blob: 0797463e064954b29451e02ba129547974f25621 [file] [log] [blame]
#ifndef _TCUVECTORUTIL_HPP
#define _TCUVECTORUTIL_HPP
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Vector utility functions.
*//*--------------------------------------------------------------------*/
#include "tcuDefs.hpp"
#include "tcuVector.hpp"
#include "deRandom.hpp"
#include "deMeta.hpp"
#include "deMath.h"
#include "deInt32.h"
#include <ostream>
#include <math.h>
namespace tcu
{
static const float PI = 3.141592653589793238f;
#if (DE_OS == DE_OS_ANDROID) || (DE_OS == DE_OS_UNIX) || (DE_OS == DE_OS_QNX) || (DE_OS == DE_OS_WIN32 && DE_COMPILER == DE_COMPILER_CLANG)
inline float abs (float f) { return deFloatAbs(f); }
#endif
template<typename T> inline T add (T a, T b) { return a + b; }
template<typename T> inline T sub (T a, T b) { return a - b; }
template<typename T> inline T mul (T a, T b) { return a * b; }
template<typename T> inline T div (T a, T b) { return a / b; }
template<typename T> inline T bitwiseNot (T a) { return ~a; }
template<typename T> inline T bitwiseAnd (T a, T b) { return a & b; }
template<typename T> inline T bitwiseOr (T a, T b) { return a | b; }
template<typename T> inline T bitwiseXor (T a, T b) { return a ^ b; }
template<typename T> inline T logicalNot (T a) { return !a; }
template<typename T> inline T logicalAnd (T a, T b) { return a && b; }
template<typename T> inline T logicalOr (T a, T b) { return a || b; }
template<typename T> inline T mod (T a, T b) { return a % b; }
template<> inline float mod (float x, float y) { return x - y * deFloatFloor(x / y); }
template<typename T> inline T negate (T f) { return -f; }
template<> inline deUint32 negate<deUint32> (deUint32 f) { return (deUint32)-(int)f; }
inline float radians (float f) { return deFloatRadians(f); }
inline float degrees (float f) { return deFloatDegrees(f); }
inline float inverseSqrt (float f) { return deFloatRsq(f); }
inline float sign (float f) { return (f < 0.0f) ? -1.0f : ((f > 0.0f) ? +1.0f : 0.0f); }
inline float fract (float f) { return f - deFloatFloor(f); }
inline float mix (float x, float y, float a) { return x * (1.0f - a) + y * a; }
inline float step (float edge, float x) { return (x < edge) ? 0.0f : 1.0f; }
inline float smoothStep (float edge0, float edge1, float x)
{
if (x <= edge0) return 0.0f;
if (x >= edge1) return 1.0f;
float t = de::clamp((x - edge0) / (edge1 - edge0), 0.0f, 1.0f);
return t * t * (3.0f - 2.0f * t);
}
inline double mix (double x, double y, double a) { return x * (1.0 - a) + y * a; }
inline double step (double edge, double x) { return (x < edge) ? 0.0 : 1.0; }
inline float length (float f) { return deFloatAbs(f); }
inline float distance (float x, float y) { return deFloatAbs(x - y); }
inline float dot (float x, float y) { return (x * y); }
inline float normalize (float f) { return sign(f); }
inline float faceForward (float n, float i, float ref) { return ((ref * i) < 0.0f) ? n : -n; }
inline float reflect (float i, float n) { return i - 2.0f * (n * i) * n; }
inline float refract (float i, float n, float eta)
{
float cosAngle = (n * i);
float k = 1.0f - eta * eta * (1.0f - cosAngle * cosAngle);
if (k < 0.0f)
return 0.0f;
else
return eta * i - (eta * cosAngle + deFloatSqrt(k)) * n;
}
template<typename T> inline bool lessThan (T a, T b) { return (a < b); }
template<typename T> inline bool lessThanEqual (T a, T b) { return (a <= b); }
template<typename T> inline bool greaterThan (T a, T b) { return (a > b); }
template<typename T> inline bool greaterThanEqual (T a, T b) { return (a >= b); }
template<typename T> inline bool equal (T a, T b) { return (a == b); }
template<typename T> inline bool notEqual (T a, T b) { return (a != b); }
template<typename T> inline bool allEqual (T a, T b) { return (a == b); }
template<typename T> inline bool anyNotEqual (T a, T b) { return (a != b); }
inline bool boolNot (bool a) { return !a; }
inline int chopToInt (float a) { return deChopFloatToInt32(a); }
inline float roundToEven (float a)
{
float q = deFloatFrac(a);
float r = a-q;
if (q > 0.5f)
r += 1.0f;
