // uint32_t stride;
VK_VERTEX_INPUT_RATE_VERTEX, // VkVertexInputRate inputRate;
};
const VkVertexInputAttributeDescription vertexInputAttributeDescription =
{
0u, // uint32_t location;
0u, // uint32_t binding;
VK_FORMAT_R32G32B32A32_SFLOAT, // VkFormat format;
0u // uint32_t offset;
};
const PipelineCreateInfo::VertexInputState vertexInputState = PipelineCreateInfo::VertexInputState(1, &vertexInputBindingDescription,
1, &vertexInputAttributeDescription);
// Graphics pipeline
const Unique<VkShaderModule> vertexModule (createShaderModule(vk, device, m_context.getBinaryCollection().get("vert"), 0));
const Unique<VkShaderModule> fragmentModule (createShaderModule(vk, device, m_context.getBinaryCollection().get("frag"), 0));
const PipelineLayoutCreateInfo pipelineLayoutCreateInfo (0u, DE_NULL, 0u, DE_NULL);
m_pipelineLayout = createPipelineLayout(vk, device, &pipelineLayoutCreateInfo);
const VkRect2D scissor = makeRect2D(WIDTH, HEIGHT);
const VkViewport viewport = makeViewport(WIDTH, HEIGHT);
std::vector<VkDynamicState> dynamicStates (1, VK_DYNAMIC_STATE_VIEWPORT);
PipelineCreateInfo pipelineCreateInfo(*m_pipelineLayout, *m_renderPass, 0, (VkPipelineCreateFlags)0);
pipelineCreateInfo.addShader(PipelineCreateInfo::PipelineShaderStage(*vertexModule, "main", VK_SHADER_STAGE_VERTEX_BIT));
pipelineCreateInfo.addShader(PipelineCreateInfo::PipelineShaderStage(*fragmentModule, "main", VK_SHADER_STAGE_FRAGMENT_BIT));
pipelineCreateInfo.addState (PipelineCreateInfo::VertexInputState (vertexInputState));
pipelineCreateInfo.addState (PipelineCreateInfo::InputAssemblerState(verticesTopology));
pipelineCreateInfo.addState (PipelineCreateInfo::ViewportState (1, std::vector<VkViewport>(1, viewport), std::vector<VkRect2D>(1, scissor)));
pipelineCreateInfo.addState (PipelineCreateInfo::DepthStencilState (VK_TRUE, VK_TRUE, VK_COMPARE_OP_ALWAYS, VK_FALSE, VK_FALSE));
pipelineCreateInfo.addState (PipelineCreateInfo::RasterizerState (
VK_TRUE, // depthClampEnable
VK_FALSE, // rasterizerDiscardEnable
VK_POLYGON_MODE_FILL, // polygonMode
VK_CULL_MODE_NONE, // cullMode
VK_FRONT_FACE_CLOCKWISE, // frontFace
m_params.enableDepthBias ? VK_TRUE : VK_FALSE, // depthBiasEnable
m_params.depthBiasConstantFactor, // depthBiasConstantFactor
0.0f, // depthBiasClamp
0.0f, // depthBiasSlopeFactor
1.0f)); // lineWidth
pipelineCreateInfo.addState (PipelineCreateInfo::MultiSampleState ());
pipelineCreateInfo.addState (PipelineCreateInfo::DynamicState (dynamicStates));
m_pipeline = createGraphicsPipeline(vk, device, DE_NULL, &pipelineCreateInfo);
}
tcu::ConstPixelBufferAccess DepthClampTestInstance::draw (const VkViewport viewport)
{
const DeviceInterface& vk = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkQueue queue = m_context.getUniversalQueue();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const CmdPoolCreateInfo cmdPoolCreateInfo (queueFamilyIndex);
const Unique<VkCommandPool> cmdPool (createCommandPool(vk, device, &cmdPoolCreateInfo));
const Unique<VkCommandBuffer> cmdBuffer (allocateCommandBuffer(vk, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
const bool isCombinedType = tcu::isCombinedDepthStencilType(mapVkFormat(m_format).type) && m_format != VK_FORMAT_X8_D24_UNORM_PACK32;
beginCommandBuffer(vk, *cmdBuffer);
vk.cmdSetViewport(*cmdBuffer, 0u, 1u, &viewport);
if (isCombinedType)
initialTransitionDepthStencil2DImage(vk, *cmdBuffer, m_depthTargetImage->object(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
else
initialTransitionDepth2DImage(vk, *cmdBuffer, m_depthTargetImage->object(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
const VkImageAspectFlagBits aspectBits = (VkImageAspectFlagBits)(isCombinedType ? VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT : VK_IMAGE_ASPECT_DEPTH_BIT);
const ImageSubresourceRange subresourceRange (aspectBits);
const VkClearDepthStencilValue clearDepth = makeClearDepthStencilValue(initialClearDepth, 0u);
vk.cmdClearDepthStencilImage(*cmdBuffer, m_depthTargetImage->object(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearDepth, 1, &subresourceRange);
transition2DImage(vk, *cmdBuffer, m_depthTargetImage->object(), aspectBits,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT , VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT , VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT);
{
const VkMemoryBarrier memBarrier = { VK_STRUCTURE_TYPE_MEMORY_BARRIER, DE_NULL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT };
vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 1, &memBarrier, 0, DE_NULL, 0, DE_NULL);
}
beginRenderPass(vk, *cmdBuffer, *m_renderPass, *m_framebuffer, makeRect2D(0, 0, WIDTH, HEIGHT));
vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_pipeline);
const VkDeviceSize offset = 0;
const VkBuffer buffer = m_vertexBuffer->object();
vk.cmdBindVertexBuffers(*cmdBuffer, 0, 1, &buffer, &offset);
vk.cmdDraw(*cmdBuffer, DE_LENGTH_OF_ARRAY(vertices), 1, 0, 0);
endRenderPass(vk, *cmdBuffer);
transition2DImage(vk, *cmdBuffer, m_depthTargetImage->object(), aspectBits,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT , VK_ACCESS_MEMORY_READ_BIT,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT , VK_PIPELINE_STAGE_HOST_BIT);
endCommandBuffer(vk, *cmdBuffer);
submitCommandsAndWait(vk, device, queue, *cmdBuffer);
VK_CHECK(vk.queueWaitIdle(queue));
return m_depthTargetImage->readDepth(queue, m_context.getDefaultAllocator(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, { 0, 0, 0 }, WIDTH, HEIGHT, VK_IMAGE_ASPECT_DEPTH_BIT);
}
tcu::TestStatus DepthClampTestInstance::iterate (void)
{
// Set up the viewport and draw
const VkViewport viewport =
{
0.0f, // float x;
0.0f, // float y;
WIDTH, // float width;
HEIGHT, // float height;
m_params.expectedValue < 0.0f ? m_params.expectedValue : 0.0f, // float minDepth;
m_params.expectedValue > 1.0f ? m_params.expectedValue : 1.0f, // float maxDepth;
};
const tcu::ConstPixelBufferAccess resultImage = draw(viewport);
DE_ASSERT((isUnormDepthFormat(m_format) == false) ||
(m_params.expectedValue >= 0.0f && m_params.expectedValue <= 1.0f));
for(int z = 0; z < resultImage.getDepth(); ++z)
for(int y = 0; y < resultImage.getHeight(); ++y)
for(int x = 0; x < resultImage.getWidth(); ++x)
{
if (std::abs(m_params.expectedValue - resultImage.getPixDepth(x,y,z)) >= m_epsilon)
{
std::ostringstream msg;
msg << "Depth value mismatch, expected: " << m_params.expectedValue << ", got: " << resultImage.getPixDepth(x,y,z) << " at " << "(" << x << ", " << y << ", " << z << ")";
return tcu::TestStatus::fail(msg.str());
}
}
return tcu::TestStatus::pass("Pass");
}
class DepthClampTest : public TestCase
{
public:
DepthClampTest (tcu::TestContext &testCtx, const string& name, const string& description, const TestParams &params, const VkFormat format, const float epsilon)
: TestCase (testCtx, name, description)
, m_params(params)
, m_format(format)
, m_epsilon(epsilon)
{
}
virtual void initPrograms (SourceCollections& programCollection) const
{
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
<< "\n"
<< "layout(location = 0) in vec4 in_position;\n"
<< "\n"
<< "out gl_PerVertex {\n"
<< " vec4 gl_Position;\n"
<< "};\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_Position = in_position;\n"
<< "}\n";
programCollection.glslSources.add("vert") << glu::VertexSource(src.str());
}
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< "}\n";
programCollection.glslSources.add("frag") << glu::FragmentSource(src.str());
}
}
virtual void checkSupport (Context& context) const
{
context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_DEPTH_CLAMP);
for(const auto& extensionName : m_params.requiredExtensions)
{
context.requireDeviceFunctionality(extensionName);
}
VkImageFormatProperties imageFormatProperties;
const auto& vki = context.getInstanceInterface();
const auto& vkd = context.getPhysicalDevice();
const auto usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
if (vki.getPhysicalDeviceImageFormatProperties(vkd, m_format, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, usage, 0u, &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
{
TCU_THROW(NotSupportedError, "Format not supported");
}
}
virtual TestInstance* createInstance (Context& context) const
{
return new DepthClampTestInstance(context, m_params, m_format, m_epsilon);
}
private:
const TestParams m_params;
const VkFormat m_format;
const float m_epsilon;
};
std::string getFormatCaseName (VkFormat format)
{
return de::toLower(de::toString(getFormatStr(format)).substr(10));
}
void createTests (tcu::TestCaseGroup* testGroup)
{
for(int i = 0; i < DE_LENGTH_OF_ARRAY(depthStencilImageFormatsToTest); ++i)
{
const auto format = depthStencilImageFormatsToTest[i];
const float epsilon = depthEpsilonValuesByFormat[i];
const auto formatCaseName = getFormatCaseName(format);
for(const auto& params : depthClearValuesToTest)
{
if ((params.skipSNorm && vk::isSnormFormat(format)) || (params.skipUNorm && isUnormDepthFormat(format)))
continue;
const auto testCaseName = formatCaseName + params.testNameSuffix;
testGroup->addChild(new DepthClampTest(testGroup->getTestContext(), testCaseName, "Depth clamp", params, format, epsilon));
}
}
}
} // anonymous
tcu::TestCaseGroup* createDepthClampTests (tcu::TestContext& testCtx)
{
return createTestGroup(testCtx, "depth_clamp", "Depth Clamp Tests", createTests);
}
} // Draw
} // vkt