else if (q == 0.5 && (((int)r) % 2 != 0))
r += 1.0f;
return r;
}
template <typename T, int Size>
inline T dot (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
T res = T();
for (int i = 0; i < Size; i++)
res += a.m_data[i] * b.m_data[i];
return res;
}
template <typename T, int Size>
inline T lengthSquared (const Vector<T, Size>& a)
{
T sqSum = T();
for (int i = 0; i < Size; i++)
sqSum += a.m_data[i] * a.m_data[i];
return sqSum;
}
template <typename T, int Size>
inline typename de::meta::EnableIf<T, de::meta::TypesSame<T, double>::Value>::Type length (const Vector<T, Size>& a)
{
return ::sqrt(lengthSquared(a));
}
template <typename T, int Size>
inline typename de::meta::EnableIf<T, de::meta::TypesSame<T, float>::Value>::Type length (const Vector<T, Size>& a)
{
return deFloatSqrt(lengthSquared(a));
}
template <typename T, int Size>
inline T distance (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
return length(a - b);
}
template <typename T, int Size>
inline Vector<T, Size> cross (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
DE_STATIC_ASSERT(Size == 3);
return Vector<T, Size>(
a.y() * b.z() - b.y() * a.z(),
a.z() * b.x() - b.z() * a.x(),
a.x() * b.y() - b.x() * a.y());
}
template <typename T, int Size>
inline Vector<T, Size> normalize (const Vector<T, Size>& a)
{
T ooLen = T(1) / length(a);
Vector<T, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = ooLen * a.m_data[i];
return res;
}
template <typename T, int Size>
inline Vector<T, Size> faceForward (const Vector<T, Size>& n, const Vector<T, Size>& i, const Vector<T, Size>& ref)
{
return (dot(ref, i) < T(0)) ? n: -n;
}
template <typename T, int Size>
inline Vector<T, Size> reflect (const Vector<T, Size>& i, const Vector<T, Size>& n)
{
return i - T(2) * dot(n, i) * n;
}
template <typename T, int Size>
inline Vector<T, Size> refract (const Vector<T, Size>& i, const Vector<T, Size>& n, T eta)
{
T cosAngle = dot(n, i);
T k = T(1) - eta * eta * (T(1) - cosAngle * cosAngle);
if (k < T(0))
return Vector<T, Size>(T(0));
else
return i * eta - n * T(eta * cosAngle + ::sqrt(k));
}
template <int Size>
Vector<float, Size> mix (const Vector<float, Size>& x, const Vector<float, Size>& y, float a)
{
Vector<float, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = deFloatMix(x.m_data[i], y.m_data[i], a);
return res;
}
template <int Size>
Vector<double, Size> mix (const Vector<double, Size>& x, const Vector<double, Size>& y, double a)
{
Vector<double, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = deMix(x.m_data[i], y.m_data[i], a);
return res;
}
// Piece-wise compare operators.
template <typename T, int Size>
inline Vector<bool, Size> equal (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = a.m_data[i] == b.m_data[i];
return res;
}
template <typename T, int Size>
inline Vector<bool, Size> notEqual (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = a.m_data[i] != b.m_data[i];
return res;
}
template <typename T, int Size>
inline Vector<bool, Size> lessThan (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = a.m_data[i] < b.m_data[i];
return res;
}
template <typename T, int Size>
inline Vector<bool, Size> lessThanEqual (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = a.m_data[i] <= b.m_data[i];
return res;
}
template <typename T, int Size>
inline Vector<bool, Size> greaterThan (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = a.m_data[i] > b.m_data[i];
return res;
}
template <typename T, int Size>
inline Vector<bool, Size> greaterThanEqual (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = a.m_data[i] >= b.m_data[i];
return res;
}
// Equality comparison operators.
template <typename T, int Size>
inline bool allEqual (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
bool res = true;
for (int i = 0; i < Size; i++)
res = res && a.m_data[i] == b.m_data[i];
return res;
}
template <typename T, int Size>
inline bool anyNotEqual (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
bool res = false;
for (int i = 0; i < Size; i++)
res = res || a.m_data[i] != b.m_data[i];
return res;
}
// Boolean built-ins.
template <int Size>
inline Vector<bool, Size> boolNot (const Vector<bool, Size>& a)
{
Vector<bool, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = !a.m_data[i];
return res;
}
template <int Size>
inline bool boolAny (const Vector<bool, Size>& a)
{
for (int i = 0; i < Size; i++)
if (a.m_data[i] == true)
return true;
return false;
}
template <int Size>
inline bool boolAll (const Vector<bool, Size>& a)
{
for (int i = 0; i < Size; i++)
if (a.m_data[i] == false)
return false;
return true;
}
template <int Size>
Vector<int, Size> chopToInt (const Vector<float, Size>& v)
{
Vector<int, Size> res;
for (int i = 0; i < Size; i++)
res.m_data[i] = chopToInt(v.m_data[i]);
return res;
}
// Vector construction using selection based on boolean vector.
template <typename T, int Size>
inline Vector<T, Size> select (T trueVal, T falseVal, const Vector<bool, Size>& cond)
{
Vector<T, Size> res;
for (int i = 0; i < Size; i++)
res[i] = cond[i] ? trueVal : falseVal;
return res;
}
// Component-wise selection.
template <typename T, int Size>
inline Vector<T, Size> select (const Vector<T, Size>& trueVal, const Vector<T, Size>& falseVal, const Vector<bool, Size>& cond)
{
Vector<T, Size> res;
for (int i = 0; i < Size; i++)
res[i] = cond[i] ? trueVal[i] : falseVal[i];
return res;
}
// Absolute difference (abs(a - b))
template<typename T, int Size>
static inline Vector<T, Size> absDiff (const Vector<T, Size>& a, const Vector<T, Size>& b)
{
Vector<T, Size> res;
for (int ndx = 0; ndx < Size; ndx++)
res[ndx] = (a[ndx] > b[ndx]) ? (a[ndx] - b[ndx]) : (b[ndx] - a[ndx]);
return res;
}
template<typename T, int Size>
inline tcu::Vector<T, Size> randomVector (de::Random& rnd, const tcu::Vector<T, Size>& minValue, const tcu::Vector<T, Size>& maxValue)
{
tcu::Vector<T, Size> res;
for (int ndx = 0; ndx < Size; ndx++)
res[ndx] = de::randomScalar<T>(rnd, minValue[ndx], maxValue[ndx]);
return res;
}
inline Vector<float, 2> randomVec2 (de::Random& rnd)
{
return randomVector<float, 2>(rnd, tcu::Vector<float, 2>(0.0f), tcu::Vector<float, 2>(1.0f));
}
inline Vector<float, 3> randomVec3 (de::Random& rnd)
{
return randomVector<float, 3>(rnd, tcu::Vector<float, 3>(0.0f), tcu::Vector<float, 3>(1.0f));
}
inline Vector<float, 4> randomVec4 (de::Random& rnd)
{
return randomVector<float, 4>(rnd, tcu::Vector<float, 4>(0.0f), tcu::Vector<float, 4>(1.0f));
}
// Macros for component-wise ops.
#define TCU_DECLARE_VECTOR_UNARY_FUNC(FUNC_NAME, OP_NAME) \
template <typename T, int Size> \
Vector<T, Size> FUNC_NAME (const Vector<T, Size>& v) \
{ \
Vector<T, Size> res; \
for (int i = 0; i < Size; i++) \
res.m_data[i] = OP_NAME(v.m_data[i]); \
return res; \
}
#define TCU_DECLARE_VECTOR_BINARY_FUNC(FUNC_NAME, OP_NAME) \
template <typename T, int Size> \
Vector<T, Size> FUNC_NAME (const Vector<T, Size>& a, const Vector<T, Size>& b) \
{ \
Vector<T, Size> res; \
for (int i = 0; i < Size; i++) \
res.m_data[i] = OP_NAME(a.m_data[i], b.m_data[i]); \
return res; \
}
#define TCU_DECLARE_VECTOR_TERNARY_FUNC(FUNC_NAME, OP_NAME) \
template <typename T, int Size> \
Vector<T, Size> FUNC_NAME (const Vector<T, Size>& a, const Vector<T, Size>& b, const Vector<T, Size>& c) \
{ \
Vector<T, Size> res; \
for (int i = 0; i < Size; i++) \
res.m_data[i] = OP_NAME(a.m_data[i], b.m_data[i], c.m_data[i]); \
return res; \
}
// \todo [2011-07-01 pyry] Add some prefix to vector funcs and remove this hack.
#if defined(min)
# undef min
#endif
#if defined(max)
# undef max
#endif
TCU_DECLARE_VECTOR_UNARY_FUNC(negate, negate)
TCU_DECLARE_VECTOR_UNARY_FUNC(bitwiseNot, bitwiseNot)
TCU_DECLARE_VECTOR_BINARY_FUNC(add, add)
TCU_DECLARE_VECTOR_BINARY_FUNC(sub, sub)
TCU_DECLARE_VECTOR_BINARY_FUNC(mul, mul)
TCU_DECLARE_VECTOR_BINARY_FUNC(div, div)
TCU_DECLARE_VECTOR_BINARY_FUNC(mod, mod)
TCU_DECLARE_VECTOR_BINARY_FUNC(bitwiseAnd, bitwiseAnd)
TCU_DECLARE_VECTOR_BINARY_FUNC(bitwiseOr, bitwiseOr)
TCU_DECLARE_VECTOR_BINARY_FUNC(bitwiseXor, bitwiseXor)
TCU_DECLARE_VECTOR_UNARY_FUNC(logicalNot, logicalNot)
TCU_DECLARE_VECTOR_BINARY_FUNC(logicalAnd, logicalAnd)
TCU_DECLARE_VECTOR_BINARY_FUNC(logicalOr, logicalOr)
TCU_DECLARE_VECTOR_UNARY_FUNC(radians, deFloatRadians)
TCU_DECLARE_VECTOR_UNARY_FUNC(degrees, deFloatDegrees)
TCU_DECLARE_VECTOR_UNARY_FUNC(sin, deFloatSin)
TCU_DECLARE_VECTOR_UNARY_FUNC(cos, deFloatCos)
TCU_DECLARE_VECTOR_UNARY_FUNC(tan, deFloatTan)
TCU_DECLARE_VECTOR_UNARY_FUNC(asin, deFloatAsin)
TCU_DECLARE_VECTOR_UNARY_FUNC(acos, deFloatAcos)
TCU_DECLARE_VECTOR_UNARY_FUNC(atan, deFloatAtanOver)
TCU_DECLARE_VECTOR_BINARY_FUNC(atan2, deFloatAtan2)
TCU_DECLARE_VECTOR_UNARY_FUNC(sinh, deFloatSinh)
TCU_DECLARE_VECTOR_UNARY_FUNC(cosh, deFloatCosh)
TCU_DECLARE_VECTOR_UNARY_FUNC(tanh, deFloatTanh)
TCU_DECLARE_VECTOR_UNARY_FUNC(asinh, deFloatAsinh)
TCU_DECLARE_VECTOR_UNARY_FUNC(acosh, deFloatAcosh)
TCU_DECLARE_VECTOR_UNARY_FUNC(atanh, deFloatAtanh)
TCU_DECLARE_VECTOR_BINARY_FUNC(pow, deFloatPow)
TCU_DECLARE_VECTOR_UNARY_FUNC(exp, deFloatExp)
TCU_DECLARE_VECTOR_UNARY_FUNC(log, deFloatLog)
TCU_DECLARE_VECTOR_UNARY_FUNC(exp2, deFloatExp2)
TCU_DECLARE_VECTOR_UNARY_FUNC(log2, deFloatLog2)
TCU_DECLARE_VECTOR_UNARY_FUNC(sqrt, deFloatSqrt)
TCU_DECLARE_VECTOR_UNARY_FUNC(inverseSqrt, deFloatRsq)
TCU_DECLARE_VECTOR_UNARY_FUNC(abs, de::abs)
TCU_DECLARE_VECTOR_UNARY_FUNC(sign, deFloatSign)
TCU_DECLARE_VECTOR_UNARY_FUNC(floor, deFloatFloor)
TCU_DECLARE_VECTOR_UNARY_FUNC(trunc, deFloatTrunc)
TCU_DECLARE_VECTOR_UNARY_FUNC(roundToEven, roundToEven)
TCU_DECLARE_VECTOR_UNARY_FUNC(ceil, deFloatCeil)
TCU_DECLARE_VECTOR_UNARY_FUNC(fract, deFloatFrac)
TCU_DECLARE_VECTOR_BINARY_FUNC(min, de::min)
TCU_DECLARE_VECTOR_BINARY_FUNC(max, de::max)
TCU_DECLARE_VECTOR_TERNARY_FUNC(clamp, de::clamp)
TCU_DECLARE_VECTOR_TERNARY_FUNC(mix, deFloatMix)
TCU_DECLARE_VECTOR_BINARY_FUNC(step, deFloatStep)
TCU_DECLARE_VECTOR_TERNARY_FUNC(smoothStep, deFloatSmoothStep)
} // tcu
#endif // _TCUVECTORUTIL_HPP